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ABSTRACT

I present an unconditionally stable implicit finite-difference operator that corrects the constant-velocity

phase shift operator for lateral velocity variations. My method is based on the Fourier Finite-

Difference (FFD) method first proposed by Ristow and Rühl (1994). Contrary to previous results,

my correction operator is stable even when the medium velocity has sharp discontinuities, and the

reference velocity is higher than the medium velocity. The stability of the new correction enables the

definition of a new downward-continuation method that is based on the interpolation of two wave-

fields: the first wavefield is obtained by applying the FFD correction starting from a reference veloc-

ity lower than the medium velocity, the second wavefield is obtained by applying the FFD correction

starting from a reference velocity higher than the medium velocity. I will refer to the proposed method

as Fourier Finite-Difference Plus Interpolation (FFDPI) method, because it combines the advantages

of the FFD technique with the advantages of interpolation,

I present a simple and economical procedure for defining frequency-dependent interpolation

weights. I demonstrate that when the interpolation step is performed using these frequency-dependent
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interpolation weights, it significantly reduces the residual phase error after interpolation, the fre-

quency dispersion caused by the discretization of the Laplacian operator, and the azimuthal anisotropy

caused by splitting.

Tests on zero-offset data from the SEG-EAGE salt data set show that the proposed method im-

proves the imaging of a fault reflection with respect to a similar interpolation scheme that employs a

split-step correction for adapting to lateral velocity variations.

INTRODUCTION

As 3-D prestack wave-equation imaging becomes practically possible (Biondi and Palacharla, 1996;

Mosher et al., 1997; Vaillant et al., 2000; Wyatt et al., 2000), we need robust, efficient, and accurate

methods to downward continue 3-D wavefields. In particular, wide-angle methods are crucial for

prestack imaging, because at least one of the paths connecting the image point in the subsurface to

the source/receiver locations at the surface is likely to propagate at a wide angle.

Fourier methods, such as phase shift (Gazdag, 1978), handle wide-angle propagation efficiently

and accurately, but only for vertically layered media. In contrast, finite-difference methods can easily

handle lateral velocity variations, but are not efficient for wide-angle propagation. A natural strategy

thus combines a Fourier method with a finite-difference method to derive an extrapolation method

that enjoys the strengths of both. This is not a new idea, and indeed the first proposed adaptations of

Fourier methods, Phase Shift Plus Interpolation (PSPI) (Gazdag and Sguazzero, 1984) and split-step

(Stoffa et al., 1990), can be interpreted as being zero-order finite-difference corrections to a phase

shift extrapolator. Ristow and Rühl (1994) first proposed a genuinely finite-difference correction to

phase shift, which they dubbed Fourier Finite-Difference (FFD). It employs implicit finite differences

(Claerbout, 1985) to handle lateral velocity variations. Pseudo-screen propagators (Jin et al., 1998),
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wide-angle screen propagators (Xie and Wu, 1998), generalized-screen propagators (Le Rousseau

and de Hoop, 1998), and local Born-Fourier migration (Huang et al., 1999), are related methods that

have been recently proposed in the literature.

In the first part of this paper, I show that the FFD correction is more accurate than other methods

that employ implicit finite-difference, such as pseudo-screen propagators (Jin et al., 1998) and wide-

angle screen propagators (Xie and Wu, 1998). Because the computational complexity of the three

methods is comparable, the FFD correction is therefore more attractive than the others, and it is the

focus of my paper. Unfortunately, when the original FFD method is applied in presence of sharp

discontinuities in the velocity model [e.g. unsmoothed SEG/EAGE salt model (Aminzadeh et al.,

1996)] it can generate numerical instability. Stability is a necessary condition for a migration method

to be practically useful.

The stable FFD correction that I present in this paper overcomes the instability problems related

to the original FFD method. To derive a stable version of the FFD correction, I adapted the bullet-

proofing theory developed by Godfrey et al. (1979) and Brown (1979) for the 45-degree equation.

The bullet-proofed FFD correction is unconditionally stable for arbitrary variations in the medium

velocity and in the reference velocity. Further, I demonstrate that it is unconditionally stable when

the medium velocity is either higheror lower than the reference velocity. This is a useful result, and

differs with a statement in Ristow and Rühl’s paper, that asserts their method to be unstable when the

medium velocity is lower than the reference velocity. I demonstrate that this observed instability can

be explained by the attempt of applying a single correction when the medium velocity isboth lower

and higher than the reference velocity.

The stability of the new FFD correction, even when the reference velocity is higher than the

medium velocity and has lateral variations, makes it a suitable building block for the construction
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of a new wide-angle downward continuation algorithm that is efficient and accurate in 3-D. At each

depth step, the wavefield is propagated withNvr reference velocities using phase shift, whereNvr

is determined according to both the range of velocities in the current depth slice and the maximum

propagation angle that we need for accurate imaging of the events of interest. Then, theNvr reference

wavefields are combined to create two wavefields: one for which the reference velocity is equal to or

lower than the medium velocity, the other one for which the reference velocity is equal to or higher

or equal than the medium velocity. A stable FFD correction is applied to both wavefields, and the

corrected wavefields are linearly interpolated with frequency-dependent weights. The frequency-

dependent interpolation enables a significant reduction of the frequency dispersion introduced by the

discretization of the Laplacian operator in the implicit finite difference step.

