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Abstract

Wave-equation-based parameter estimation techniques can retrieve accurate and high-resolution sub-

surface physical properties from seismic data acquired close to the surface of the Earth. In fact,

multiple acoustic full-waveform inversion methods have been proposed over the years to retrieve the

P-wave velocity of the subsurface. Moreover, researchers have extended full-waveform inversion ap-

proaches to estimate anisotropic and absorption parameters as well. Nowadays, some applications of

elastic full-waveform inversion can also be found. However, given its prohibitive computational cost

compared to the acoustic counterpart, elastic wave-equation inversion workflows still have limited

applicability within seismic exploration datasets. To tackle this challenge, I propose a novel wave-

equation-based elastic parameter estimation workflow based on wave-equation operators. I refer to

the entire approach as target-oriented elastic full-waveform inversion. The method is composed of

two steps. In the first one, I apply an extended linearized waveform inversion to the surface data.

The obtained subsurface image is then employed to synthesize data as if they were acquired close

to a target area. Finally, this dataset is inverted using an elastic full-waveform inversion workflow

to estimate the subsurface elastic parameters. I demonstrate its efficacy on a 2D synthetic test and

an ocean-bottom-node dataset acquired in the Gulf of Mexico, showing its ability to retrieve the

elastic parameters of potential subsurface prospects. Compared to the elastic inversion of the surface

dataset, the proposed method has a computational cost lower by two orders of magnitude.
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Preface

The electronic version of this report1 makes the input programs and applications available to the

reader. The markings ER, CR, and NR are promises by the author about the reproducibility of

each figure result. Reproducibility is a way of organizing computational research that allows both

the author and the reader of a publication to verify the reported results. Reproducibility facilitates

the transfer of knowledge within the Stanford Exploration Projection (SEP) and between SEP and

its sponsors.

ER denotes Easily Reproducible and are the results of processing described in the paper. The au-

thor claims that you can reproduce such a figure from the programs, parameters, and makefiles

input in the electronic document. The data must either be input in the electronic distribu-

tion, be easily available to all researchers (e.g., SEG-EAGE data sets), or be available in the

SEP data library2. We assume you have a UNIX workstation with Fortran, Fortran90, C, X-

Windows system and the software downloadable from our website (SEP makerules, SEPScons,

SEPlib, and the SEP latex package), or other free software such as SU. Before the publication

of the electronic document, someone other than the author tests the author’s claim by de-

stroying and rebuilding all ER figures. Some ER figures may not be reproducible by outsiders

because they depend on data sets that are too large to distribute, or data that we do not

have permission to redistribute but are in the SEP data library, or that the rules depend on

commercial packages such as Matlab or Mathematica.

CR denotes Conditional Reproducibility. The author certifies that the commands are in place

to reproduce the figure if certain resources are available. The primary reasons for the CR

designation is that the processing requires 20 minutes or more.

NR denotes Non-Reproducible figures. SEP discourages authors from flagging their figures as NR

except for figures that are used solely for motivation, comparison, or illustration of the theory,

such as: artist drawings, scannings, or figures taken from SEP reports not by the authors or

from non-SEP publications.

1http://sepwww.stanford.edu/public/docs/sep154
2http://sepwww.stanford.edu/public/docs/sepdatalib/toc html/
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Chapter 1

Introduction

Within the field of seismic data analysis, it has been recognized the advantage of relying on wave-

equation-based methods to process recorded events (Williamson and Worthington, 1993). As a

matter of fact, researchers have developed a variety of processing algorithms based on different

approximations of a given wave equation (Berryhill, 1979; Ronen, 1987; Woodward, 1992; Kühl and

Sacchi, 2003; Sava and Biondi, 2004; Shen, 2005).

One of the most studied approaches related to wave-equation data inversion is the method com-

monly called full-waveform inversion (FWI) (Tarantola, 1984). FWI can retrieve high-resolution

subsurface parameters when an accurate initial guess is provided to an inversion workflow. Within

the field of seismic exploration, FWI has been extensively investigated (Virieux and Operto, 2009),

and it has been extended to multi-parametric wave equations (Operto et al., 2013). FWI has also

demonstrated its potential within the field of global seismology (Fichtner et al., 2008), where multiple

applications of this inversion framework have been reported (Fichtner, 2010). However, for seismic

3D exploration applications, its computational cost is still prohibitive when an elastic isotropic

assumption is considered to predict the observed data (Alves, 2017).

Despite its high computational cost, elastic FWI has the ability to estimate accurate and data-

consistent subsurface parameters (Brossier et al., 2009). These properties can be ultimately employed

to characterize the rock-physicals parameters of the subsurface (Grana and Della Rossa, 2010). Thus,

it is fundamental to enable the inversion of seismic data by an elastic FWI methodology; especially,

given the increasing interest in understanding fine-scale physical phenomena (Lumley, 2010; Jaglan

et al., 2015).

Limitations of Zoeppritz-based amplitude-versus-offset analysis and inversion

When reflected events are employed to estimate the elastic parameters of the subsurface, the standard

processing tool is to follow an amplitude-versus-offset (AVO) analysis or inversion procedure (Yilmaz,

1
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2001). This step commonly relies on the reflection coefficients predicted by the Zoeppritz equations

to predict the amplitude response of the recorded data (Aki and Richards, 2002). However, this

assumption limits the inversion capabilities for high-frequency data. I employ a simple example to

highlight the Zoeppritz equation’s limitation when fairly complex geological interfaces are reflecting

energy back to the surface. I generate 2D elastic pressure data using one source and various receivers.

I assume that the subsurface is composed of two layers with different variations in each of the three

elastic parameters. Figure 1.1 shows the profiles of such model, where a decrease in S-wave and

density is occurring, while the P-wave is increasing across the interface. Such elastic parameter

variations correspond to an AVO class 4 (Castagna and Backus, 1993).

(a) (b) (c)

Figure 1.1: Elastic parameter profiles of the flat-interface model used to test the AVO response of
elastic pressure data. The three panels show the (a) P-wave, (b) S-wave, and (c) density profiles,
respectively. [ER]

I generate data considering two geological scenarios, one where the interface is flat and the other

where the two layers are separated by a sinusoidal or wavy interface (Figure 1.2). The explosive

source is placed at the surface at x = 0 m, and the various receivers are positioned with an increasing

offset from it. As a source signature, I use a Ricker wavelet with a dominant frequency of 10 Hz.

The panels in Figures 1.3a and 1.3b display the recorded pressure data in the two cases. In both

panels, I have removed the direct arrival to display the single reflected event better. The amplitude

of the reflected energy is increasing as the source-receiver distance is increasing. Additionally, other

scattered events follow the main reflected event from the wavy interface (Figure 1.3b).

I compute the AVO response of the main reflected event using the Zoeppritz equation and is

depicted by the blue curve in Figure 1.3c. As expected, the recorded amplitude variation extracted

from the reflection in Figure 1.3a perfectly follows the predicted Zoeppritz response. On the other

hand, the response extracted from the reflection in Figure 1.3b differs from the theoretical prediction.
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Figure 1.2: P-wave component of the elastic model in which the interface follows a sinusoidal pattern.
[ER]

The features present on the interface, comparable with certain wavelengths of the signal, clearly affect

the primary reflection’s amplitude behavior. The amplitude response approaches the theoretical one

by limiting this signal’s frequency content to a maximum of 10 Hz. In this case, the interface

effectively acts as flat because the interface variations are not comparable with the given injected

wavelengths. However, this prediction error would prevent any inversion method to utilize the

data’s full bandwidth correctly. Therefore, any Zoeppritz-based approach’s resolution capabilities

are limited to retrieving the low-wavenumber component of the subsurface. On the contrary, an

elastic FWI algorithm would correctly predict and use the entire signal’s bandwidth.

Proposed solution

In most seismic exploration applications, high-resolution elastic parameters are necessary only within

a limited portion of the subsurface (i.e., gas hazard, potential prospects, or known reservoirs). Hence,

I propose a novel target-oriented elastic FWI algorithm based on the usage of the extended-image

space. This image domain has been employed by many authors to invert for a subsurface migration

velocity based on optimal focusing of the image when the correct velocity is used during migration

(Symes and Kern, 1994; Yang and Sava, 2009; Alkhalifah, 2014; Biondi and Almomin, 2014). In

other applications, a form of extended-image space based on ray parameter is used to generate

angle gathers that preserve the amplitude information of the migrated events (Kuehl and Sacchi,

2002; Wang et al., 2005). The ability to preserve the amplitude behavior of primary reflected events

allows for the analysis of the amplitude-versus-angle (AVA) information and its subsequent inversion

to retrieve the elastic subsurface parameters (Schleicher et al., 1993; Albertin et al., 2004; Gray and

Bleistein, 2009).

In the proposed approach, the elastic pressure data are employed within an extended linearized

waveform inversion. The solution to this optimization problem is then used to synthesize a new

dataset as if the acquisition geometry was placed in proximity of a target area; hence, effectively
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(a) (b)

(c)

Figure 1.3: Elastic pressure reflected from the (a) flat and the (b) wavy interfaces, respectively. In
both panels the direct arrival has been removed. (c) Comparison of the AVO responses extracted
from the data against the theoretical Zoeppritz (blue curve). The red and solid black curves denote
the amplitude variation extracted from the flat- and wavy-interface models, respectively. The dashed
black curve is the AVO of the wavy-interface data but for a maximum frequency content of 10 Hz.
[ER]
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move the observed data from the surface to a new subsurface level. The process of moving the data

from one acquisition depth to a new one is known as redatuming within the field of seismic explo-

ration (Schuster and Zhou, 2006). The redatuming step permits to limit the simulation domain of an

elastic FWI problem to a small region of the subsurface; thus, diminishing its overall computational

cost and memory usage.

Thesis overview

I start by describing the theory of wave-equation modeling for the elastic and acoustic isotropic

cases and derive the corresponding linearized wave-equation operators. I employ these non-linear

and linear operators to define the linearized and full waveform inversion problems. Finally, I illustrate

how an extended linearized waveform inversion procedure is employed to redatum the elastic data

that are the input for an elastic FWI procedure to estimate the subsurface parameters of a target

area.

Using various 2D synthetic examples, I first show the ability of an acoustic extended linearized

waveform inversion to preserve the elastic amplitude variations of pressure data. These variations

ultimately contain the information necessary to retrieve the subsurface elastic parameters. Then, I

explain, using a simple example, how the extended space is used to perform the redatuming step of

the proposed inversion workflow. Finally, I apply the target-oriented elastic FWI method to retrieve

a gas-bearing sand lens’s elastic properties and highlight the computational and memory cost-saving

factors.

In the field-application chapter, I apply the entire inversion workflow to an active source survey

acquired in the Gulf of Mexico. First, I estimate an accurate velocity model using an acoustic FWI

process. I use the inverted velocity model to obtain an interpretable subsurface image on which I

identify a potential prospect whose elastic parameters are unknown. I then employ the proposed

target-oriented approach to this target and estimate its properties with a faction of the computational

cost of applying an elastic FWI process to the entire dataset. The retrieved parameters are consistent

with the existence of gas accumulation at the top of a potential reservoir.



Chapter 2

Theory

I describe the theory behind wave-equation-based imaging and inversion. I start by writing the

acoustic and elastic isotropic wave equations for both continuous and discrete cases. Then, I derive

the linearization of both wave equations and form the corresponding forward and adjoint Born op-

erators. These matrices represent the fundamental operators employed within the imaging methods

presented in this section. Moreover, using the solution to the isotropic wave equations and their

linearization, I define the non-convex optimization problem called full-waveform inversion. Finally,

I describe a redatuming technique based on an extended linearized waveform inversion approach,

where surface data are used to reconstruct data generated by a subsurface target. Any redatuming

technique aims to synthesize or reconstruct the data as if the data have been acquired by sources

and receivers placed to a greater depth compared to the original one (Schuster and Zhou, 2006).

Once the redatuming step is applied, the new dataset can be used to perform a waveform inversion

of the elastic properties of a target area (Richard et al., 1994; Wapenaar, 2014; Ravasi, 2017; Guo

and Alkhalifah, 2019; Garg and Verschuur, 2020). The advantage of performing a target-oriented

inversion is the computational saving factor, compared to apply a waveform inversion process to the

surface data, obtained by limiting the simulation domain to only the area of interest.

Table 2.1 displays the fundamental continuous wave-equation variables used within this section

along with their units and dependency with respect to the spatial and time coordinates.

2.1 Wave-equation modeling

A common assumption when processing seismic data is to consider the subsurface as an elastic

isotropic medium. Therefore, to predict or model seismic recording, I can solve the elastic isotropic

6
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Table 2.1: Wave-equation variable naming and definitions.

Variable Name Dependency Units

ρ Density space kg/m3

µ Shear modulus space Pa

λ Lamé parameter space Pa

vi Particle velocity space and time m/s

σij Stress-tensor component space and time Pa

fi Volumetric force space and time N/m3

mij Moment tensor component space and time Pa/s

p Pressure field space and time Pa

K Bulk modulus space Pa

s Acoustic source space and time Pa/s2

wave equation that is written as follows:

ρ(x)
∂vi(x, t)

∂t
=
∂σik(x, t)

∂xk
+ fi(x, t), (2.1)

∂σij(x, t)

∂t
= λ(x)

∂vk(x, t)

∂xk
δij + µ(x)

[
∂vi(x, t)

∂xj
+
∂vj(x, t)

∂xi

]
+mij(x, t),

where I employ the Einstein notation. The spatial and temporal coordinates are denoted by x and

t, respectively, and δij is the Kronecker delta. The subsurface is fully characterized by the three

elastic parameters: density ρ, first Lamé parameter λ, and shear modulus µ. The wavefield variables

in this equation are given by the particle velocities vi and the stress tensor components σij , which

are symmetric (i.e., σij = σji) (Chadwick, 1976). The wave propagation is due to the presence

of the source terms fi and mij that represent a volumetric force field and the time derivative of

the moment tensor, respectively (Aki and Richards, 2002). When the shear modulus is null (i.e.,

µ = 0), the elastic wave equation simplifies to the acoustic isotropic form that can be written as the

following partial differential equation (PDE):

∂2p(x, t)

∂t2
− λ(x)∇ · 1

ρ(x)
∇p(x, t) = s′(x, t), (2.2)

where ∇ denotes the gradient operator, ∇· is the divergence, and the pressure field p represents the

symmetric component of the stress tensor. The source term s′ is given by:

s′(x, t) =
∂mkk(x, t)

∂t
+

∂

∂xk

(
fk(x, t)

ρ(x)

)
. (2.3)
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In most applications, the decomposition of source term is neglected and a single function is employed.

If I consider only the symmetric component of the stress tensor, I can derive the same wave equation

where λ becomes K = λ + 2/3µ, which is referred to as bulk modulus. One common additional

assumption for equation 2.2 is to consider the density function ρ to be spatially constant. Under

this assumption, the wave equation simplifies even further and becomes:

1

v2(x)

∂2p(x, t)

∂t2
−∇2p(x, t) = s(x, t), (2.4)

where v represents the acoustic wave speed and s = s′/v2. In this approximation, the subsurface is

fully characterized by a single parameter.

To model seismic recording it is commonly assumed that the source term (e.g., mij or s) is

known. However, it can also be retrieved by applying an estimation technique (Song et al., 1995;

Minson and Dreger, 2008). Moreover, within seismic exploration applications, the source term is

commonly assumed to be a point source characterized by a source signature w(t). For instance, the

source term in equation 2.4 can be written as follows:

s(x, t) = δ(x− xs)w(t), (2.5)

where δ denotes the Dirac delta, and xs represents the source position. In field applications, the

wavefield variables (e.g., p or vi and σij) are not known everywhere in the subsurface position x,

but they are sampled by recording devices, such as geophones or hydrophones. For examples, in the

acoustic case, the recorded data are given by:

d(xr, t) =

∫
Ω

δ(x− xr)p(x, t)dx, (2.6)

where xr is the recording coordinates, and Ω is the propagation domain considered.

To solve any wave equation, I discretize the previous PDEs and use an explicit finite-difference

(FD) approach. For the elastic case (equation 2.1), I employ a staggered-grid method (Virieux,

1986), while for the constant density acoustic wave equation, I follow a central-grid finite-difference

scheme.

The discretization of the elastic 3D wave equation leads to the following linear system:

B−1Dt,vv = Ds,σσσσσσ + sf , (2.7)

Dt,σσσσσσ = CDs,vv + sm,
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where particle velocities and stress components are written as the following vectors:

v =

[
vx vy vz

]T
, (2.8)

σσσ =

[
σσσxx σσσyy σσσzz σσσxz σσσxy σσσyz

]T
, (2.9)

where T denotes the transposition operation. The source terms are given by the following vectors:

sf =

[
fx fy fz

]T
, (2.10)

sm =

[
mxx myy mzz mxz mxy myz

]T
. (2.11)

The time derivative operators are written as follows:

Dt,v =


Dt 0 0

0 Dt 0

0 0 Dt

 , (2.12)

Dt,σσσ =



Dt 0 0 0 0 0

0 Dt 0 0 0 0

0 0 Dt 0 0 0

0 0 0 Dt 0 0

0 0 0 0 Dt 0

0 0 0 0 0 Dt


, (2.13)

where Dt is a central-difference time-derivative operator. The matrix C represents the stiffness

tensor and is written as follows:

C =



ΛΛΛ + 2MMM ΛΛΛ ΛΛΛ 0 0 0

ΛΛΛ ΛΛΛ + 2MMM ΛΛΛ 0 0 0

ΛΛΛ ΛΛΛ ΛΛΛ + 2MMM 0 0 0

0 0 0 MMMxz 0 0

0 0 0 0 MMMxy 0

0 0 0 0 0 MMMyz


. (2.14)
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and the inverse of the buoyancy matrix B is written as:

B−1 =


Px 0 0

0 Py 0

0 0 Pz

 , (2.15)

where ΛΛΛ and MMM are diagonal matrices containing repeated values of the discretized Lamé parameter

and shear modulus λλλ and µµµ, respectively. The other diagonal matrices MMM ij and Pi are constructed

in a similar manner but using µµµij and ρρρi, respectively. These latter vectors represent the discretized

shear modulus and density staggered on the respective directions indicated by the subscripts, respec-

tively. Figure 2.1 shows a diagram describing the staggered grids where each wavefield component

and elastic parameter are defined. By employing a staggering operator Si, which shifts a given

vector along the i axis (Moczo et al., 2002), I can define the staggered elastic parameters as:

ρρρi = Siρρρ, (2.16)

µµµij = SiSjµµµ,

which can be used to form the operators B and C from the central-grid parameters λλλ, µµµ, and µµµ.