In 3-D, the FFD corrections can be efficiently applied by splitting, or possibly by helix-transform

methods (Rickett et al., 1998). However, the algorithm that I propose suffers much less from az-

imuthal anisotropy caused by splitting than did the original FFD method. The phase errors as a

function of azimuth have opposite behavior when the differences between the reference velocity and

medium velocity have opposite signs. Therefore, these phase errors tend to cancel each other when

the two wavefields are interpolated after the FFD correction. Because Fourier Finite-Difference meth-

ods and interpolation are both fundamental components of the new method, I will refer to it as Fourier

Finite-Difference Plus Interpolation method, or FFDPI.

The computational cost of FFDPI method is obviously higher than the computational cost of

simple FFD method. However, FFDPI achieves higher accuracy than simple FFD. In theory, FFDPI

can achieve arbitrary accuracy by using a sufficient number of reference velocities. The cost of

the proposed algorithm is roughly proportional to the number of reference velocities, since its most

expensive components are the Fast Fourier Transforms that are necessary to transform the wavefield

between space domain and wavenumber domain.

4



IMPLICIT FINITE-DIFFERENCE CORRECTION TO PHASE-SHIFT DOWNWARD

CONTINUATION

Several methods have been proposed in the literature for modifying phase-shift downward contin-

uation (Gazdag, 1978), with the goal of accommodating lateral velocity variations. I will limit my

analysis to three methods for which the correction is applied by use of an implicit finite-difference

scheme: the pseudo-screen propagator (Huang et al., 1999), the Fourier Finite-Difference (FFD) mi-

gration (Ristow and Rühl, 1994), and the wide-angle screen propagator (Xie and Wu, 1998). All these

methods apply a correction to the wavefield after it has been downward continued using phase shift

with a constant velocity. This constant velocity is often called “reference velocity” (vr). The methods

differ in the way that they approximate the difference between the one-way wave equation square-

root operator with the reference velocity, and the same square-root operator with the true “medium

velocity” (v).

The simplest approximation is by Taylor expansion of the square-root operator aroundvr trun-

cated at the first order. This approximation corresponds to the pseudo-screen propagator. Notice that

it is also the basic approximation of the local Born-Fourier method (Huang et al., 1999), though in

the latter migration method the correction is not applied by implicit finite difference.

The wavefield downward-continued at depthz+1z is computed from the wavefield at depthz

by use of the following approximation,

Pz+1z = Pze
ikv

z1z
≈ Pze

ikvr
z 1z+i dkz

ds 1s1z, (1)

where the vertical wavenumberkv
z for the medium velocityv is given, as a function of the temporal

frequencyω and the horizontal wavenumberkm, by the well-known single square-root equation

kv
z =

ω

v

√
1−

v2k2
m

ω2
; (2)
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and the first derivative of the square root, with respect to the slownesss = 1/v evaluated at the

reference velocityvr, is

dkz

ds
=

ω√
1−

v2
r k2

m
ω2

. (3)

If we employ a finite-difference method to apply the correction term, we need to approximate the

square root in equation (3) with a rational expression. A reasonable approximation is achieved by

using a Taylor expansion, as follows,

dkz

ds
≈ ω

[
1+

v2
r X2

2
+

3v4
r X4

8
+ ...

]
, (4)

whereX = km/ω. When used in conjunction with an implicit finite-difference scheme, Muir’s con-

tinued fraction expansion (Jacobs and Muir, 1981) is a computationally more efficient approximation

than a Taylor expansion. A second-order continued fraction expansion is about as accurate as the

fourth-order Taylor expansion, but includes only second-order terms for the spatial derivatives (i.e.,

X2 instead ofX2 andX4); that is,

dkz

ds
≈ ω

[
1+

v2
r X2

2

1−
3v2

r X2

4

]
. (5)

Notice that the first term of the correction in both equations (4) and (5) corresponds to the split-step

correction term (Stoffa et al., 1990).

Figure 1 demonstrates the accuracy improvement gained by including the second term in equa-

tion (5). It compares the phase curves obtained after the first term in equation (5) (split step) is

applied, and after both terms (pseudo screen) are applied. The medium velocityv is equal to 2 km/s,

and two reference velocities are assumed: one 10% lower than the medium velocity (1.8 km/s), the

other one 10% higher than the medium velocity (2.2 km/s).
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FFD correction

The FFD correction achieves better accuracy than the pseudo-screen correction because it is based on

a direct expansion of the difference between the square root evaluated at the medium velocityv and

the square root evaluated at the reference velocityvr, instead of being based on the expansion of the

square root around the reference velocity. The downward-continued wavefield is approximated as

Pz+1z = Pze
ikv

z1z
≈ Pze

ikvr
z 1z+i 1kz

1s 1s1z, (6)

where the Taylor series of the correction term is now

1kz

1s
≈ ω

[
1+

vrvX2

2
+

vrv
(
v2

r +v2
+vrv

)
X4

8
+ ...