With this definition of the staggered grids, the spatial derivative operators Ds,σσσ and Ds,v are written

as follows:

Ds,σσσ =


D−x 0 0 D+

z D+
y 0

0 D−y 0 0 D+
x D+

z

0 0 D−z D+
x 0 D+

y

 , (2.17)

Ds,v =



D+
x 0 0

0 D+
y 0

0 0 D+
z

D−z 0 D−x

D−y D−x 0

0 D−z D−y


, (2.18)

where D+
i and D−i are FD forward and backward spatial derivative operators along the i axis,

respectively.
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Figure 2.1: Diagram showing how each wavefield component and elastic parameter are distributed
on the different grids within a 3D elastic staggered-grid scheme. [NR]

Equation 2.7 can be rewritten as the following linear system:

Aela(λλλ,µµµ,ρρρ)wela = sela, (2.19)

where the wavefield vector is defined as:

wela =

[
v σσσ

]T
, (2.20)

and the source vector as:

sela =

[
sf sm

]T
. (2.21)

The operator Aela is written as the following matrix:

Aela(λλλ,µµµ,ρρρ) =

B−1Dt,v −Ds,σσσ

−CDs,v Dt,σσσ

 , (2.22)

which non-linearly depends on the elastic parameters λλλ, µµµ, and ρρρ.

Under certain conditions, this operator represents a positive-definite matrix that can be solved

by forward substitution when initial time-boundary conditions are assumed. Therefore, elastically

propagating a source vector can be expressed as follows:

wela = A−1
ela(λλλ,µµµ,ρρρ)sela, (2.23)
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which represents a linear operator with respect to the source term sela. The elastic parameters

λλλ,µµµ,ρρρ ∈ RNm , with Nm = Nx × Ny × Nz, while the elastic wavefield and source vectors wela and

sela belong to RNela
w and Aela ∈ RNela

w ×Nela
w , with Nela

w = 9 × Nm × Nt, where Ni represents the

number of points along the i axis and Nt is the number of time samples.

Equation 2.23 also defines a non-linear function of the elastic parameters as follows:

fela : R3×Nm 7→ RN
ela
w (2.24)

λλλ,µµµ,ρρρ 7→ fela(λλλ,µµµ,ρρρ).

For the acoustic constant-density wave equation, I discretize equation 2.4 using a central-difference

scheme and write the following expression:

[
V−2D2

t −∇∇∇2
]
p = saco, (2.25)

where D2
t is a second-order central-difference time derivative operator, ∇∇∇2 is a high-order Laplacian

operator, V is a diagonal matrix that depends on the velocity vector v, and the pressure field p and

the acoustic source vector saco belong to RNaco
m , with Naco

m = Nm ×Nt. Similarly to equation 2.23,

the acoustic propagation of an acoustic source vector can be written as:

p = A−1
aco(v)saco, (2.26)

where Aaco(v) =
[
V−2D2

t −∇∇∇2
]
, which can also be inverted using a forward substitution scheme

when initial time-boundary conditions are assumed. Finally, I define a non-linear function with

respect to the velocity vector as follows:

faco : RNm 7→ RN
aco
w (2.27)

v 7→ faco(v).

I represent the data sampling operation of equation 2.6 by using a restriction operator K applied to

faco. Thus, I can write the modeling of acoustic data for a single source as follows:

daco(v) = Kfaco(v), (2.28)

where daco ∈ RNd and K ∈ RNd×Naco
w , with Nd = Nr × Nt. Nd represents the discrete number of

spatial points of the wavefield p. This sampling operation can be a be performed by using Kronecker

deltas or through discretization of the delta function (Fichtner, 2010).

When dealing with the elastic wave equation, the data sampling is performed in a similar fashion.
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For instance, three-component (3-C) geophone is represented as:

dgeoela (λλλ,µµµ,ρρρ) = Kgeofela(λλλ,µµµ,ρρρ), (2.29)

where:

Kgeo =


K 0 0 0 0 0 0 0 0

0 K 0 0 0 0 0 0 0

0 0 K 0 0 0 0 0 0

 . (2.30)

On the other hand, the recording of pressure data is expressed as:

dpela(λλλ,µµµ,ρρρ) = Kpfela(λλλ,µµµ,ρρρ), (2.31)

with:

Kp =
1

3

[
0 0 0 K K K 0 0 0

]
. (2.32)

The extension of the previously defined non-linear operators when multiple sources are employed

is performed by simply defining the following vector:
d1

...

dNs

 =


K1f1(m)

...

KNs
fNs

(m)

 , (2.33)

where Ns represents the number of sources, m is the vector of the subsurface parameters, and Ki

and fi are the sampling and modeling operators for the i-th source. In the following discussion, I

refer to the single-shot case but it is trivial to extend to the multiple source using the vector defined

in equation 2.33.

2.2 Wave-equation-based imaging and inversion

The theory of any wave-equation-based imaging is constructed on different forms of linearization of

a considered wave equation. I first derive the linearized forms of the acoustic and elastic wave equa-

tions and show how their linearized forms are used to construct the corresponding Born operators.

Then, by modifying the imaging condition for the acoustic case, I describe how extended images

are obtained from seismic data by means of an extended adjoint Born operator. Finally, using the

derived Born operators, I define the convex inverse problem known as linearized waveform inversion
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or least-squares reverse time migration (LSRTM) (Baysal et al., 1983).

2.2.1 Linearized wave equations

I begin by deriving the linearization of the acoustic wave equation using a perturbative approach. I

then proceed by linearizing the elastic isotropic case by employing the same strategy.

Acoustic linearized wave equation

To linearize the acoustic wave equation I add a velocity perturbation δv to a velocity model v0.

Thus, I can write equation 2.4 as follows:

[v0(x) + δv(x)]−2 ∂
2[p0(x, t) + δp(x, t)]

∂t2
−∇2[p0(x, t) + δp(x, t)] = s(x, t), (2.34)

where the background pressure field p0 is perturbed by the field δp. The expansion of equation 2.34

yields:

1

v2
0(x)

∂2p0(x, t)

∂t2
−∇2p0(x, t) = s(x, t), (2.35)

1

v2
0(x)

∂2δp(x, t)

∂t2
−∇2δp(x, t) = −2δv(x)

v3
0(x)

∂2p0(x, t)

∂t2
, (2.36)

where I neglected the higher-order terms. Equation 2.36 linearly relates a perturbation of the velocity

δv with a perturbation in the pressure field δp, which in turn results in a perturbation of the recorded

data δd as follows:

δd(xr, t) =

∫
Ω

δ(x− xr)δp(x, t)dx. (2.37)

By discretizing equations 2.36 and 2.37, I can write the following linear operator:

∆daco(v0) = KA−1
aco(v0)P0(v0)∆v, (2.38)

that maps a discrete perturbation of the velocity ∆v into a perturbation into the data space ∆d

and is based on the background velocity vector v0. The matrix P0(v) ∈ RNaco
w ×Nm represents the

discretization of the term −2v−3
0 (x)p̈0(x, t), where ¨ denotes the second-order time derivative of a

function. This operator is based on the discretized solution p0 of equation 2.35 , which is given by:

p0 = A−1
aco(v0)saco. (2.39)
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In the seismic-exploration literature, the matrix product of equation 2.38 is commonly referred to

as Born operator and is written as follows:

Baco(v) = KA−1
aco(v)P0(v), (2.40)

with Baco(v) ∈ RNd×Nm .

Elastic linearized wave equation

To derive the linearized elastic wave-equation I follow the same approach. The perturbation of the

elastic parameters λ, µ, and ρ of equation 2.1 yields:

(ρ0 + δρ)

(
∂v0,i

∂t
+
∂δvi
∂t

)
=

∂σ0,ij

∂xj
+
∂δσij
∂xj

+ fi, (2.41)

∂σ0,ij

∂t
+
∂δσij
∂t

= (λ0 + δλ)

(
∂v0,k

∂xk
+
∂δvk
∂xk

)
δij (2.42)

+ (µ0 + δµ)

(
∂v0,i

∂xj
+
∂δvi
∂xj

+
∂v0,j

∂xi
+
∂δvj
∂xi

)
+ mij

where I dropped the function dependency and λ0, µ0, and ρ0 are the background elastic parameters,

while δλ, δµ, and δρ are their corresponding perturbations. The background elastic fields v0,i and

σ0,ij are perturbed by the fields δvi and δσij , respectively. By expanding these equations and

reordering their terms, I write the following system of equations:

ρ0
∂v0,i

∂t
=

∂σ0,ij

∂xj
+ fi, (2.43)

∂σ0,ij

∂t
= λ0

∂v0,k

∂xk
δij + µ0

(
∂v0,i

∂xj
+
∂v0,j

∂xi

)
+mij

ρ0
∂δvi
∂t

=
∂δσij
∂xj

− δρ0
∂v0,i

∂t
, (2.44)

∂δσij
∂t

= λ0
∂δvk
∂xk

δij + µ0

(
∂δvi
∂xj

+
∂δvj
∂xi

)
+ δλ

∂v0,k

∂xk
δij + δµ

(
∂v0,i

∂xj
+
∂v0,j

∂xi

)
where the higher-order terms have been neglected. The discrete solution to the previous system of

equations can be written as follows:

w0,ela = A−1
ela(λλλ0,µµµ0, ρρρ0)sela, (2.45)

∆wela = A−1
ela(λλλ0,µµµ0, ρρρ0)Wela(λλλ0,µµµ0, ρρρ0)S∆mela, (2.46)
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where λλλ0, µµµ0, and ρρρ0 represent the elastic background parameters and the elastic perturbations ∆λλλ,

∆µµµ, and ∆ρρρ are placed within the vector:

∆mela =

[
∆λλλ ∆µµµ ∆ρρρ

]T
. (2.47)

The matrix Wela is constructed using the elastic background field w0,ela as follows:

Wela =



−V̇x 0 0 0 0 0 0 0

0 −V̇y 0 0 0 0 0 0

0 0 −V̇z 0 0 0 0 0

0 0 0 (Vdx
x + Vdy

y + Vdz
z ) 2Vdx

x 0 0 0

0 0 0 (Vdx
x + Vdy

y + Vdz
z ) 2Vdy

y 0 0 0

0 0 0 (Vdx
x + Vdy

y + Vdz
z ) 2Vdz

z 0 0 0

0 0 0 0 0 2(Vdz
x + Vdx

z ) 0 0

0 0 0 0 0 0 2(Vdy
x + Vdx

y ) 0

0 0 0 0 0 0 0 2(Vdz
y + Vdy

z )



,

(2.48)

where V̇i and Vdj
i are matrices containing the time derivative and spatial derivatives along the

j-th axis of the particle velocity vi. The scattering matrix W0,ela shows that only the background

particle velocities must be stored during the computation of the elastic field perturbation ∆wela.

The matrix staggering S is necessary because of the usage of the staggering-grid approach. The

operators composing this matrix is formed by following Figure 2.1 and is written as:

S =



0 0 Sx

0 0 Sy

0 0 Sz

I 0 0

0 I 0

0 SxSz 0

0 SxSy 0

0 SySz 0



. (2.49)
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Depending on the recorded data type, I can write the data perturbation vector by applying any

sampling operator defined in equations 2.30 and 2.32 to equation 2.46. For instance, the elastic

pressude data perturbation can be written as

Bela(mela) = KpA
−1
ela(mela)Wela(mela)S, (2.50)

where mela ∈ RNela
m , with Nela

m = 3×Nm, and is defined as:

mela =

[
λλλ µµµ ρρρ

]T
. (2.51)

Thus, Bela ∈ RNd×Nela
m . Furthermore, by following the previously mentioned naming convention, I

call Bela the elastic Born operator for pressure data.

2.2.2 Wave-equation imaging

Conventional imaging

Using the acoustic and elastic Born operators, I can define the process of creating a seismic image

of the subsurface using wave-equation-based migration methods (Mulder and Plessix, 2004). In

this work, the imaging process is performed by applying the adjoint Born operator to the observed

pressure data dobs. When the acoustic constant-density wave-equation is used during the migration

process, the subsurface image ma is obtained as follows:

ma = B∗acodobs = P∗0(A∗aco)
−1K∗dobs, (2.52)

where ∗ denotes the adjoint operation and the non-linear dependency on the velocity model v has

been dropped. In this process, the observed data are used as the forcing term of the adjoint wave

equation and is written as follows:

A∗acoq =
[
V−2D2

t −∇∇∇2
]∗

q = K∗dobs, (2.53)

where q is commonly referred to as adjoint or receiver wavefield. As explained in Appendix A,

depending on the assumed time and spatial boundary conditions the square matrix Aaco is lower

triangular or symmetric (i.e., Aaco = A∗aco). Finally, to form the image ma, the operator P0 is

then applied to the adjoint wavefield q. In the continuous case, this operator is represented by the

following relation:

m(x) = −2v−3
0 (x)

∫
Γ

p̈0(x, t)q(x, t)dt, (2.54)



CHAPTER 2. THEORY 18

where Γ represents the time interval of the field q and p0. Thus, the image m is formed by computing

the zero-lag cross-correlation between two pressure fields. In a similar fashion, I define the same

process for the elastic Born operator defined in equation 2.50:

me = B∗eladobs = S∗W∗
ela(A∗ela)−1K∗pdobs, (2.55)

where me represents the elastic image of the subsurface and the adjoint elastic wave equation A∗ela

is written as follows (Alves, 2017):

A∗ela =

B−1D∗t,v −D∗s,vC

−D∗s,σσσ Dt,σσσ

 . (2.56)

Under certain spatial boundary conditions, D∗s,σσσ = −Ds,v and D∗s,v = −Ds,σσσ.

Extended imaging

The imaging condition of equation 2.54 can be modified to allow additional degree of freedom. When

this modification is introduced, the subsurface image is referred to as an extended image (Symes

and Kern, 1994; Symes, 2008; Biondi and Almomin, 2014). This extended-image domain has been

employed by many authors to invert for the subsurface velocity based on the optimal focusing of

an image when the correct velocity is used during the migration process (Symes and Carazzone,

1991; Sava and Biondi, 2004; Shen, 2005). The imaging condition for the extension called subsurface

offsets is written as follow:

m̃h(x,h) = −2v−3
0 (x)

∫
Γ

p̈0(x− h, t)q(x + h, t)dt, (2.57)

where m̃h represents the extended image and h the subsurface offset variable (Rickett and Sava,

2002). By using this imaging condition, I can define the extended Born operator B̃aco as follows:

B̃aco = KA−1
acoP̃0, (2.58)

where B̃aco ∈ RNd×Ñaco
m , with Ñaco

m = Naco
m ×Nh in which Nh is the is number of discrete points along

the extended axis. The matrix P̃0 represents the discretization of the subsurface-offset scattering

conditions, which is given by:

q(x, t) = −2v−3
0 (x)

∫
Ωh

p̈0(x− 2h, t)m̃h(x− h,h)dh, (2.59)

where Ωh represents the domain of h.

The extended image in the subsurface-offset domain can be mapped into the subsurface-angle
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domain by applying the following transformation (Sava and Fomel, 2003):

m̃γ(x, y, z, γx, γy) =

∫
Ωh

m̃h(x, y, z + tan(γx)hx + tan(γy)hy, hx, hy)dhxdhy, (2.60)

where hx and hy represent the subsurface-offset axis variables and γi is the angle between the

integration plane and the axis hi. Equation 2.60 represents a 3D Radon transform (Averbuch and

Shkolnisky, 2003) and can also be written in terms of a dipping angle γ and an azimuth angle φ as

follows (Biondi and Tisserant, 2004):

m̃γ(x, y, z, γ, φ) =

∫
Ωh

m̃h(x, y, z + tan(γ)[cos(φ)hx − sin(φ)hy], hx, hy)dhxdhy. (2.61)

Additionally, under certain conditions, Biondi and Tisserant (2004) demonstrate that γ represent

the reflection angle for a direction defined by the azimuth angle φ. In Appendix B, I derive the 2D

and 3D forward and adjoint transformations as well as the corresponding pseudo-inverse operators.

2.2.3 Linearized waveform inversion

Using the Born operators or linearized wave equations, I define a wave-equation imaging process by

solving the following convex inverse problem:

mopt = argmin
m

1

2
‖Bm− dmig‖22, (2.62)

where B can be an elastic or acoustic or extended Born operator, dmig represents a subset of the

observed data (e.g., the reflected events), and m is the migrated image. The goal is to retrieve an

image of the interfaces between rock layers of the subsurface mopt from seismograms recorded at the

surface dmig. Since this migration process is performed using the linearization of a wave equation

and the full bandwidth of the data is considered, it is also referred to as linearized waveform inversion

(Østmo et al., 2002). The solution to this problem can be also written using the following closed-form

equation:

mopt = (B∗B)−1B∗dmig. (2.63)

Despite the simplicity of the previous equation, the solution to the problem posed in equation 2.62 is

computationally demanding and its Hessian is often singular and ill-conditioned. The matrix B∗B

easily reaches the billions of rows and columns; especially, in the 3D case. Therefore, to solve this

problem, one must rely on iterative solvers for linear problems (Kelley, 1999; Nocedal and Wright,

2006). Moreover, when certain acquisition geometries are considered or complex geological scenarios

are explored (e.g., underneath a salt body), then additional regularization terms must be added

to improve the quality of the subsurface image. For instance, when an extended Born modeling
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operator is considered, then the focus of the optimal image m̃opt can be improved by solving the

following regularized problem:

m̃opt = argmin
m̃

1

2
‖B̃acom̃− dmig‖22 +

ε2

2
‖Dm̃‖22, (2.64)

where ε is a scalar trade-off parameter, and D denotes the differential-semblance-optimization (DSO)

operator (Symes and Kern, 1994), whose continuous form for single extension hx is given by:

Dm̃h(x, hx) = hxm̃h(x, hx). (2.65)

The optimal image obtained by solving the convex problem of equation 2.64 presents improved

coherency of poorly illuminated reflection angles from an irregular surface acquisition geometry

within the angle-domain image space (Prucha and Biondi, 2002). In fact, as shown in Appendix B,

the DSO operator is equivalent to a derivative operator when transformed to the subsurface-angle

domain (Shen, 2005).

2.2.4 Full-waveform inversion

The ideal method to employ most of the information contained within recorded seismograms during

an optimization problem was first proposed by Tarantola (1984), and it is commonly referred to as

full-waveform inversion (FWI). The FWI problem is defined as follows:

mFWI = argmin
m

φFWI(m) = argmin
m

1

2
‖Kdf(m)− dobs‖22, (2.66)

where f represents the acoustic or elastic modeling operator (equations 2.27 and 2.24), Kd is a

data sampling operator (e.g., equation 2.32), and m in this case represents the subsurface unknown

property vector (e.g., equation 2.51). The optimization problem of equation 2.66 falls into the class of

non-convex or non-linear optimization problems. Therefore, it does not have a closed-form solution

as opposed to the linearized waveform inversion process. Furthermore, the cost of solving this

optimization problem permits only the applications of gradient-based methods to find the optimal

solution mFWI . In fact, the evaluation of the FWI objective function usually requires to find the

solution of thousands of PDEs. Finally, the objective function φFWI presents multiple local minima

and it is likely that the optimal solution is not unique (Virieux and Operto, 2009), which makes the

final FWI solution sensitive to the initial model guess.

The gradient of the FWI objective function can be derived using the adjoint-state method

(Chavent et al., 1975), and its derivation for the acoustic constant-density case is shown in Appendix

A. The same result can be obtained by linearizing the considered wave equation and constructing
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the Jacobian of the operator Kdf . By doing so, the gradient of φFWI can be written as:

∇φFWI(m) = B(m)∗[Kdf(m)− dobs], (2.67)

where B denotes the Jacobian of the non-linear operator Kdf , which has the same form of the Born

operators previously defined (i.e., equations 2.40 and 2.50).

As previously mentioned, the solution to the FWI problem is unlikely to be unique, given the

ill-posed nature of the problem. Therefore, the application of regularization techniques is necessary

to obtain useful FWI results. Here, I employ the ability of changing the basis functions representing

the model vector m. Specifically, I represent the model parameters using B-spline basis functions

(De Boor, 1986; Bartels et al., 1995), and write the FWI problem as follows:

mc,FWI = argmin
mc

1

2
‖Kdf(Scmc)− dobs‖22, (2.68)

where mc ∈ RNc
m represents the B-spline coefficients, and Sc is the operator that maps the spline

coefficients into the FD model space necessary for the modeling step. This procedure reduces the

number of inversion parameters. For example, in the acoustic case, Sc ∈ RNm×Nc
m , with N c

m <

Nm. Additionally, Barnier et al. (2019) demonstrate the ability of this approach to improve the

convergence properties of the FWI problem by effectively removing some of the local minima present

in the original FWI problem of equation 2.66. To start the inversion process in this framework given

an initial guess m0, defined on the FD-grid space (e.g., RNm), I obtain the corresponding spline-grid

initial model as follows:

mc,0 = S†cm0, (2.69)

where † represents the pseudo-inverse of an operator. Under certain spline-grid conditions, I can

write S†c = (S∗cSc)
−1S∗c .

When an elastic FWI problem is considered, other parameterizations of the elastic model can be

employed to solve the optimization problem. For instance, I can minimize the elastic FWI objective

function with respect to the P- and S-wave velocities vp and vs and density ρρρ. To do so without

changing the non-linear modeling operator (equation 2.23), one can define the following non-linear

composition of functions:

fela,v(vp,vs, ρρρ) = fela[g(vp,vs, ρρρ)], (2.70)
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where:

g : R3×Nm 7→ R3×Nm (2.71)

g(vp,vs, ρρρ) 7→ λλλ,µµµ,ρρρ.

The mapping function g is given by the following relations:

λ = (v2
p − 2v2

s)ρ, (2.72)

µ = v2
sρ,

ρ′ = ρ.

The Jacobian matrix of fela,v is given by the product of Jacobians of fela and g. The former is shown

in equation 2.46, while the latter is defined by the following equation:
∆λ

∆µ

∆ρ′

 =


2vpρ 2vsρ (v2

p − 2v2
s)

0 2vsρ v2
s

0 0 1




∆vp

∆vs

∆ρ

 . (2.73)

2.3 Redatuming through extended linearized waveform in-

version and target-oriented inversion

The goal of any redatuming method is to transform the observed data acquired at a certain location

(e.g., at the surface) into a new dataset as if they had been acquired at a different location in the

subsurface (Wapenaar et al., 1992; Mulder, 2005). Here, I seek to reconstruct the data generated

from a target area that is recorded with sources and receivers placed directly above the target. This

process enables the application of an FWI algorithm only within the target area. If the elastic

parameters compose the model vector, then I refer to the redatuming and inversion steps as “target-

oriented elastic FWI”.

The data reconstruction or redatuming step is performed by first solving an extended linearized

waveform inversion using a subset of the surface data d (e.g., the data where the direct arrival has

been removed), which corresponds to the minimization of the following objective function:

φ(p̃) =
1

2
‖B̃aco(v)p̃− d‖22 +

ε2

2
‖Dp̃‖22, (2.74)

where v represents the acoustic migration velocity, and the regularization term is added to diminish

the previously mentioned illumination artifacts. The extended image p̃ (or extended scattering

potential) preserves the amplitude variations of the surface data. In the next chapter, I illustrate
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this property by using different synthetic tests where elastic pressure data is migrated using acoustic

imaging operators.

The optimal solution to the previous imaging problem p̃mig is then used to reconstruct the

data d′ corresponding to sources and receivers placed at a new subsurface acquisition level. The

reconstruction is performed by the following demigration process:

d′ = B̃′aco(Mv)M̃p̃mig, (2.75)

where M and M̃ are restriction operators that limit the model and extended image to only the target

area, respectively. The symbol ′ denotes quantities related to the new acquisition geometry. The

success of this reconstruction method depends on the knowledge of an accurate overburden, which is

a common assumption within any redatuming technique. The advantage of this redatuming process

compared to other methods resides in the usage of the image space to reconstruct the subsurface

data. In fact, the usage of the regularization term during this step releases the common strict

constraint of having dense source-receiver surface sampling.

Given the redatumed data d′, I design a target-oriented FWI problem as follows:

Φ(m) =
1

2
‖Kf ′(m)− d′‖22 , (2.76)

where m represents the unknown subsurface parameters of the target area, and f ′ is the wave equa-

tion non-linear operator. When elastic pressure data are used during the redatuming and inversion

steps, then an overall decrease in computational cost is obtained compared to the application of an

elastic FWI method directly to the surface data.

To intuitively understand how the redatuming step works, let dz0 represent the subset of the

observed data of interest (e.g., reflected events). Furthermore, I assume that dz0 is given by the

following relation:

dz0(xr,xs, t) =

∫
Ωp

g(xr,x, t) ∗ g(x,xs, t)p(x)dx, (2.77)

where ∗ denotes the time convolution, p represents a scattering potential (also referred to subsurface

image), and g is the Green’s function for the acoustic wave equation. Equation 2.77 represents the

solution to the linearized acoustic wave equation (equations 2.35 and 2.36). Furthermore, it is trivial

to modify equation 2.77 to employ an extended scattering potential (equation 2.59).

Figure 2.2a schematically illustrates the process of computing the data Dz0,target for a single

point in the scattering potential and one source and receiver pair. The source wavefield G(~xp, ~xs)

propagates from the source position ~xs at the surface z0 and it is then scattered by an image

point placed at ~xp. This secondary source is then propagated by the receiver-side Green’s function
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Figure 2.2: (a) Schematic plot of equation 2.77. The data observed at ~xr are generated by the field
propagating from ~xs impinging on the scattering point at ~xp. (b) The same process can be used to
generate the same data but with the source and receiver placed at zd. [NR]

G(~xr, ~xp) and recorded from the device placed at ~xr. To obtain the same data but for the source-

receiver pair placed at zd, deeper than the surface level z0, the same scattering potential can be

used to generate the data for a source-receiver pair placed at ~x′s and ~x′r (Figure 2.2b). Hence,

the knowledge of the scattering potential p enables the computation of the same event for a given

source-receiver pair placed at two different depth levels.

Since this redatuming procedure is based on the formation of an image, the source-receiver

distribution at the new datum depends on the maximum extent of the surface acquisition. Figure 2.3

shows how the surface acquisition geometry extent changes when mapped to a deeper subsurface

position zd assuming a constant velocity. The surface and datum acquisition extents x̄ and x̄′

identically illuminates the image point ~xp. Therefore, an image formed using the data acquired

at z0 with a source-receiver extent x̄ can be employed to synthesize the data with an acquisition

extent x̄′ at zd. The datumed acquisition geometry is reduced compared to the surface one. Thus,

when generating the datumed dataset, a reduced source-receiver distribution must be used to avoid

the introduction of data artifacts due to the limited illumination of the surface acquisition. For a

more rigorous description on the choice of the virtual acquisition geometry, the reader is referred

to (Mulder, 2005).

In this simplified discussion, I assume that the recorded events are generated by a scattering

or reflection process. Therefore, the virtual datumed geometry is kept horizontal and moved only

along the vertical direction. However, as shown by Biondi and Almomin (2014), transmitted events,

such as diving and head waves, can be reconstructed using an extended image. Thus, allowing for

potentially positioning the virtual geometry around the target area. Despite this fact, this possibility

is not explored in this work, which is focused on reflected events. Finally, I employ this method

only to redatum single-component pressure data, but this process can be modified to reconstruct
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the particle velocities associated to P-wave reflected events.
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Figure 2.3: Schematic illustrating how the surface acquisition extent x̄ at z0 becomes x̄′ when moved
to zd assuming a constant velocity and identical illumination for the point ~xp. [NR]

2.4 Summary

In this chapter, I defined the main terms composing the elastic and acoustic isotropic wave-equations

and how they are connected to one another. I discretized them to obtain linear systems of equations

that can be inverted so that elastic and acoustic wavefields can be computed within a computer.

Then, I linearized them with respect to the subsurface-model parameters and illustrate how their

Born approximation is employed within non-linear and linear waveform inversion frameworks. More-

over, I explained how the acoustic linearized wave equation is extended to include additional degree

of freedom, compared to the physical axes, within the scattering potential. Finally, I described how

an extended linearized waveform inversion process is used to perform a redatuming step in which

the surface data are effectively move from the surface acquisition depth to a deeper level close to

any area of interest. The redatumed data are then used within an elastic FWI process to retrieve

the unknown subsurface parameters.



Chapter 3

Synthetic application of

target-oriented elastic FWI

The purpose of this chapter is to illustrate, using various synthetic examples, how the previously

described wave-equations operators are employed to retrieve the elastic parameters of the subsurface.

In the first section, I demonstrate using numerical 2D synthetic tests the ability of the extended

image space to preserve the elastic amplitude variations present in the reflected events recorded at

the surface. I start by showing how the amplitude variations with offsets of a reflected event from

a single interface are perfectly mapped into the extended angle-domain image. Then, I solve an

extended linearized waveform inversion problem to map elastic pressure data scattered by sediment

lenses placed underneath a salt body. This second test shows the extended space’s ability to preserve

elastic amplitude even with a linearized waveform regime within a complex geological scenario.

In the second section, I describe how the extended migrated volume is used to synthesize a

seismic survey as if it had been acquired in the proximity of a target area. To this end, I use the

single-interface model and show how the redatuming process works. I demonstrate the independence

of the image-based redatuming with respect to the source signal used during the imaging inversion.

Then, I illustrate its sensitivity to the velocity of the overburden and the importance of employing

a correct migration velocity during the migration process.

In the section of this chapter, I solve an elastic FWI problem using the surface data obtained on

a complex subsurface model. This example shows an FWI workflow’s ability to estimate the high-

wavenumber components of the elastic parameters from seismic data. Then, I apply the redatuming

process to synthesize the waveforms generated by a gas-sand target and use a target-oriented elastic

FWI workflow to correctly estimate the gas reservoir properties. The target-oriented inversion is

approximately 400 times less computationally intensive compared to the surface-data elastic FWI

process.

26
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3.1 Amplitude-preserving migration

In seismic exploration, the output of any amplitude-preserving or true-amplitude migration is an

image volume whose values are proportional, up to a constant factor, to the P-wave plane-wave

reflection coefficients of the subsurface interfaces (Gray and Bleistein, 2009). For instance, in the 2D

case, when we fix the spatial coordinates corresponding to a planar geological interface, the image

amplitudes as function of the reflection angle must be proportional to the reflection coefficient Rpp

predicted by the Zoeppritz equations (Aki and Richards, 2002). These kinds of image volumes

are then employed to predict the elastic-parameter contrasts present in the subsurface as well as

their petrophysical properties (Buland and Omre, 2003; Grana and Della Rossa, 2010). Using three

synthetic 2D numerical tests, I show how the solution to an extended linearized waveform inversion

problem corresponds to a true-amplitude image based on the above definition.

3.1.1 Single-interface synthetic example

In this first numerical example, I use two single-interface elastic models to generate elastic pressure

data. The elastic-parameter contrast is flat in one case and tilted by 10◦ in the other.

Flat interface

Figure 3.1 shows the P-wave velocity model for the flat interface test. The change in the elastic

parameters is depicted in the three vertical profiles shown in Figure 3.2, where an increase of all the

elastic parameters is occurring across the interface. I generate elastic pressure data using an explosive

source (i.e., mij 6= 0 for i = j), whose time signature and spectrum is displayed in Figure 3.3.

Figure 3.1: P-wave velocity model of the elastic single-interface model used in the first amplitude-
preserving numerical test. [ER]

I record the pressure using 81 sources and 401 receivers placed at the surface and spaced by 50

and 10 m, respectively. A single reflected event is recorded by the receivers for each experiment,
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(a) (b) (c)

Figure 3.2: Elastic parameter profiles of the single-interface model. The three panels show the (a)
P-wave, (b) S-wave, and (c) density profiles, respectively. [ER]

(a) (b)

Figure 3.3: Explosive source used to generate the elastic pressure data for the true-amplitude mi-
gration tests. Panel (a) and (b) show the time signature and frequency spectrum, respectively.
[ER]
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where a clear phase rotation is present as the offset between source and receiver pair increases

(Figure 3.4)

(a) (b)

Figure 3.4: Elastic pressure waves recorded at the surface for a shot placed at (a) x = 0 km and (b)
x = 2.0 km, respectively. The direct arrival has been removed from the observed data. [ER]

To perform the migration step, I solve two linearized waveform inversion problems using acous-

tic Born modeling operators. To show the importance of using an extended imaging condition

(equation 2.57), I employ non-extended and extended Born operators and minimize the objective

functions using 500 iterations of the linear conjugate gradient (CG) method (Aster et al., 2018). In

both cases, the migration velocity model is a constant speed set to 2.5 km/s. Figure 3.5a shows

the comparison between the convergence rates when the two operators are employed to generate the

subsurface image using the same elastic pressure data shown in Figure 3.4. It is clear that when the

extended space is used during the image formation, the relative objective function decrease reaches

almost a numerical level of accuracy for single-precision operators (i.e., 10−6). On the other hand,

the non-extended migration can only achieve approximately a 10% value compared to the initial

objective function. This observation is also highlighted by comparing the data residuals for the two

migration processes for a given shot gather (Figures 3.5b and Figures 3.5c). The extended image

space can fully preserve all the elastic amplitudes present in the recorded data. On the contrary, the

non-extended operator lacks this property, resulting in the non-extended Born operator’s inability

to model all the elastic pressure variations of the data. This simple comparison demonstrates that

elastic amplitude variations cannot be fully projected into the non-extended image space.

The extended linearized waveform inversion problem’s solution is a function of the spatial coor-

dinates x and z and of the extended subsurface offset axis h. The shape of the image highly depends

on the recorded events and the acquisition geometry employed. Figure 3.6 shows the offset-domain

common image gathers (ODCIGs) for two different x coordinates. For x = 2.0 km, the ODCIG
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(a)

(b) (c)

Figure 3.5: (a) Comparison of the convergence rate for the extended (blue curve) and non-extended
linearized (red dashed curve) waveform inversion problems for the data from the flat interface shown
in Figure 3.4. Final data residual vectors for the shot placed at x = 2.0 km for the (b) extended and
(c) non-extended migration processes. These last two panels have the same dynamic range. [CR]
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appears to be focused around the zero-offset axis. This behavior is expected since the correct mi-

gration velocity has been used during the inversion process (Biondi and Tisserant, 2004). The two

linear features below z = 0.8 km represent the head waves recorded in the longer offset shot gathers

mapped into the image space. The other two faint linear feature above z = 0.8 km are caused by the

limited acquisition aperture (i.e., the maximum source-receiver offset of 4 km). On the other hand,

when an ODCIG is extracted at x = 0.0 km (Figure 3.6a), the image does not appear as focused as

for the central-model position because fewer reflection angles have been illuminated from the surface

acquisition.

(a) (b)

Figure 3.6: Subsurface-offset common image gathers for the flat-interface example extracted at (a)
x = 0 km and (b) x = 2.0 km, respectively. [CR]

To highlight the importance of using the pseudo inverse of the offset to angle transform to obtain

angle-domain common image gathers (ADCIGs), I employ a synthetic example in which a single event

with constant angle response is present in the subsurface (Figure 3.7a). This ADCIG is transformed

into the corresponding ODCIG using the transformation derived in Appendix B (Figure 3.7b).

When this ODCIG is mapped back to the angle domain, different results are obtained whether

the adjoint or pseudo-inverse operators are employed. Figure 3.7c shows the result of applying the

adjoint operator. The shape and amplitude response are different compared to the original angle

response of Figure 3.7c; especially, for large reflection angle γ. On the contrary, the pseudo inverse
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(a) (b) (c) (d)

Figure 3.7: Single-reflector example with constant angle response highlighting the importance of
using the pseudo-inverse operator of the subsurface-offset to angle transformation. (a) Original
ADCIG. (b) ODCIG obtained from the original AD gather. ADCIGs obtained by applying the (c)
adjoint and (d) pseudo-inverse operators of the OD to AD transform, respectively. [ER]

application can better retrieve the original ADCIG response (Figure 3.7d). The artifacts present

above 60◦ reflection angle are due to the numerical approximation of the oscillatory integral of

equation B.5. In fact, this equation can be written as follows:∫ ∞
−∞

Îh(kz, h)ei2πkz tan(γ)hdh =

∫ ∞
−∞

Îh(kz, h)[cos(2πkz tan(γ)h)− i sin(2πkz tan(γ)h)]dh, (3.1)

where it is clear that numerical errors would occur for |kz tan(γ)| > kh,max, in which kh,max denotes

the Nyquist sampling rate of the subsurface-offset axis. In this case, to diminish such numerical

errors, the previous integral has been computed for |kz tan(γ)| ≤ kh,max only.

Figure 3.8 compares the correct angle response against the amplitudes of the ADCIGs in Fig-

ures 3.7c and 3.7d extracted at z = 1.0 km. As expected, the adjoint provides an angle response

that follows a cosine behavior (equation B.12). Conversely, the pseudo inverse is able to retrieve the

original amplitude response up to 60◦ angle, above which the discretization of the integral does not

allow a correct reconstruction. This test demonstrates the importance of using the pseudo-inverse

operator of the offset to angle transform for obtaining amplitude-preserving angle gathers. In fact,

all the ADCIGs shown below are computed by applying the pseudo inverse of this transformation.

The previous observations drawn from Figure 3.6 are more evident when the ODCIGs are trans-

formed into the corresponding ADCIGs. The reflection angles that are illuminated for a given x are
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Figure 3.8: Amplitude response extracted at z = 1.0 km from the angle-domain gathers of Fig-
ure 3.7. The red line represents the correct constant angle response, while the black dashed and
blue continuous denote the responses after applying the adjoint and the pseudo-inverse operators,
respectively. All responses have been scaled to have the same value for γ = 0. [ER]

(a) (b)

Figure 3.9: Angle-domain common image gathers for the flat-interface example extracted at (a)
x = 0 km and (b) x = 2.0 km. respectively. [CR]
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now obvious in the panels of Figure 3.9. As expected, for x = 0.0 km, the ADCIG presents energy

focused close to the zero-reflection angle axis. On the other hand, when the ADCIG is extracted at

x = 2.0 km, a flat event positioned at the interface depth is present.

Figure 3.10: Comparison between the angle response extracted at z = 0.8 km from the ADCIG
generated by 1 iteration (red dashed curve) and 500 iterations (black dashed curve) of extended
linearized waveform inversion on the flat-interface model and the theoretical response predicted
using Zoeppritz equation (blue curve). The ADCIG amplitudes have been scaled so that the three
responses match for γ = 0. [CR]

To verify that the amplitude response of the ADCIG in Figure 3.9b is representing a true-

amplitude imaged volume, I extract image amplitude at z = 0.8 km and compare it against the

plane-wave reflection coefficient Rpp of the planar interface (Figure 3.10). A close fit between the

ADCIG response and the theoretical Rpp is obtained for angles up to 42◦ (compare the blue and

black dashed curves), which is beyond the critical angle of 40◦. The mismatch at higher angular

values is due to the limited acquisition aperture as well as the truncation of the iterative inversion

process. To highlight the importance of the iterative process, I plot the ADCIG response obtained

with a single iteration of the linearized waveform inversion (i.e., by applying an extended reverse

time migration (RTM) process). A close fit is obtained for pre-critical angles. However, for angle

beyond 40◦, the response suffers from the missing compensation of the propagation effects, which

are mitigated by the inversion process.
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Tilted

As described by Sava and Fomel (2003), the transformation from subsurface offsets to angles is

independent of the geological dip of the subsurface reflectors when the correct migration velocity is

considered during the image formation. To show this property, I perform the same synthetic test as

in the previous example but where the interface is dipping by 10◦ (Figure 3.11).

Figure 3.11: P-wave velocity model of the elastic single-interface model tilted by 10◦. [ER]

By applying the same iterative process to solve the linearized waveform inversion problem based

on the slanted-interface data, I obtain the ODCIGs shown in Figures 3.12a and 3.12b. In this case,

the focusing depth in the gathers coincides with the interface’s position for the considered horizontal

coordinate. As in the previous case, the ODCIG at x = 0.0 km is not as focused around h = 0.0 km

as the one extracted at the center of the model due to the angular coverage of the reflected event.

The same observations on the ADCIGs as in the flat-interface case are valid when the reflector is

tilted (Figures 3.12c and 3.12d). Additionally, even if the interface is dipping, a similar amplitude

variation with angles can be observed in the ADCIG of Figure 3.12d when compared to the one of

Figure 3.9b. When the amplitude response from the central ADCIG is compared to the theoretical

Rpp, a similarly close match is observed (Figure 3.13). The slight dissimilarities compared to

Figure 3.10 are due to the different illuminated reflection angles from the surface acquisition as

well as the Cartesian coordinate-system approximation of the tilted interface. This synthetic test

demonstrates the invariability of the ODCIG to ADCIG transform with respect to the geological

dip in the 2D case.

3.1.2 Subsalt synthetic example

When imaging targets are present underneath a salt body, the correct recovery of a true-amplitude

migrated volume becomes challenging for multiple reasons (Muerdter and Ratcliff, 2001a; Prucha

and Biondi, 2002):
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(a) (b)

(c) (d)

Figure 3.12: Subsurface-offset common image gathers for the tilted interface example extracted at
(a) x = 0 km and (b) x = 1.0 km, respectively. The panels (c) and (d) display the previous image
gathers in mapped into the angle domain. [CR]
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Figure 3.13: Comparison between the angle response extracted at z = 0.64 km from the ADCIG (red
dashed curve) of Figure 3.12d and the theoretical response predicted using Zoeppritz (blue curve).
The ADCIG amplitudes have been scaled so that the two responses match for γ = 0. [CR]

• Any imaging method would be affected by the shadow zones below the salt body, where little

energy is reflected.

• Amplitude variations caused by salt structures focusing seismic energy would hamper the

constructed subsalt image.

• The subsalt image is significantly impacted by the choice of the acquisition geometry, making

the survey design a crucial step in subsalt seismic exploration scenarios (Muerdter and Ratcliff,

2001b).

In this example, I show how a regularized linearized waveform inversion can correctly retrieve

the subsalt amplitude variation with angles (AVA) of sand lenses placed underneath a large salt

body. Figure 3.14 displays the true P-wave velocity model where a salt body presenting a rugose

top interface is placed above three sediment lenses. To understand the variability of other elastic

parameters, I plot a vertical profile for x = 10.0 km (Figure 3.15). A substantial increase in both

P- and S-wave velocities is encountered within the salt body, while a mild decrease in the density

is present compared to the surrounding sediments. The sand lenses present a moderate increased

S-wave velocity, whereas small variations appear in the other two elastic parameters. The elastic-

parameter changes of the lenses correspond to a gas-bearing sand (Castagna and Swan, 1997).

To generate the observed elastic pressure data and simulate a realistic long-offset acquisition
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Figure 3.14: P-wave velocity model of the elastic model used in the subsalt amplitude-preserving
numerical test for the three sand lenses. [ER]

(a) (b) (c)

Figure 3.15: Elastic parameter profiles of the salt model extract at x = 5.0 km. The three panels
show the (a) P-wave, (b) S-wave, and (c) density profiles, respectively. [ER]
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(a) (b)

(c)

Figure 3.16: Elastic pressure waves recorded by a receiver placed at x = 9.94 km at the sea floor. (a)
Observed pressure. (b) Observed pressure where the direct arrival has been remove. (c) Observed
pressure related to the presence of the subsalt lenses. Panels (a) and (b) have the same clipping,
while panel (c) has a narrower dynamic range. [ER]
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geometry, I place 250 ocean-bottom nodes at the water-sediment contact (i.e., z = 0.3 km), starting

from x = 2.5 km and evenly spaced by 60 m. The 1001 sources are placed at the surface and

evenly separated by 20 m from each other. A representative receiver gather at x = 10.0 km is

shown in Figure 3.16a. Multiple scattered events are present underneath the direct arrival due to

the presence of the salt body and the sand lenses. To show the effect of the data used during the

linearized waveform inversion on the final migrated image, I perform two tests using the observed

elastic pressure. In one case, I migrate the data in which the direct arrival has been removed by

computing the elastic pressure due to only the water layer and sediments (i.e., without the salt

body and the sand lenses) (Figure 3.16b). In the other one, only the events related to the sand

lenses’ presence are employed during the imaging process (Figure 3.16c). To obtain the second test

events, I subtract the elastic pressure modeled using an elastic subsurface that does not contain the

sand lenses from the observed data. In both tests, all the non-linear effects are still present (e.g.,

amplitude variations, converted events, and multiples).

These two datasets are employed within an acoustic extended linearized waveform inversion

problems (equation 2.62) and are solved using 500 iterations of linear CG method. As migration

velocity, I use the true P-wave model from which I remove the sand lenses. The convergence rates

of the two processes are displayed in Figure 3.17a. Contrary to the single-interface example, the

optimization does not reach a perfect match. However, they both reach an approximately flat

convergence rate for the number of iterations chosen. To understand which events could not be

mapped into the extended image space, I plot the final data residual for the receiver gather extracted

at x = 10.0 km for both datasets (Figures 3.17b and 3.17c). In both panels, most of the events

have been mapped into the image space. However, some energy possibly corresponding to converted

waves cannot be modeled using the maximum subsurface offset of 0.5 km. In fact, by analyzing

three ODCIGs passing through the three lenses (Figures 3.18a, 3.18b, and 3.18c), it is clear that a

larger subsurface offset extent is necessary to match the data. The goal of this test is not to match

all the recorded events but only the ones corresponding to PP reflections. These events focus on

the proximity of the zero-subsurface offset axis since the correct migration velocity has been used

during the migration process. As a matter of fact, when these image gathers are transformed into

the corresponding ADCIGs (Figures 3.18d, 3.18e, and 3.18f), flat events at depths corresponding

to the geological interfaces of the elastic model are present. The continuity of the amplitude across

the reflection angle is hampered by the relatively sparse receiver acquisition geometry, as well as the

presence of converted waves recorded in the elastic pressure data.

Similar conclusions can be drawn from the image gathers obtained by migrating only the events

due to the sand lenses (Figure 3.19). However, in this case, clearly noticeable flat events corre-

sponding to the lens interfaces can be observed in the ADCIGs, which highlights the importance of

performing a data selection pre-processing step before migration when dealing with field applications.
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(a)

(b) (c)

Figure 3.17: (a) Comparison of the convergence rate for the extended linearized waveform inversion
when the data shown in Figures 3.16b (blue curve) and 3.16c (red dashed curve) are employed during
the migration process. Each curve is scaled separately. The panels (b) and (c) depict the final residual
vectors when the data shown in Figures 3.16b and 3.16c are iteratively imaged, respectively. [CR]
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(a) (b) (c)

(d) (e) (f)

Figure 3.18: Final ODCIGs obtained after iteratively migrating the data shown in Figure 3.16b
extracted at x = 5.5 km (a), x = 10.0 km (b), and x = 14.0 km (c), respectively. ADCIGs extracted
at x = 5.5 km (d), x = 10.0 km (e), and x = 14.0 km (f), respectively. [CR]
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(a) (b) (c)

(d) (e) (f)

Figure 3.19: Final ODCIGs obtained after iteratively migrating the data shown in Figure 3.16c
extracted at x = 5.5 km (a), x = 10.0 km (b), and x = 14.0 km (c), respectively. ADCIGs extracted
at x = 5.5 km (d), x = 10.0 km (e), and x = 14.0 km (f), respectively. [CR]
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As shown by Prucha and Biondi (2002), the image artifacts related to shadow zones and incoher-

ent illumination can be mitigated by forcing coherency across reflection angles during the migration

step. In this test, to impose such a condition, I add a DSO regularization term to the waveform

objective functions (equation 2.64). I solve the regularized imaging problems using 500 iterations of

the linear CG approach. The regularization weight ε is chosen based on trial and error. An initial

guess for this variable is represented by a value that balances the two objective function terms for a

non-null reflectivity model. The regularization weights chosen for the two datasets are different. A

larger weight has been employed for the dataset shown in Figure 3.16b than the one in Figure 3.16c.

The regularized extended-image solutions in both cases are more focused in the offset domain

and present a more coherent angle behavior in the resulting ADCIGs compared when the inversion

problems are not regularized (Figure 3.20 and 3.21). Moreover, most of the imaging artifacts are

greatly diminished; especially, for the migration of the dataset containing the salt-related events

(Figure 3.16b).

To show the importance of forcing coherency across reflection angles, I compare the amplitude

responses of the ADCIGs extracted at the depth corresponding to the top of the sand lenses against

the theoretical Zoeppritz Rpp coefficients (Figure 3.22). The unregularized process produces an

image whose amplitudes are affected by the inconsistent illumination and migration artifacts. On

the contrary, the regularized ADCIGs present smoother angle responses that are consistent with the

theoretical Rpp. The mismatch at angles greater than 24◦ is due to the lack of illumination from

the surface acquisition geometry.

When only the sand-lenses related events are linearily inverted, the ADCIGs angle response is

less impacted by the image artifacts due to salt-related multiples and converted events. In this

case, the regularization provides a mild improvement (Figure 3.23). Nevertheless, the addition of

regularization permits the formation of an image whose amplitudes show a quasi-perfect matching

of the theoretical response up to 24◦ reflection angles. The comparison of Figures 3.22 and 3.23,

underlies even further the dependency of the image amplitudes on the events considered during the

migration process.

Figure 3.24 shows the zero-angle image when the entire data volume is imaged without any

regularization term (i.e., dataset of Figure 3.16b). The usage of the regularization term within the

migration problem greatly diminishes the image artifacts. A simple stacking procedure across angles

for the un-regularized inversion result can also diminish such artifacts (Figure 3.24c). Within the

stacked and regularized images, the salt shape is perfectly captured, and the contours of the subsalt

sand lenses are visible. The regularized zero-angle image is more interpretable than the angle-stacked

one. It is generally less affected by artifacts where the bottom interface of the middle lens can be

clearly recognized. Some artifacts affect the image quality and could be further diminished with

filtering, but this step is out of this work scope. Nonetheless, a useful subsurface image can be

obtained without complex workflows and can be employed to perform a structural analysis of the
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(a) (b) (c)

(d) (e) (f)

Figure 3.20: Final DSO-regularized ODCIGs obtained after iteratively migrating the data shown
in Figure 3.16b extracted at x = 5.5 km (a), x = 10.0 km (b), and x = 14.0 km (c), respectively.
ADCIGs extracted at x = 5.5 km (d), x = 10.0 km (e), and x = 14.0 km (f), respectively. [CR]
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(a) (b) (c)

(d) (e) (f)

Figure 3.21: Final DSO-regularized ODCIGs obtained after iteratively migrating the data shown
in Figure 3.16c extracted at x = 5.5 km (a), x = 10.0 km (b), and x = 14.0 km (c), respectively.
ADCIGs extracted at x = 5.5 km (d), x = 10.0 km (e), and x = 14.0 km (f), respectively. [CR]



CHAPTER 3. SYNTHETIC APPLICATION OF TARGET-ORIENTED ELASTIC FWI 47

(a) (b)

(c)

Figure 3.22: Comparison between of the PP reflection coefficient of the top of the three lenses when
all the events are migrated (Figure 3.16b). Amplitude-response comparison for the left (a), middle
(b), and right (c) lenses. Each panel shows the angle responses for Zoeppritz equation prediction
(blue curve) and the ADCIG amplitudes without (red dashed) and with DSO regularization (black
dashed) extracted at the corresponding lenses top interface. [CR]
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(a) (b)

(c)

Figure 3.23: Comparison between of the PP reflection coefficient of the top of the three lenses
when the only lens-related events are migrated (Figure 3.16c). Amplitude-response comparison for
the left (a), middle (b), and right (c) lenses. Each panel shows the angle responses for Zoeppritz
equation prediction (blue curve) and the ADCIG amplitudes without (red dashed) and with DSO
regularization (black dashed) extracted at the corresponding lens top interfaces. [CR]
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subsurface interfaces.

The subsalt lens test clearly demonstrates the extended-image space’s ability to form true-

amplitude migrated volumes even when Born acoustic operators are used during linearized inversion

of elastic pressure data.

3.2 Target-oriented elastic FWI

In this section, I demonstrate using 2D numerical tests how the extended image space can synthesize

elastic pressure data as if the acquisition geometry is sunk into the subsurface. First, I show how

this image-based redatuming is applied on the flat-layer model previously described. Then, I use the

redatuming technique on elastic pressure data generated on the Marmousi2 to retrieve the elastic

properties associated with a gas-bearing sand reservoir only within the target area. I compare

elastic FWI results of this target obtained using the surface and the reconstructed data and report

the computational speed-up factor achieved by the target-oriented inversion approach (Martin et

al., 2006).

3.2.1 Redatuming of elastic pressure waves through extended linearized

waveform inversion

As explained in the previous chapter, the extended image space can be used to reconstruct elastic

pressure data as if the acquisition geometry was sunk into the subsurface. In this synthetic example,

I demonstrate this possibility by synthesizing elastic data obtained from the flat-interface model

of Figure 3.1. The goal is to use the elastic pressure data recorded at z = 0 km and reconstruct

the one as if the sources and the receivers could have been placed at 400 m below the surface.

Figure 3.25 displays two representative shot gathers obtained when the acquisition geometry is

placed at z = 400 m. The same amplitude-versus-offset behavior is observed as in the surface

pressure data (Figure 3.4).

The schematic of Figure 2.2 shows that a scattering point can be used to generate the surface

and the sunk acquisition datasets. This observation also implies that the images obtained from two

acquisitions, assuming infinite source-receiver extent, are identical. To demonstrate this statement,

I compare the ODCIGs obtained by inverting the surface and sunk-acquisition data, respectively

(Figures 3.26a and 3.26b). The only difference between the two ODCIGs is due to the limited

acquisition aperture (Figure 3.26c).

Since the data from the two acquisition geometries maps into the same extended image, I can

use the ODCIGs obtained from the surface pressure to synthesize the events recorded by the sunk

sources and receivers. Figure 3.27a shows the shot gather at x = 2.0 km obtained by demigrating

the ODCIGs of Figure 3.26a. A similar amplitude behavior is present compared to the shot gather

of Figure 3.25b up to an offset of 1 km. The artifacts above the apex of the reflected event are due
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(a)

(b)

(c)

Figure 3.24: Zero-angle image when the entire data volume is imaged with (a) and without (b) a
regularization employed during the inversion process. (c) Stacked image obtained by stacking the
un-regularized linearized waveform inversion result across reflection angles for γ ≤ 10◦. [CR]
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(a) (b)

Figure 3.25: Representative elastic pressure shot gathers for sources placed at (a) x = 0.0 km and
(b) x = 2.0 km generated using the single flat interface model of Figure 3.2 and with an acquisition
depth of 400 m. [ER]

(a) (b) (c)

Figure 3.26: (a) Close-up of the ODCIG of Figure 3.6b. (b) ODCIG generated by solving a linearized
waveform inversion using the buried acquisition geometry. (c) Difference between panels (a) and
(b). All panels are displayed using the same gain. [CR]
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to the truncation of the surface acquisition geometry. In fact, when I demigrate the image where

those truncation artifacts are masked (Figure 3.27b), the reconstructed reflection does not present

any spurious events (Figure 3.27c).

As I described using the schematic of Figure 2.3, not all the events associated to any source-

receiver pairs can be reconstructed from an image obtained with surface data. In this case, the

maximum illuminated reflection angle from the surface geometry is approximately 64◦, which cor-

responds to a maximum half-offset of 1 km for the sunk acquisition geometry. Figure 3.27d shows

the difference between the reference and the reconstructed data of Figures 3.25b and 3.27c, where

only energy for an offset greater than 1 km are present as expected.

(a) (b)

(c) (d)

Figure 3.27: (a) Elastic pressure reconstructed by demigrating the surface ODCIGs. (b) ODCIG of
Figure 3.26a where a muting mask has been applied to dampen the acquisition artifacts above o.6
km. (c) Reconstructed pressure data obtained by demigrating the ODCIGs where a image mask has
been applied. (d) Difference between panel (c) and the one of Figure 3.25b. [CR]
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Sensitivity to assumed source wavelet

Since the redatuming technique is based on an imaging step, it is necessary to create a source wavelet

signature. However, the data reconstruction is invariable to the choice of the source signature. To

numerically verify this statement, I reconstruct the same events of Figure 3.27c, but employing

different waveforms during the linearized waveform inversion and demigration steps. Figure 3.28a

displays the same wavelet of Figure 3.3a on which a 90-degree phase rotation has been applied.

The right panel in Figure 3.28b shows a Ricker wavelet with a domain frequency of 15 Hz. These

two waveforms are independently used to solve the extended linearized waveform inversion problem

defined on the flat-interface model (Figure 3.1). The extended gathers generated by this process are

then used to reconstruct the elastic pressure events at the new datum (i.e., 400 m).

(a) (b)

Figure 3.28: Time-domain wavelet plots for testing invariability of the data reconstruction procedure.
(a) Wavelet where a 90-degree phase rotation has been applied to the original signal. (b) Ricker
wavelet with dominant frequency of 15 Hz. [ER]

Figure 3.29 shows the redatumed pressure when the 90-degree rotated waveform and the Ricket

wavelet are employed during the demigration process, respectively. No evident difference is visible

when these two panels are compared to the one displayed on Figure 3.27c.

This invariability can also be seen by analyzing the amplitude behavior of the ADCIGs generated

by the extended linearized waveform inversion when different wavelets are employed. In fact, the

same AVA pattern is visible in the three panels of Figure 3.30 showing the ADCIGs generated with

three source signatures described in this section.

Finally, I analyze the sensitivity of the reconstruction process with respect to the migration

velocity map used during the linearized waveform inversion step. To this end, I perform the same

redatuming steps previously described for the flat-interface case but in which a 5% slower velocity

is used compared to the correct one (i.e., 2375 m/s). As expected the ODCIG obtained during the

migration process is not as focused as when the correct velocity is employed (compare Figures 3.31a

and 3.25a). Moreover, the typical curving effect within the angle gather is observed when analyzing



CHAPTER 3. SYNTHETIC APPLICATION OF TARGET-ORIENTED ELASTIC FWI 54

(a) (b)

Figure 3.29: Pressure data reconstructed from the extended images obtained using the wavelets
signals of Figure 3.28 [CR]

(a) (b) (c)

Figure 3.30: ADCIGs extracted at x = 2.0 km for the extended images obtained using: (a) the
correct signature, (b) the 90-degreee rotated signal, and (c) the Ricker wavelet, respectively. [CR]
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Figure 3.31b (Biondi and Symes, 2004).

(a)

(b)

Figure 3.31: (a) ODCIG and (b) ADCIG extracted at x = 2.0 km on the extended image obtained
from the surface pressure migrated employing a constant velocity model of 2375 m/s. [CR]

When the ODCGIs obtained using the slower migration velocity are demigrated to reconstruct

the datumed elastic pressure, the AVO pattern is reconstructed but the kinematics of the events

result incorrect (Figure 3.32).

This test demonstrates the importance of obtaining an accurate migration velocity model of

the overburden before performing the redatuming step. This observation is generally true to any

other redatuming technique. However, the proposed technique, since it is based on an imaging step,
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(a) (b)

Figure 3.32: (a) Reconstructed pressure using the extended image obtained using an incorrect ve-
locity model. (b) Difference between panel (a) and the shot gather of Figure 3.25b. [CR]

provides a quality control step thanks to the kinematic behavior of the generated ODCIGs and

ADCIGs with respect to the migration velocity model.

3.2.2 Elastic target-oriented inversion applied to the Marmousi2 model

I apply the previously described redatuming technique on the Marmousi2 model to estimate the

elastic parameters associated with a gas-bearing reservoir located within a faulted anticline structure.

The true subsurface elastic parameters are displayed in Figure 3.33. This gas reservoir is located at

a depth of 1.1 km and spans approximately 500 m in the horizontal direction, starting from x = 10

km.

First, I apply an elastic FWI workflow to a surface dataset to retrieve the entire model’s subsur-

face parameters starting from a smoothed version of the true model. Then, I solve an extended lin-

earized waveform inversion to synthesize the reflected events generated by the gas reservoir recorded

with an acquisition located in its vicinity. The redatumed dataset is then used within the same elas-

tic FWI workflow to estimate the reservoir’s elastic properties. Finally, I compare the target-oriented

results with the elastic FWI applied to the entire surface dataset.

The observed elastic pressure data is generated from a surface acquisition composed of 140

sources and 567 receivers spaced by 120 m and 30 m along the x-axis, respectively. The modeling

is performed using absorbing boundaries around all the four edges of the simulation domain (Israeli

and Orszag, 1981). Figure 3.34a shows the time signature of the explosive source employed in this

synthetic experiment. This wavelet’s frequency content is effectively contained between 4 and 13 Hz

with a flat response between 6 and 10 Hz (Figure 3.34b). The choice of the lowest frequency wants

to simulate a field scenario in which the low-frequency content is commonly removed given its low

signal-noise-ratio (SNR).
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(a)

(b)

(c)

Figure 3.33: Elastic parameters of the Marmousi2 model. From top to bottom: (a) P-wave velocity,
(b) S-wave velocity, (c) density. [ER]
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(a) (b)

Figure 3.34: Explosive source used to generate the elastic pressure data on the elastic Marmousi2
model. Panel (a) and (b) show the time signature and frequency spectrum, respectively. [ER]

Given the amplitude response of the reflected events from the subsurface interfaces, the dataset is

mostly dominated by reflections. In fact, by analyzing the two representative shot gathers displayed

in Figure 3.35, the mentioned reflections present greater amplitudes than the transmitted waves.

This presence of these reflected events represents the ideal application scenario for the redatuming

technique. The linearized waveform inversion process can map the AVO of the reflected events

within the extended image space.

(a) (b)

Figure 3.35: Representative elastic pressure shot gathers for sources placed at (a) x = 0.0 km and
(b) x = 8.5 km on the Marmousi2 model. [ER]

The initial elastic parameters are obtained by applying a moving average filter to the true model

(Figure 3.36). This process produces an accurate initial elastic model and mitigates the possibility
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of falling into a non-useful local minimum given the chosen frequency content. Additionally, all the

short-wavelength features of all the reservoirs present within the subsurface are entirely missing from

the initial guess.

The full bandwidth of the data is simultaneously injected, and the three elastic parameters are

jointly inverted within an elastic FWI procedure. Moreover, I apply the model-space multi-scale

approach described in the previous chapter in order to mitigate the presence of local minima and

mitigate any spatial artifacts that may arise during the inversion process. Three sequentially refined

spline grids are employed, namely, 100 m, 50 m, and 25 m spacing, while the propagation is performed

with a 5 m sampling in both directions. For each spline grid, the elastic FWI process employs the

L-BFGS optimization method, and the inversion is stopped when an appropriate step-length value

cannot be found. The convergence curve obtained using the described elastic FWI workflow is

shown in Figure 3.37. The first spline grid reaches the closest local minimum after 90 iterations

and achieves a relative objective function decrease of more than 80%. The final elastic model is

then projected onto a finer spline grid, and other 35 iterations are employed to further diminish

the objective function. The spline refinement is performed again to obtain an additional objective

function decrease.

The panels in Figure 3.38 show the final elastic parameters obtained at the end of the described

elastic FWI workflow. The P-wave velocity is the parameter accurately retrieved and does not

present any evident artifacts. On the other hand, the S-wave velocity is affected by some inversion

artifacts and a potential cross-talk positioned at x = 3.0 km and z = 1.0 km. However, overall this

parameter is in agreement with the true one shown in Figure 3.33b. The density parameter is also

in good agreement with the true one, and the anomaly associated with the gas reservoir is correctly

retrieved.

To evaluate the quality of the inverted elastic model, I display the predicted and the observed data

within the same plot to compare the amplitude and timing of the reflected event. The representative

shot gather is located at x = 4.190 km, and only the positive offsets are compared. Figure 3.39a

shows this comparison when the observed data are plotted along with the predicted pressure obtained

using the initial elastic model. All the reflected events are not modeled from the initial guess, and

a clear mismatch in the long offset events is evident. On the contrary, after applying the FWI

workflow, the predicted data using the inverted elastic parameters are in excellent agreement with

the observed events.

Despite the elastic FWI workflow’s ability to retrieve accurate elastic subsurface parameters

from surface data, the overall computational cost makes the method hardly applicable to 3D field

datasets. In fact, in this 2D synthetic example, each model point evaluation, which comprised of

an objective function and gradient evaluations, took approximately 3 hours on an Intel(R) Xeon(R)

Gold 6126 CPU @ 2.60GHz connected to 4 Nvidia Tesla V100-PCIe-16GB graphics processing units

(GPUs). In the reported example, 180 model points have been tested, making the total elapsed time
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(a)

(b)

(c)

Figure 3.36: Initial elastic parameters obtained by smoothing the sediments composing the Mar-
mousi2 model. From top to bottom: (a) P-wave velocity, (b) S-wave velocity, (c) density. [ER]
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Figure 3.37: Convergence curve of the Marmousi2 elastic FWI problem. The two changes in convex-
ity of the curve at 90 and 125 iterations are due to the change in spline grid of the elastic parameters.
[CR]

approximately 540 hours, corresponding to almost 23 days of computation.

This test shows the high computational cost associated with solving an elastic FWI problem. In

field applications, higher frequencies than those used in this test may contain valuable information

on the subsurface. However, the increase of the computational cost as the fourth-power of the

maximum frequency highly limits elastic FWI methodologies’ applicability at high frequency. The

proposed target-oriented technique has the potential of overcoming this limitation. In fact, high-

resolution elastic parameters need to be found only within potential areas of interest or hazard

(e.g., over-pressured zones, gas pockets, and natural resource reservoirs). These subsurface targets

are recognizable from images generated from surface data, making the image-space redatuming and

target-oriented elastic FWI subsequent steps of an exploration project.

As previously mentioned, the goal of this test is to characterize the elastic properties associated

with a gas-bearing reservoir placed within the faulted anticline structure. The panels on the left

column of Figure 3.40 display the elastic parameters of the target structure located at z = 1100

m and x = 10300 m. A clear value-decrease within the P-wave velocity and density parameters is

noticeable, while the S-wave velocity does not present such variation. The initial elastic model is

obtained by extracting the same parameters from the ones shown in Figure 3.36 and are shown in

the panels on the right panels of Figure 3.40.
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(a)

(b)

(c)

Figure 3.38: Inverted elastic parameters obtained by solving the elastic FWI defined on the Mar-
mousi2 model. From top to bottom: (a) P-wave velocity, (b) S-wave velocity, (c) density. [ER]
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(a)

(b)

Figure 3.39: Comparison between the predicted and observed elastic pressure data on the initial (a)
and inverted (b) models, respectively. The negative trace indices indicate the predicted data, while
the positive ones denote the observed data. [CR]
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(a) (b)

(c) (d)

(e) (f)

Figure 3.40: True and initial elastic model parameters of the target area plotted on the left and
right columns, respectively: (a-b) P-wave velocity, (c-d) S-wave velocity, and (e-f) density. [ER]
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(a) (b)

(c)

Figure 3.41: (a) Convergence curve of the extended linearized waveform inversion of the elastic data
generated on the Marmousi2 model. (b) Zero-subsurface offset image of the target area. (c) ADCIG
extracted at x = 10.3 km highlighting a high-amplitude event at z = 1.2 km associated with the gas
reservoir. [CR]
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(a) (b)

(c) (d)

(e) (f)

Figure 3.42: Inverted elastic parameters of the target area obtained from the surface data (left col-
umn) and the target-oriented approach (right column): (a-b) P-wave velocity, (c-d) S-wave velocity,
and (e-f) density. [CR]

The smoothed P-wave velocity parameter of Figure 3.36a is employed to solve an acoustic ex-

tended linearized waveform inversion of the surface elastic pressure data. The same absorbing bound-

ary conditions have been used during the imaging step as those employed in the elastic surface-data

computation and inversion. I apply 500 iterations of the linear conjugate-gradient method and to

reach the numerical minimum of the problem (Figure 3.41a). Within the zero-subsurface offset

image of the target area a high-amplitude response is associated with the reservoir (Figure 3.41b).

Additionally, the subsurface structures are correctly imaged since an accurate velocity model has

been employed. This observation is also supported by the flat response of ADCIG extracted at

x = 10.3 km (Figure 3.41c).

The extended image of the target area is demigrated to synthesize the elastic data as if the

acquisition geometry was placed in the reservoir’s proximity. The elastic pressure is reconstructed
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assuming 33 sources and 67 fixed receivers spaced every 60 m and 30 m, respectively, and recorded

for 4 s. I employ four absorbing boundary conditions to reconstruct and invert the redatumed data

because I assume that most of the energy scattered from the target leaves the area of interest, and

it is not reflected back from top interfaces. To retrieve the target’s elastic parameters, I employ

a similar elastic FWI workflow as for the surface data (Figure 3.42). In this case, I only use two

spline grid refinements; namely, 50 and 25 m sampling. Overall, 20 iterations of BFGS have been

applied to invert the elastic pressure on each spline grid (Figure 3.43). A decrease of 98% is reached

after only 40 iterations instead of the 145 needed for the surface-data inversion to achieve the same

data fitting level. The P-wave and density parameters of the reservoir gas anomaly are correctly

retrieved. No leakage of the gas anomaly is observed in the inverted S-wave parameter. An increase

in all three parameters is present right below the reservoir. This artifact is related to the limited

frequency range used during the imaging step. Moreover, different regularization weights and image

masks applied during the linearized waveform inversion step can diminish this artifact’s impact.

This test demonstrates the target-oriented approach’s ability to retrieve the gas anomaly’s elastic

parameters and their spatial extent. Compared to the elastic FWI applied to the surface data,

the target-oriented inversion is approximately 200 times computationally cheaper, including the

migration process, leading to a memory usage decrease of 25 folds. The main computation speed-up

is due to the target-oriented inversion workflow’s ability to significantly diminish the simulation

domain’s size compared to the one where the data have been acquired. The imaging step is not as

intensive as the elastic inversion. In fact, in the 2D case, the computational cost of elastic Green’s

function is approximately 12 times higher than the one of acoustic wavefields. This observation is

also valid for the 3D case, where this factor can be 30. Moreover, the decrease domain size greatly

simplified the implementation of inversion methods because the elastic wavefields can be stored

within the computer memory, avoiding the need for applying checkpointing techniques (Anderson

et al., 2012). Finally, the computational and memory cost-saving factors can allow the application

of elastic FWI methodologies to high-frequency data to reasonable processing time.

3.3 Summary

I started this chapter by highlighting the extended image space’s ability to preserve the elastic AVO

information of pressure data recorded at the surface. Using two synthetic models, I compare the

AVA response of the images obtained by solving an extended linearized waveform inversion with the

theoretical Zoeppritz PP reflection coefficient and demonstrated their agreement in both examples.

Then, I applied the proposed image-based redatuming step to the single-interface case and illustrated

some of this process’s properties. Finally, I compared the elastic subsurface properties obtained using

the proposed target-oriented waveform inversion and a surface-data elastic FWI methodology. This

test showed the proposed approach’s ability to retrieve the elastic parameters of a potential target
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Figure 3.43: Convergence curve of the target-oriented elastic FWI problem. [CR]

for a fraction of the computational cost of inverting the entire surface dataset.



Chapter 4

Deep-water ocean-bottom-node

field-data application

In this chapter, I apply the methods described in the previous two chapters to actual data and

analyze the improvements in image quality over existing methods. Specifically, I demonstrate the

performance of target-oriented elastic FWI workflow to retrieve geophysical parameters of the sub-

surface using the pressure component of an ocean-bottom-node (OBN) dataset. First, I describe

the dataset, and pre-processing steps followed to apply the proposed workflow. Then, I use an

acoustic FWI procedure to improve the initial velocity for the proposed method’s necessary imaging

step. Finally, I synthesize the elastic pressure data generated by a potential prospect positioned on

the salt-diapir flank and retrieve estimates of its elastic properties by applying an elastic 3D FWI

method.

I employ the inverted elastic parameters to compute two fundamental rock physical parameters

(i.e., Vp/Vs ratio and acoustic impedance). I argue the presence of a potential gas-sand prospect

positioned on the salt flank. This field-data test illustrates the proposed method’s ability to estimate

the elastic parameters of target areas within the subsurface using surface seismic data.

4.1 Dataset overview

The field dataset used in this example was acquired within the Gulf of Mexico (GOM) by Shell

Exploration and Production Company in 2010. The area sits in the Garden Banks region, about

362km south-west of New Orleans, Louisiana (Figure 4.1). This data aims to illuminate prospects

belonging to a producing field to improve the subsurface images around the diffuse salt bodies by

leveraging the full wide-azimuth capability of an OBN geometry. The area has been subjected to

diffuse diapirism and presents multiple salt bodies making its exploration potentially challenging

69
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from a seismic perspective (Murray, 1966; Thompson and Oftebro, 2011).

Figure 4.1: Geographic map highlighting the portion of the Gulf Mexico in which the OBN dataset
was acquired. [NR]

From the entire dataset, I select 255 nodes that recorded multi-component seismic data generated

by 41000 air-gun sources covering an area of 100 km2. Figure 4.2 shows the sources’ and nodes’ x-y

positions overlaid on a depth slice of the initial velocity model depicting a salt diapir (i.e., high-

velocity circular portion). The sources have been acquired using a flip-flop acquisition geometry

with a source interval of approximately 25 m whose depth is 9.8 m. The sail lines are aligned with

the x-axis, and their interval on the cross-line or y-axis is approximately 100 m. From Figure 4.2a,

it is clear where the source vessel had to divert its trajectory to abide by the acquisition restrictions

in the proximity of production platforms. The multi-component nodes are placed at the seabed, and

their depth varies between 0.83 and 1.0 km. Their spatial x-y interval is approximately 250 m in

both directions.

4.2 Data description and pre-processing steps

I now show representative plots of the dataset’s pressure component and highlight crucial pre-

processing steps followed. Applying different high-cut filters to a representative shot-binned common-

receiver gather shows that no useful energy is recorded below 2 Hz (Figure 4.3). In contrast, the

SNR increases between 3 and 4 Hz. Therefore, the lowest frequency used in this field example is 3

Hz.

To compute a proxy of the direct arrival waveform, I apply a hyperbolic moveout (HMO) correc-

tion to all the nodes using a constant velocity of 1.5 km/s (Yilmaz, 2001). By stacking all the traces

belonging to a representative common-receiver gather, I obtain the signal depicted in Figure 4.4a.

A strong peak is present on the signal’s onset, which is then followed by the typical bubble response
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(a)

(b)

Figure 4.2: (a) Sources’ and (b) receivers’ x-y positions overlaid on the initial velocity model depth
slice extracted at z = 2.5 km. The high-velocity portion is associated to the presence of a salt diapir.
[ER]
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(a) (b)

(c) (d)

Figure 4.3: Representative shot-binned common-receiver gather for Sx = 214.8 km on which a
low-pass filter has been applied with high-cut frequency of (a) 1, (b) 2, (c) 3, and (d) 4 Hz. [CR]
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commonly generated by air-gun sources (Watson et al., 2019). The frequency spectrum presents

multiple notches due to the source-side ghost and the bubble response (Figure 4.4b). Additionally,

the frequency content rapidly decreases after 40 Hz, and very limited energy is present above 160

Hz.

(a) (b)

Figure 4.4: (a) Time- and (b) frequency-domain signature for the observed direct-arrival signature for
a representative receiver gather obtained after applying the described HMO correction and stacking
procedures. [CR]

Shell provided the elastic stiffness components C11, C33, C13, C44, and C66 and a constant

density value of the sediment layers. It also provided the salt-body edges’ positions obtained by

interpreting subsurface images of the area. From the stiffness components, I construct an initial P-

wave velocity model based on the provided inputs assuming an isotropic medium (Mah and Schmitt,

2003). Figure 4.5 shows representative sections of the 3D volume of the velocity model. The initial

sediment velocity does not present any distinguishable geological feature. A salt diapir, reaching the

seabed floor depth, is located close to the center of the area of interest whose P-wave velocity is set to

4.5 km/s and is assumed to be homogeneous, a common assumption based on field observations (Zong

et al., 2015).

The initial model is used to compute an estimate of the observed data using an acoustic isotropic

3D approximation. I use this pressure prediction to calibrate the modeling operator on the datasets’

observed amplitudes and reshape the data response. This step is performed by applying the same

HMO correction previously described to both the observed and initially predicted datasets. For

each common-receiver gather, I compute the direct arrival proxy following the stacking procedure

and shape the observed signal into the predicted one using a frequency-domain Wiener filtering

operation. The panels of Figure 4.6 show plots of the observed, initial predicted, and shaped data.

The shaping procedure removed the bubble response from the observed data and made the direct

arrival waveforms consistent between the initial predicted pressure and the observed data.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Initial interpreted P-wave velocity model of the GOM field application: Cross-line slices
at x = 212 km (a), x = 214.8 km (c), and x = 217 km (e). In-line slices at y = 49 km (b), y = 51.5
km (d), and y = 52.5 km (f). [CR]
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(a) (b)

(c)

Figure 4.6: Representative common-receiver gather from the (a) observed pressure data, (b) ini-
tial prediction, and (c) after the described waveform shaping filtering procedure. The maximum
frequency of the plotted data is 20 Hz. [CR]
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4.3 Initial RTM images and geological scenario description

The shaped data is employed to compute RTM images using the initial P-wave velocity model.

These images provide information on the geological subsurface structures present in this area. To

simultaneously utilize the up- and down-going energy recorded by the nodes, I perform the acoustic

Green’s function computation using a free-surface condition at the water surface during the imaging

procedure (Robertsson, 1996). This choice avoids the necessity of performing an up-down separation

step (Schalkwijk et al., 1999). Moreover, I apply a source-side illumination compensation to diminish

any acquisition artifacts within the subsurface image volume (Kaelin and Guitton, 2006).

(a) (b)

(c)

Figure 4.7: Depth slices from the 30Hz RTM obtained using the initial provided velocity model.
The slices are extracted at: z = 0.9 km (a), z = 1.69 km (b), and z = 2.865 km (c). [CR]

Figure 4.7 shows depth slices extracted from the RTM image obtained using the initial velocity
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model. From the depth section extracted at z = 0.9 km (Figure 4.7a), the top edges of the diapir

are recognizable as well as radially distributed features around it. These structures are commonly

observed in areas where diapirism is present and are due to the presence of radially distributed faults

caused by the rising of the salt diapir (Stewart, 2006; Coleman et al., 2018). Furthermore, within

deeper sections, multiple structures associated with turbidite sequences can be observed (Berg,

1982). The panel of Figure 4.7b shows an example of such structures on the bottom-right corner

of the depth slice. Mild acquisition-footprint artifacts are present despite the application of source-

side compensation during the migration process. Finally, in even deeper portions of the image

volume, high-amplitude features are visible close to the diapir flanks. For instance, in the depth

section extracted at z = 2.865 km a noticeable faulted structure is present. Such image features

are potentially associated with hydrocarbon prospects (Harding and Lowell, 1979; Tiapkina et al.,

2008).

4.4 Acoustic FWI

As shown in the previous chapter, the redatuming process previously described relies on the knowl-

edge of an accurate overburden velocity model. Thus, to improve the initial velocity model, I

apply an acoustic isotropic constant-density FWI process to the field pressure data. The acoustic

wave-equation operators employs a free-surface boundary condition at the top edge and absorbing

boundaries on the other ones. To mitigate the inaccuracy of the modeling operator of correctly

predicting the observed event amplitudes, I employ the objective function proposed by Shen (2010),

where a trace-by-trace normalization is applied to both modeled and observed data vectors before

computing their difference. It can be easily shown that the minimization of such objective func-

tion corresponds to the maximization of the zero-lag cross-correlation between the predicted and

observed data. Furthermore, I invert the data using a data-space multiscale approach (Bunks et

al., 1995), where progressively wider frequency bands undergo the inversion procedure. The chosen

frequency bands are the following: 3 − 6, 3 − 9, 3 − 12, and 3 − 18 Hz. For the first three bands,

the modeling is performed with an FD grid size of 35 m in the three dimensions, while, for the

last band, the modeling is performed with a grid size of 25 m. To mitigate the introduction of any

inversion artifacts, I parameterize the model on spline grids with x-y sampling of 175, 105, and 50

m for each band, respectively. The spline grid in the z-axis is as fine as the FD sampling. Finally, I

employ the acoustic reciprocity theorem so that the 255 nodes act as sources and the 41000 sources

as receivers (Aki and Richards, 2002).

Overall, 216 iterations of BFGS are performed to invert the data up to 18 Hz. Figure 4.8 displays

the convergence curve of the acoustic FWI problem. The discontinuities in the curve correspond to

the changes in the frequency band during the inversion. For the two central bands, a decrease of

approximately 70% is achieved by the minimization algorithm.
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Figure 4.8: Normalized objective function convergence curve. The discontinuities in the curve
corresponds to changes in the frequency content of the inverted data. [CR]

From the final P-wave velocity I extract the same cross- and in-line sections from the 3D volume

as the ones in Figure 4.5 (Figure 4.9). The inverted model by the FWI scheme shows geologically

consistent features. For instance, the panel in Figure 4.9a presents a discontinuity potentially indi-

cating the presence of a fault at y = 50.2 km and z = 3 km. Moreover, a clear low-velocity anomaly

is placed on the salt flank at z = 2.8 km (Figure 4.9d). This decrease in velocity could be related to

gas accumulation at the top of a hydrocarbon reservoir sealed by the salt body. Finally, the same

inclusion reported by Dahlke (2019) is retrieved by the acoustic FWI workflow (Figure 4.9c). In

addition, other velocity variations are present at the top of the diapir.

The inversion is affected by artifacts due to the limited acquisition geometry (left sides of Fig-

ure 4.9a and 4.9f). Moreover, low-velocity anomalies are placed at depths greater than 3 km. These

features are probably due to the convergence to a local minimum of the optimization algorithm.

Thus, I limit my area of search for any potential target to 3 km of depth.

In addition to the inclusion shown in Figure 4.9c, the FWI workflow placed a low-velocity anomaly

close to the top of the diapir (Figure 4.11). This velocity decrease could be associated with salt-

encased sediment packages included during the diapir formation (Fernandez et al., 2017). As a

quality control (QC) step, I compare the phase matching between the predicted and the observed

pressure data before and after the inversion process is applied. Figure 4.11 shows the phase matching

when one of the source-spatial positions is fixed. The phase matching between modeled and observed

data for both long- and short-offset traces improves after applying the FWI workflow. When a time

slice is extracted from the modeled and the observed data and the phases of the two are compared

(Figure 4.12), an excellent match is found using the final FWI acoustic model to generate the pressure

data. On the other hand, the accuracy of the matching diminishes for recording time greater than

5 s for the mid- and short-offset ranges.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Cross- (left column) and in-line (right column) slices extracted from the inverted acoustic
FWI velocity model at (a) x = 212 km, y = 49 km (b), x = 214.8 km (c), y = 51.5 km (d), x = 217
km (e), and y = 52.5 km (f). [CR]
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(a) (b)

(c) (d)

Figure 4.10: Comparison between the initial (top panels) and the inverted (bottom panels) acoustic
velocity models for (a-c) z = 1.2 km and (b-d) x = 215.5 km. [CR]
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(a)

(b)

Figure 4.11: Comparison between the predicted and observed pressure data on the initial (a) and
inverted (b) models, respectively. The negative trace indices indicate the predicted data, while the
positive ones denote the observed data. The noisy traces are due to the shot-binning process. Only
the traces for Sx = 49.0 km are plotted. [CR]
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(a)

(b)

Figure 4.12: Comparison between the predicted and observed pressure data on the initial (a) and
inverted (b) models, respectively. The negative trace indices indicate the predicted data, while the
positive ones denote the observed data. The noisy traces are due to the shot-binning process. The
time slices are extracted at t = 4.0 s. [CR]
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Besides the satisfactory phase matching between the predicted and observed data, the quality of

the RTM image greatly improves thanks to the more accurate velocity retrieved by the FWI process

(Figure 4.13). In fact, by comparing Figures 4.13a and 4.13c, the fault planes between y = 49.8 and

y = 51.5 km are more visible within the RTM image obtained on the FWI velocity model. For the

sections passing through the salt diapir (Figures 4.13b and 4.13d), the overall reflectors’ continuity

is improved for the RTM image generated on the FWI model; especially, for the reflectors close to

the top of the salt body. Moreover, some of the high amplitude reflectors present a more consistent

contact point with the salt flanks within the FWI-related RTM image. One interesting geological

feature present on the left side in both sections of Figures 4.13b and 4.13d is the sigmoidal shaped

reflectors at z = 2.0 km. These events are due to the presence of the turbidite deposits previously

described.

(a) (b)

(c) (d)

Figure 4.13: Comparison between the 30 Hz RTM images obtained using the initial (a-b) and the
final FWI (c-d) models. The left and right panels are the cross-line sections extracted at x = 212
km and 215.5 km, respectively. [CR]
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4.5 Target-oriented elastic FWI of a potential prospect

By analyzing the RTM image volume obtained using the final FWI velocity model, I identify a

clear high-amplitude reflector in the proximity of the salt flank (Figure 4.14). As I described in the

previous section, this response could be related to gas accumulation at the top of a hydrocarbon

reservoir (Mazzotti, 1990). Therefore, I apply the redatuming technique, followed by an elastic FWI

workflow, to retrieve this potential prospect’s elastic properties.

Figure 4.14: 30 Hz RTM images obtained using the final FWI model showing sections passing
through the potential target reservoir. [CR]

The first step is to solve an extended acoustic linearized inversion of the observed data to obtain

an extended 3D image volume. I limit the observed data’s maximum frequency to 12 Hz to make

the least-squares process feasible with the available computational resources. The FD grid is set to

35 m in each direction. Moreover, given the acquisition’s full-azimuth nature, I employ hx and hy

subsurface-offset extensions of 9 points in each direction, resulting in a maximum absolute subsurface
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offset of 140 m. Finally, a DSO regularization term is added to improve the image focusing, and its

weight is chosen on a heuristic basis. I focus the iterative process on inverting the data component

stemming from the target area by employing a mask tailored for the potential prospect. After 30

iterations of a linear CG algorithm, an acceptable numerical minimum of the objective function is

reached given the selected parameters (Figure 4.15a). When extracting the zero-subsurface offset

image within the target, an evident high-amplitude reflector is visible (Figure 4.15b).

The focusing of the ODCIGs of the target area provides an additional QC step for assessing the

migration velocity model’s accuracy during the linear inversion process. A representative ODCIG

extracted from the target volume is displayed in Figure 4.16a, which presents a clear focus around

the zero-subsurface offset axes. Furthermore, by converting this ODCIG into the angle-azimuth

domain and I extract the ADCIG for an azimuth of 45◦ (Figure 4.16b), the angle gather presents a

flat response across reflection angles. These two observations suggest that the acoustic FWI process

can retrieve an accurate overburden velocity.

I employ this extended image volume to synthesize the elastic pressure data with a new redatumed

acquisition geometry placed at z = 2.1 km. The sources’ and receivers’ x-y positions are shown in

the panels of Figure 4.17. I employ 150 sources and 8444 receivers, with the latter regularly sampled

and spaced by 25 m in each direction. This new acquisition is chosen based on how the original OBN

geometry has illuminated the target. I purposely avoid placing acquisition devices on the salt body,

given the limited illumination of the target by the original OBN geometry present in that section of

the model. Figure 4.18 shows a representative shot gather where an increase in amplitude for the

first reflected event is noticeable for receivers at a further distance from the source position. This

behavior is a potential indication of an AVO signature from the chosen prospect.

The entire model domain is approximately 10 × 10 × 4 km3, while the target domain size is

approximately 1.5 × 3 × 1 km3, making the target computational domain approximately 67 times

smaller compared to the original one.

The target area’s initial P-wave velocity model is obtained by mildly smoothing the acoustically

inverted FWI P-wave velocity. The initial density parameter is simply computed using Gardner’s

equation (Gardner et al., 1974). Finally, the starting guess for the S-wave velocity is obtained using

the provided stiffness tensor components. Figure 4.19 shows different panels extracted from the

initial elastic parameters of the target area.

I apply an elastic FWI workflow to the redatumed dataset to estimate the target area’s elastic

parameters. The entire bandwidth of the reconstructed data is simultaneously injected (i.e., 3− 12

Hz), and the three elastic parameters are jointly inverted. The total recording time is 4.5 s, which

is almost half of the original 8 s data. The elastic FD operator is based on a 20 m grid to abide by

the dispersion and stability conditions. However, the inverted model is parameterized using a spline

grid of 100 m in the x and y axes, while the z-axis has the same sampling as the FD grid. As in

the acoustic FWI step, the spline parameterization effectively acts as regularization and avoids the
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(a)

(b)

Figure 4.15: (a) Convergence curve of the extended linearized waveform inversion problem of the
GOM dataset with maximum frequency of 12 Hz. (b) Closeup of the target extracted at hx = hy =
0.0 km. [CR]
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(a) (b)

Figure 4.16: (a) ODCIG of the potential prospect extracted at x = 216.1 and y = 51.5 km. (b)
ADCIG extracted at x = 216.1 and y = 51.5 km for an azimuth of 45◦ [CR]

introduction of spurious features during the inversion. Assuming the same scattering regime that

I considered for the target-oriented inversion applied to the synthetic case, all the wave-equation

operators are constructed using absorbing boundary conditions around the entire simulation domain.

After minimizing the L2-norm difference between the predicted and the synthesized elastic pres-

sure data with a BFGS optimizer for 10 iterations, I retrieve the elastic parameter cubes shown in

Figure 4.20. The inversion procedure introduces most of the changes within the P-wave and density

parameters. A noticeable decrease in both is observed at the same position as the high-amplitude

anomaly observed in the RTM image of Figure 4.14. On the contrary, no significant updates are

placed within the S-wave parameter, although similar geometrical features are present within the

inverted parameter.

To highlight how the elastic FWI process updates the three parameters, I plot the difference

between the inverted and the initial models in Figure 4.21. As expected, an evident decrease at the

target’s position is observed within the P-wave and density parameters. On the other hand, the

S-wave model does not present such a reduction in the same position and displays slightly different

structures than the other two parameters. Moreover, the updates in the S-wave parameter is an order

of magnitude smaller compared with the P-wave velocity. This behavior provides more confidence

with the ability of the process of not introducing cross-talk artifacts.

Using the elastic parameters obtained by the target-oriented inversion, I compute two standard

rock physics attributes; namely, the Vp/Vs ratio and the acoustic impedance (AI) (Figure 4.22).
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(a)

(b)

Figure 4.17: (a) Sources’ and (b) receivers’ x-y positions for the target-oriented inversion overlaid
on the 30 Hz RTM image depth slice extracted at z = 2.6 km. [CR]
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Figure 4.18: Representative shot gather for Sx = 216.9 and Sy = 51.05 km. Only part of the
receivers is plotted. [CR]

The average Vp/Vs ratio and AI of the low-velocity and low-density anomaly are approximately 1.7

and 4.8 g/cm3 ∗ km/s, respectively. These values are consistent with a potential gas-charged sand

(Gardner et al., 1968; Ødegaard and Avseth, 2003).

The field application of the proposed target-oriented elastic FWI workflow demonstrates its

ability to estimate a potential prospect’s elastic properties. In fact, it can retrieve the elastic

parameters of a possibly gas-charged reservoir located on the flank of the salt diapir. Moreover, the

method’s ability to limit the computational domain to only the target area allows the application

of a wave-equation estimation method such as FWI. Applying an elastic FWI on the entire 100

km2 domain is a challenge given the computational cost of solving the elastic wave equation. Using

the same resources described within the Marmousi2 test, the elapsed time for performing a single

iteration is 133 minutes. I estimate a computational speed-up factor ranging from 500 to 1000

between the original and the target-oriented inversions for this specific example.

4.6 Summary

This chapter showed the application of the proposed target-oriented elastic FWI approach on 3D

field data acquired in the GOM by Shell. From the entire OBN datasets, I extracted a subset of the

nodes and sources that I believed illuminated subsurface areas of interest. First, I applied filtering
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.19: Initial elastic parameters of the target area. The top row displays slices extracted from
the P-wave velocity cube. The middle row shows panels from the S-wave velocity cube. The bottom
row displays slices from the density model cube. On each row, from left to right, the panels are
extracted at z = 2.6 km, y = 51.5 km, x = 216.1 km, respectively. [CR]
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.20: Inverted elastic parameters of the target area using the target-oriented elastic FWI
workflow. The top row displays slices extracted from the P-wave velocity cube. The middle row
shows panels from the S-wave velocity cube. The bottom row displays slices from the density model
cube. On each row, from left to right, the panels are extracted at z = 2.6 km, y = 51.5 km, x = 216.1
km, respectively. [CR]
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.21: Elastic parameter difference between the final and the initial elastic FWI model. The
same slices from Figure 4.20 are shown in these panels. [CR]
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(a) (b) (c)

(d) (e) (f)

Figure 4.22: Rock physics attributes computed using the final. The top and bottom rows display the
Vp/Vs ratio and the AI, respectively. The same slices from Figure 4.20 are shown in these panels.
[CR]
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techniques to limit the data’s frequency content and shaped the observed waveforms to remove the

source-bubble reverberations. Then, I compute initial RTM images to understand the geological

scenario of the subsurface in this area. To improve the initial P-wave velocity model’s accuracy, I

employed an acoustic FWI methodology to invert the selected observed pressure data. I assessed the

accuracy of this step by comparing the phase-matching between the observed and predicted traces.

Furthermore, I highlighted the salt-flank image improvements by comparing RTM sections obtained

using the initial and the FWI-inverted P-wave models. Finally, using the subsurface RTM images,

I identified a potential prospect positioned on the salt diapir’s flank. On this target, I applied

the proposed elastic waveform methodology to estimate its material proprieties. The rock-physics

parameters computed using the estimated properties suggested the existence of a gas-bearing sand

reservoir. This field-data application demonstrated the proposed method’s potential to retrieve the

subsurface elastic parameters using a wave-equation based approach.
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Chapter 5

Conclusions

I describe the general framework behind wave-equation operators and their use within the inversion

of seismic data. I derive linear and non-linear acoustic and elastic wave-equation modeling operators

and employ them to solve linearized and full-waveform inversion problems.

First, I show the ability of an extended linearized waveform inversion to correctly retain the

elastic amplitude variations of reflected events even in complex geological scenarios, such as subsalt

reservoir horizons. Secondly, based on the solution to an extended linearized waveform inversion

problem, I devise a novel redatuming technique in which elastic pressure data can be synthesized

as if the acquisition geometry was placed in proximity of a target area. This datumed dataset is

then used within an elastic FWI method to estimate a subsurface target area’s elastic parameters.

This target-oriented elastic FWI workflow limits the computational area to a limited portion of the

subsurface, dramatically diminishing the inversion procedure’s computational cost. This procedure’s

computational speed up permits the application of elastic FWI methodologies to seismic exploration

3D field datasets.

I demonstrate the extended image space’s efficacy at retaining the elastic amplitude variation on

various synthetic examples. On the Marmousi2 synthetic model, I apply the target-oriented elastic

FWI procedure to characterize a gas-bearing sand lens’s elastic properties. In this 2D application,

a computational speed up factor of approximately 200 is achieved compared to the surface elastic

pressure’s inversion. Finally, I apply the proposed workflow on the pressure component of an OBN

dataset recorded in the Gulf of Mexico. I first show the effectiveness of an acoustic FWI workflow

to obtain an accurate and data-consistent P-wave velocity model. The updated velocity model can

produce more geologically consistent RTM images; especially, close to the salt diapir’s sides. Using

the produced RTM image, I identify a potential reservoir prospect positioned on the salt flank and

apply the target-oriented inversion to estimate its elastic parameters. I speculate the possibility of

being associated with gas accumulation within a sand formation from the retrieved properties.

I have applied the proposed target-oriented elastic inversion methodology to only the pressure
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component of the recorded data. However, the theory for extended migration and inversion can

be modified to include multi-component data to exploit all the events recorded by modern OBN

acquisitions fully. Additionally, a future study on how to apply the methodology to converted waves

might be a viable direction to explore. Finally, one of the obvious future applications of the method

is on time-lapse seismic experiments were only known portions of the subsurface are changing as

physical processes are occurring. In fact, the method would make computationally affordable the

monitoring of the elastic properties of specific subsurface areas. This fact is of great importance

given the increasing interest in monitoring carbon capture and sequestration sites.



Appendix A

The adjoint-state method

Introduction

The adjoint-state method is a mathematical technique that allows for efficient computation of deriva-

tives of partial-differential-equation (PDE) constrained optimization problems. This class of inverse

problems arises in many different applications where physical systems of PDEs must be solved in

order to generate observed data. For instance, in seismology and seismic exploration, usually, a

wave equation must be solved in order to obtain simulated recorded traces, or within the field of

fluid dynamics, the solution to complex fluid-flow equations must be found to generate modeled

data. The caveat associated with finding the derivative of a PDE-constrained objective function is

the computational cost of the Jacobian of the governing equation or operator. In fact, the model

vector usually contains millions of variables, making the usage of a finite-difference approximation of

the gradient unfeasible during a minimization process. The adjoint-state method completely avoids

the computation of such Jacobian and thus making the gradient computation efficient. For the

continuous case, I follow a similar discussion as Fichtner (2010), but I extend it to the discrete case.

Mathematical background

In this section, I define and review some useful mathematical concepts that can help understand the

following derivations. First of all, it is necessary to define the inner product between real functions.

Given two functions f(x) and g(x), their inner product can be defined as follows:

〈f, g〉 = 〈g, f〉 =

∫
Ω

f(x)g(x)dx, (A.1)

where Ω represents the domain of the functions where the integral of their product is computed. It

is also important to define linear operators that transform input functions and can be expressed as
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follows:

h(x) = Af(x), (A.2)

where A represents a given linear operator that maps f(x) into h(x). Examples of such operators

are the Laplacian (∇2), the gradient (∇), the divergence (∇·), or the curl (∇×). Given these two

concepts I can now define the adjoint of a linear operator in the continuous case. For any f and g,

a linear operator A and its adjoint A∗ are related by the following equality:

〈f,Ag〉 =

∫
Ω

f(x)Ag(x)dx =

∫
Ω

A∗f(x)g(x)dx = 〈A∗f, g〉. (A.3)

For example, I derive the adjoint operator of a simple derivative operator in one dimension using

this definition. I write the operator D as follows:

h(t) = Dg(t) =
dg(t)

dt
= g′(t). (A.4)

To find the adjoint D∗, I use equation A.3 and write the following expression:

〈f,Dg〉 =

∫ T

0

f(t)g′(t)dt = [f(t)g(t)]
T
0 −

∫ T

0

f ′(t)g(t)dt, (A.5)

where I integrated by parts the integral expression. I can see from equation A.5 that the adjoint of

the derivative operator is given by a negative derivative operator plus a constant factor, [f(t)g(t)]
T
0 .

In many applications, the constant factor can be neglected by choosing certain boundary conditions

(e.g., f(T ) = f(0) = 0). Therefore, under these conditions, I can write that the adjoint of the

derivative operator D = d
dt is given by the following:

D∗ = − d

dt
. (A.6)

Theory

I start by first describing the general theory behind the adjoint-state method in the continuous case

and then I show how it is translated when I deal with the discrete functions. In both cases, I first

define a residual function and show how it is used to form an objective function. Finally, I describe

how the gradient of such cost function is computed using the adjoint-state method.

Adjoint-state method: continuous formulation

When dealing with geophysical inverse problems, a residual function is commonly defined as follows:

r(m) = dpre(x;m)− dobs(x) =

∫
Φ

[u(ζζζ;m)− uobs(ζζζ)]δ(ζζζ − x)dζζζ, (A.7)
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where dpre and dobs are the predicted and observed data functions, respectively, and m denotes the

physical model governing the physics of the predicted data. For example, the model function can

represent the wave speed within the subsurface (i.e., m = v(x, y, z)). The data function is given

by sampling the state or physical variables u and uobs, which could be for instance the pressure or

temperature fields. The sampling position of these functions is here represented by x, which could

be the time and spatial variables of any recording device. I represent the data extraction using a

Dirac delta function δ and integrate the state variables over the physical domain Φ (e.g., (x, y, z, t)).

Given the definition of the residual function, I can form an objective function using the inner product

described by equation A.1. Using the residual function of equation A.7, I define the well-known L2

inverse problem as follows:

φ(m) =
1

2

∫
Φ

{∫
Φ

[u(ζζζ;m)− uobs(ζζζ)]δ(ζζζ − x)dζζζ

}2

dx =
1

2
〈r(m), r(m)〉Φ. (A.8)

The objective function in this equation is a functional that maps a function to a real number (i.e.,

φ ∈ R). The variation of the objective function by a small change of the model function dm can be

expressed by the following:

dφ(m) =
∂φ(m)

∂m
dm = ∇mφ(m)dm, (A.9)

where ∇mφ(m) represents the functional derivative with respect to the model function. Given the

objective function definition of equation A.8, the functional derivative ∇mφ(m) can be written as

follows:

∇mφ(m) = ∇m
1

2
〈r(m), r(m)〉 = 〈∇mr, r〉 = 〈∇ur∇mu, r〉, (A.10)

in which I dropped the dependency of the functions with respect to the model and where I expanded

the derivative of the residual function with respect to the predicted state variable u and the model

function m. Also, I removed the integration domain Φ from the inner-product sign.

When a gradient-based method is employed to minimize a given cost function, the derivative

of this function with respect to the model parameter must be evaluated. The problem is given by

the derivative of the predicted state variable u with respect to the model function m (i.e,, ∇mu).

In fact, in many geophysical applications, the predicted data are given by sampling the solution to

a system of PDEs, which is usually numerically computed, and whose derivative might not have

an explicit form. For certain simple inverse problems, I can compute ∇mφ using a finite-difference

approach. However, it is generally unfeasible to perform such a computation given the number of

parameters present within most geophysical inverse problems. This observation will be more evident

in the discrete formulation of the adjoint-state method. The goal of the adjoint-state method is to

avoid the computation of ∇mu altogether.
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The adjoint-state method is based on the fact that I can always express the dependency of the

state variable u using the following equation:

H(u(m),m) = 0. (A.11)

For instance, the acoustic isotropic wave equation can be written as follows:

H(u(m),m) =

[
1

m2(x, y, z)

∂2

∂t2
−∇2

]
u(x, y, z, t)− f(x, y, z, t) = 0, (A.12)

where m is the wave speed within the medium, u is the pressure field, and f is a forcing term. The

total differential of equation A.11 is given by the following expression:

dH

dm
= ∇uH∇mu+∇mH = 0, (A.13)

where I notice that the derivative ∇mu appears. To give an example of this expression, I write the

total differential of equation A.12:

dH

dm
=

[
1

m2

∂2

∂t2
−∇2

]
∇mu− 2

1

m3

∂2u

∂t2
. (A.14)

I now multiply equation A.13 by an arbitrary function u† and integrate over Φ and write the following:

〈u†,∇uH∇mu+∇mH〉 = 〈u†,∇uH∇mu〉+ 〈u†,∇mH〉 = 0. (A.15)

Now I add equations A.10 and A.15, without changing the former since I am adding a null function,

and write:

∇mφ(m) = 〈∇ur∇mu, r〉+ 〈u†,∇uH∇mu〉+ 〈u†,∇mH〉. (A.16)

I focus on the first two terms on the right-hand side of equation A.16 and use the definition of adjoint

operators (equation A.3). I can write these terms as follows:

〈∇ur∇mu, r〉+ 〈u†,∇uH∇mu〉 = 〈∇ur∗r,∇mu〉+〈∇uH∗u†,∇mu〉 (A.17)

= 〈∇ur∗r +∇uH∗u†,∇mu〉.

If I set u† such that:

∇ur∗r +∇uH∗u† = 0, (A.18)
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I can write:

〈∇ur∇mu, r〉+〈u†,∇uH∇mu〉 = 0, (A.19)

which allows us to remove the term ∇mu from equation A.16. Therefore, the gradient ∇mφ (equa-

tion A.10), can be written as follows:

∇mφ(m) = 〈u†,∇mH〉. (A.20)

The term u† is commonly referred to as the adjoint-state variable and equation A.18 as the adjoint-

state equation.

Let me apply the adjoint-state method to the L2-norm objective function defined in equation A.8

and where the state variable u follows the physics described in equation A.12. To compute the

gradient of this cost function, I simply need to determine the terms present in equations A.20

and A.18. Effectively, I need to know u† and ∇mH. From equation A.13, I observe that:

∇mH = −2
1

m3

∂2u

∂t2
. (A.21)

and:

∇uH =

[
1

m2

∂2

∂t2
−∇2

]
. (A.22)

Finally, the operator ∇ur is given by:

∇ur · =
∫

Φ

· δ(ζζζ − x)dζζζ, (A.23)

which can be easily shown to be self-adjoint (i.e., ∇ur = ∇ur∗). Hence, the term ∇ur∗r is simply

the residual function of equation A.7. To find the adjoint-state variable u†, I need to solve the

adjoint-state equation. To do so, I have to know the adjoint operator ∇uH∗. I obtain this operator

by applying the same definition of equation A.3 and write:

〈u2,∇uHu1〉Φ =

∫ T

0

∫ z1

z0

∫ y1

y0

∫ x1

x0

u2

[
1

m2

∂2

∂t2
−∇2

]
u1dx dy dz dt (A.24)

=

∫ T

0

∫ z1

z0

∫ y1

y0

∫ x1

x0

u2
1

m2

∂2u1

∂t2
− u2∇2u1dx dy dz dt.
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The first term within the integral can be written as:

∫ T

0

u2

m2

∂2u1

∂t2
dt =

1

m2

{[
u2
∂u1

∂t

]T
0

−
∫ T

0

∂u2

∂t

∂u1

∂t
dt

}
(A.25)

=
1

m2

{[
u2
∂u1

∂t

]T
0

−
[
∂u2

∂t
u1

]T
0

+

∫ T

0

∂2u2

∂t2
u1dt

}
,

where I integrated by parts twice. The two boundary terms are both zero at t = 0 since u1(0) =

u′1(0) = 0. On the other hand, for t = T , I have to set different boundary conditions to obtain the

same result. The common strategy is to impose the following conditions u2(T ) = u′2(T ) = 0. By

doing so, I can write: ∫ T

0

u2

m2

∂2u1

∂t2
dt =

∫ T

0

u1

m2

∂2u2

∂t2
dt. (A.26)

By following a similar procedure and imposing homogeneous spatial boundary conditions, I can show

that: ∫ z1

z0

∫ y1

y0

∫ x1

x0

u2∇2u1dx dy dz =

∫ z1

z0

∫ y1

y0

∫ x1

x0

u1∇2u2dx dy dz. (A.27)

Therefore, I can rewrite equation A.24 as follows:

〈u2,∇uHu1〉Φ =

∫ T

0

∫ z1

z0

∫ y1

y0

∫ x1

x0

u2

[
1

m2

∂2

∂t2
−∇2

]
u1dx dy dz dt (A.28)

=

∫ T

0

∫ z1

z0

∫ y1

y0

∫ x1

x0

u1

[
1

m2

∂2

∂t2
−∇2

]
u2dx dy dz dt = 〈∇uH∗u2, u1〉Φ,

which show that, for the acoustic isotropic wave equation, ∇uH∗ is the same PDE as the governing

equation but with different time boundary conditions. Now that I know how to write ∇uH∗, I can

define the adjoint-state equation (equation A.18) for the acoustic isotropic wave equation as follows:[
1

m2(x, y, z)

∂2

∂t2
−∇2

]
u†(x, y, z, t) = −r(x, y, z, t) (A.29)

subject to u†(x, y, z, T ) =
u†

∂t
(x, y, z, T ) = 0,

where I see that u† is given by the solution of the acoustic isotropic wave equation in which the

residual function r is used as the forcing term. Using equation A.20, I can finally write the derivative

of the objective function as follows:

∇mφ(m) = − 2

m3

∫ T

0

u†
∂2u

∂t2
dt, (A.30)
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which shows that the gradient is given by the zero-lag correlation between the u† and the second-

order time derivative of state variable u scaled by a function of velocity model m.

Adjoint-state method: discrete formulation

In the discrete formulation, I write the residual vector r as follows:

r(m) = Ku− dobs, (A.31)

where m ∈ Rm represents the model-vector parameters, u ∈ Rp is the discrete state variables (e.g.,

discrete temperature or displacement fields), dobs ∈ Rn is the observed data vector, and K ∈ Rn×p

represents a sampling matrix extracting the value of state variable at the recording position where

the data where observed. In the discrete case, I define the L2-norm objective function as follows:

φ(m) =
1

2
‖r(m)‖22 =

1

2
r(m)∗r(m), (A.32)

where φ(m) ∈ R and ∗ denotes the adjoint operation. As I discussed in the continuous case,

I are interested in minimizing the cost function of equation A.32 by employing a gradient-based

optimization algorithm. Therefore, I need to know the gradient of the objective function that is:

∇φ(m) =

(
∂r

∂m

)∗
r(m), (A.33)

where ∇φ(m) ∈ Rm, and ∂r
∂m represents the Jacobian matrix of the residual vector with respect to

the model parameters, which belongs to Rn×m. The Jacobian matrix can be written as follows:

∂r

∂m
= K

∂u

∂m
, (A.34)

where ∂u
∂m ∈ Rp×m and is the Jacobian matrix of the state variable with respect to the model vector.

The goal of the adjoint-state method is to avoid the computation of this matrix, which can be

nearly impossible when large systems of PDEs are solved to perform the computation of u. For

instance, m can be in the order of millions and p in the order of billions, making the storage of

Jacobian matrix impossible even within modern computers or clusters. Additionally, when complex

physics is employed to model the data, analytical expressions of this matrix might not be available

or unfeasible to compute.

To remove ∂u
∂m from equation A.33, I employ the same steps I used in the continuous case. Again,

I assume that u represents the solution of a PDE. As in equation A.11, I can write the following

expression:

H(u(m),m) = 0, (A.35)
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where H ∈ Rp. For example, the acoustic isotropic wave equation, when a finite-difference ap-

proached is followed, can be written as follows:

[
MD2

t −∇2
]
u− f = 0, (A.36)

where D2
t represents the second-order time derivative operator, ∇2 is a discrete Laplacian matrix,

and f is the forcing term. M is a diagonal matrix containing the inverse of the squares of the velocity

model vector m. By taking the derivative of H with respect to m I write the following:

∂H

∂u

∂u

∂m
+
∂H

∂m
= 0, (A.37)

where ∂H
∂m ∈ Rp×m and ∂H

∂u ∈ Rp×p. I now multiply equation A.37 by u† and write:(
∂u

∂m

)∗(
∂H

∂u

)∗
u† +

(
∂H

∂m

)∗
u† = 0, (A.38)

where u† ∈ Rp. Following the same naming convention as before, I refer to u† as the adjoint-state

variable or vector. If I add equations A.38 and A.33, I can write:

∇φ(m) =

(
∂u

∂m

)∗
K∗r +

(
∂u

∂m

)∗(
∂H

∂u

)∗
u† +

(
∂H

∂m

)∗
u† (A.39)

=

(
∂u

∂m

)∗ [
K∗r +

(
∂H

∂u

)∗
u†
]

+

(
∂H

∂m

)∗
u†,

and if I choose u† such that:

K∗r +

(
∂H

∂u

)∗
u† = 0, (A.40)

then the gradient of the objective function simplifies to:

∇φ(m) =

(
∂H

∂m

)∗
u†, (A.41)

in which the Jacobian ∂u
∂m can be completely neglected during the gradient computation. Ultimately,

to determine the gradient of the objective function, it is necessary to compute u† and ∂H
∂m .

Let me derive the form of equations A.40 and A.41 when the acoustic isotropic wave equation is

assumed to predict the observed data (equation A.36). In this case, the term ∂H
∂m is given by:

∂H

∂m
= Ü , (A.42)

which represents the discretization of equation A.21, and can be derived by computing the partial
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derivative of each vector element of equation A.36 with respect to each model parameter. The

adjoint-state equation can be written as follows:

[
MD2

t −∇2
]∗

u† = −K∗r, (A.43)

which closely resembles equation A.29, where the residual vector is injected as the forcing term. The

matrix
[
MD2

t −∇2
]∗

is solved according to the time- and space-boundary conditions chosen. If D2
t

is a lower triangular matrix (i.e., same boundary condition described in the continuous case), then

u† is found by applying backward substitution. The end-time boundary conditions in equation A.29

automatically arises in this case. A different approach is to choose the time- and space-boundary

conditions such that the wave-equation matrix is self-adjoint; hence, the same modeling code can be

use to compute both u and u†. Finally, the gradient of the objective function is given by:

∇φ(m) = Ü∗u†, (A.44)

which also closely resembles the continuous case one (equation A.30).



Appendix B

Subsurface-offset to angle

transformation

2D and 3D forward and adjoint operators

The transformation from the subsurface-offset domain (OD) into angle domain (AD) for the 2D case

can be written as follows:

Iγ(x, z, γ) =

∫ ∞
−∞

Ih(x, z + tan(γ)h, h)dh, (B.1)

where x and z represent the spatial dimensions, γ is the angle, and h the subsurface offset. Without

loss of generality, I drop the dependency on x of the images Iγ and Ih. If I refer to the transformation

of equation B.1 as the adjoint operator a∗ (i.e., mapping the OD into the AD), then the goal of this

appendix is to find the forward operator a, which maps the AD to the OD, such that:

〈a∗(Ih), Iγ〉z,γ =

∫ π/2

−π/2

∫ ∞
−∞

[a∗(Ih)]
∗
Iγ(z, γ)dzdγ = (B.2)∫ ∞

−∞

∫ ∞
−∞

(Ih)∗a(Iγ)(z, h)dzdh = 〈Ih, a(Iγ)〉z,h,

where ∗ represents the complex conjugate operation. To derive such operator I employ the Plancherel

theorem that can be stated as follows:

〈a∗(Ih), Iγ〉z,γ = 〈A∗(Îh), Îγ〉kz,γ = (B.3)

〈Îh, A(Îγ)〉kz,h = 〈Ih, a(Iγ)〉z,h,

106
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where Îh and Îγ are the Fourier transformed images in the OD and AD along the z dimension, while

A and A∗ are forward and adjoint operators of the offset to angle transform in the Fourier domain,

respectively. Therefore, to find the forward operator a I can derive the corresponding operator A

and apply the inverse Fourier transform to go back to the spatial domain z.

First, I derive the operator A∗ by substituting the the Fourier transformed Ih (i.e., Ih(z, h) =∫∞
−∞ Îh(kz, h)ei2πkzzdkz) into equation B.1:

∫ ∞
−∞

Ih(z + tan(γ)h, h)dh =

∫ ∞
−∞

ei2πkzz
∫ ∞
−∞

Îh(kz, h)ei2πkz tan(γ)hdhdkz, (B.4)

which shows that:

Îγ(kz, γ) = A∗(Îh)(kz, γ) =

∫ ∞
−∞

Îh(kz, h)ei2πkz tan(γ)hdh. (B.5)

I find the operator A by applying the definition in equation B.3 and by simple algebraic steps as

follows: ∫ π/2

−π/2

∫ ∞
−∞

Îγ(kz, γ)

∫ ∞
−∞

[
Îh(kz, h)ei2πkz tan(γ)h

]∗
dhdkzdγ = (B.6)∫ ∞

−∞

∫ ∞
−∞

Î∗h(kz, h)

∫ π/2

−π/2
Îγ(kz, γ)e−i2πkz tan(γ)hdγdkzdh.

Hence, the forward operator A is given by the following:

A(Îγ)(kz, h) =

∫ π/2

−π/2
Îγ(kz, γ)e−i2πkz tan(γ)hdγ, (B.7)

and the adjoint operator as the transform of equation B.5. Finally, by applying the inverse Fourier

transform along the z axis on equation B.7, I can write the following expression:

Ĩh(x, z, h) =

∫ π/2

−π/2
Iγ(x, z − tan(γ)h, γ)dγ, (B.8)

which shows that the forward operator of equation B.1 is a slant-stack operation performed in the

angle domain.

By following the same reasoning, I can write the forward and adjoint 3D OD to AD transforma-

tions as follow:

Ĩh(x, y, z, hx, hy) =

∫ π/2

−π/2

∫ π

0

Iγ(x, y, z − tan(γ)[cos(φ)hx − sin(φ)hy], γ, φ)dφdγ, (B.9)

Ĩγ(x, y, z, γ, φ) =

∫ ∞
−∞

∫ ∞
−∞

Ih(x, y, z + tan(γ)[cos(φ)hx − sin(φ)hy], hx, hy)dhxdhy. (B.10)
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In equation B.9, the variable γ represents the reflection angle (i.e., the angle defined by the

normal to the reflection plane and the source or receiver local ray), while φ is the reflection azimuth

(i.e., the angle of the line defined by the intersection with the plane for z = 0 and of the plane

containing the source and receiver rays) (Biondi and Tisserant, 2004).

2D pseudo-inverse operator

Whenever dealing with a domain transformation (e.g., Fourier transform), it is useful to find its

pseudo-inverse operator. Under certain conditions, for the OD to AD transform I can define the

pseudo inverse in the Fourier domain as follows:

A† = (A∗A)−1A∗. (B.11)

Hence, the derivation of the pseudo-inverse operator of the subsurface offset to angle transform

requires the knowledge of the inverse of A∗A. For the operators described in the previous section, I

can write the following expression:

A∗A(Îγ)(kz, γ
′) =

∫ ∞
−∞

ei2πkz tan(γ′)h

∫ π/2

−π/2
Îγ(kz, γ)e−i2πkz tan(γ)hdγdh (B.12)

=

∫ ∞
−∞

ei2πp
′h

∫ ∞
−∞

cos2(f(p))

kz
Îγ(kz, f(p))e−i2πphdpdh

=
cos2(γ′)

kz
Îγ(kz, γ

′),

where I define p = kz tan(γ), dp = dγkz/ cos2(γ), f(p) = arctan(p/kz), and employed the Fourier

inversion theorem. If I assume that the image Îγ is equal to zero for γ = {−π/2, π/2} and kz = 0, I

can write the pseudo-inverse operator as follows:

A†(Îh)(kz, γ) =
kz

cos2(γ)

∫ ∞
−∞

Îh(kz, h)ei2πkz tan(γ)hdh. (B.13)

Finally, it is trivial to show that, in the space domain, the pseudo inverse can be written as follows:

a† = F ∗(A∗A)−1A∗F (B.14)

where F represents the Fourier transform operator along the z axis. The same result can be obtained

by using the ray parameter within the transform integrals (Liu and Luo, 2020).

3D pseudo-inverse operator

The derivation of the pseudo-inverse operator for the 3D OD to AD transform can be derived in a

similar fashion as the 2D case. If A3D denotes the Fourier-domain 3D AD to OD transform, then
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equation B.12 can be written as follows:

A∗3DA3D(Îγ)(kz, γ
′, φ′) = (B.15)

=

∫ ∞
−∞

∫ ∞
−∞

ei2πkz tan(γ′)[cos(φ′)hx−sin(φ′)hy ]

[∫ π/2

−π/2

∫ π

0

Îγ(kz, γ, φ)e−i2πkz tan(γ)[cos(φ)hx−sin(φ)hy ]dφdγ

]
dhxdhy

=

∫ ∞
−∞

∫ ∞
−∞

ei2πp
′hxe−i2πq

′hy

[∫ ∞
−∞

∫ ∞
−∞

cos2(f(p, q))

k2
z tan(f(p, q))

Îγ(kz, f(p, q), g(p, q))e−i2πphxei2πqhydpdq

]
dhxdhy

=
cos2(γ′)

k2
z tan(γ′)

Îγ(kz, γ
′, φ′),

where p = kz tan(γ) cos(φ), q = kz tan(γ) sin(φ), f(p, q) = arctan(
√
p2 + q2/kz), g(p, q) = arctan(q/p),

and dpdq = k2
z tan(γ)/ cos2(γ)dφdγ =. Therefore, the pseudo-inverse operator can be written as fol-

lows:

A†3D(Îh)(kz, γ, φ) =
k2
z tan(γ)

cos2(γ)

∫ ∞
−∞

∫ ∞
−∞

Îh(kz, hx, hy)ei2πkz tan(γ)[cos(φ)hx−sin(φ)hy ]dhxdhy. (B.16)

Equivalence of DSO regularization to smoothing along angles

In this section, I show how the minimization of a DSO-regularized extended image corresponds to

enforcing a smooth constraint along the angle in the AD image. To simplify the discussion, I define

the OD to AD transform in term of p = tan(γ), an invertible change of variable in the domain of γ,

and consider the 2D case. Thus, the equivalence can be expressed as follows:〈
∂Îp(kz, p)

∂p
,
∂Îp(kz, p)

∂p

〉
kz,p

α 〈hÎh(kz, h), hÎh(kz, h)〉kz,h, (B.17)

where Îp(kz, p) is given by:

Îp(kz, p) = A∗(Îh)(kz, p) =

∫ ∞
−∞

Îh(kz, h)ei2πkzphdh. (B.18)

The derivative along the variable p is then written as follows:

∂Îp(kz, p)

∂p
= i2πkz

∫ ∞
−∞

hÎh(kz, h)ei2πkzphdh = i2πkzA
∗(hÎh)(kz, p). (B.19)
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Using equation B.19, I write the left-hand side of equation B.17 as:〈
∂Îp(kz, p)

∂p
,
∂Îp(kz, p)

∂p

〉
kz,p

=
〈
i2πkzA

∗(hÎh)(kz, p), i2πkzA
∗(hÎh)(kz, p)

〉
kz,p

(B.20)

=
〈
hÎh(kz, h), (2πkz)

2AA∗(hÎh)(kz, h)
〉
kz,h

.

The application of the operator AA∗ is obtained as follows:

AA∗(Îh)(kz, h) =

∫ ∞
−∞

e−i2πkzph
∫ ∞
−∞

Îh(kz, h
′)e−i2πkzph

′
dh′dp (B.21)

= k−1
z Îh(kz, h

′).

Hence, equation B.20 yields:〈
∂Îp(kz, p)

∂p
,
∂Îp(kz, p)

∂p

〉
kz,p

= 4π2
〈
hÎh(kz, h), |kz|hÎh(kz, h)

〉
kz,h

(B.22)

α
〈
hÎh(kz, h), hÎh(kz, h)

〉
kz,h

,

which shows the proportionality between the two norms and thus their equivalence when mini-

mized. A similar derivation can be followed for the 3D case by defining p = tan(γ)cos(φ) and

q = tan(γ)sin(φ). In this case the equivalence is written as follows:〈
∂2Îp(kz, p, q)

∂p∂q
,
∂2Îp(kz, p, q)

∂p∂q

〉
kz,p,q

α 〈hxhy Îh(kz, hx, hy), hxhy Îh(kz, hx, hy)〉kz,hx,hy
. (B.23)
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