]
, (7)

and the continued fraction approximation of the correction term is

1kz

1s
≈ ω

1+

vrvX2

2

1−
(v2

r +v2+vrv)X2

4

 . (8)

Notice that both equations (7) and (8) respectively reduce to equations (4) and (5) ifv = vr. Therefore,

at the limit when the difference between the reference velocity and the medium velocity is small, the

two correction terms are equivalent, but they differ for larger corrections.

The superiority of the FFD correction is demonstrated in Figure 2. It compares the phase curves

obtained after the pseudo-screen correction [equation (5)] and the FFD correction [equation (8)] were

applied. As in Figure 1, the medium velocityv is equal to 2 km/s, and two reference velocities are

assumed: one 10% lower than the medium velocity (1.8 km/s), the other one 10% higher than the

medium velocity (2.2 km/s).

Figures 3 and 4 show the impulse responses associated with the phase curves shown in Figure 2.

The maximum frequency in the data is 63 Hz and the spatial sampling is 10 m horizontally and 5

m vertically. Figure 3 shows the exact impulse response for the medium velocity equal to 2 km/s.
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Figure 4a shows the impulse response with reference velocity equal to 1.8 km/s and FFD correction.

Figure 4b shows the impulse response with reference velocity equal to 2.2 km/s and FFD correction.

Notice the frequency dispersion in both the images obtained with the FFD correction. These

artifacts are caused by the discretization errors of the horizontal Laplacian operator inX2. To gen-

erate these figures I used the classical first-order three-points approximation of the Laplacian. The

phase curves shown in Figure 2 neglect this approximation, and thus they represent the effective

phase shift for zero-frequency data. Also notice that the frequency dispersion is in the opposite direc-

tions for opposite signs of the velocity correction. The Fourier Finite-Difference Plus Interpolation

method presented in this paper exploits these opposite directions of the frequency-dispersion errors,

so that the related artifacts are reduced without any additional computational complexity. Frequency-

dispersion artifacts could be further reduced if the accuracy of the discrete Laplacian operator were

improved, for example by use of the well-known “1/6 trick” (Claerbout, 1985). Another way to

reduce frequency dispersion would be to employ more accurate, but also more computationally ex-

pensive, approximations of the Laplacian, such as a second-order five-points approximation.

Wide-angle screen correction

Wide-angle screen migration (Xie and Wu, 1998; Huang and Fehler, 2000) is similar to the methods

discussed above. The continued-fraction expression for the wide-angle screen correction is

1̂kz

1s
≈ ω

1+

vrvX2

2

1−
(v2

r +v2)X2

4

 . (9)

It differs from the FFD correction in equation (8) as it misses one term (vrv) in the sum at the

denominator. It is not as accurate as the FFD correction, as demonstrated by Figure 5. For relatively

small velocity perturbations (<15 %) the wide-angle screen correction is actually less accurate than

the pseudo-screen correction, as it is evident by comparing Figure 5 with Figure 2. As the velocity
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perturbation increases, the wide-angle screen correction becomes more accurate than the pseudo-

screen correction, but it is still less accurate than the FFD correction.

The accuracy of all the corrections presented above can be improved, as discussed by Cockshott

and Jakubowicz (1996), if the coefficients in the continued fraction approximation are optimized

in a way similar to the optimization of the one-way equation by Lee and Suh (1985). Ristow and

Rühl (1994) propose a local, and computationally intensive, method for optimizing the coefficients

of the FFD correction. Huang and Fehler (2000) propose a global, and thus less computationally

demanding, method for optimizing the coefficients of the wide-angle screen correction. If these

optimization schemes were applied in conjunction with the FFDPI method presented in this paper,

the accuracy of the method would further improve. However, in this paper I am not discussing the

optimization of the coefficients in any detail, and I am not employing it for the numerical examples.

STABLE FFD CORRECTION

An implicit finite-difference implementation using a Crank-Nicolson scheme of the FFD correction

as expressed in equation (8) is stable for smooth velocity variations. But numerical instability may

develop when there are sharp discontinuities in the velocity field. An example of this situation is

shown in Figures 6 and 7. The slowness function (Figure 6) has a sharp negative step, and a random

behavior within the low-slowness region. The impulse response computed by the original FFD cor-

rection is shown in Figure 7, and it clearly illustrates the problem. Notice that the image was clipped

at the 70th percentile before it was plotted, so that the “shadow” of the familiar circular impulse

response could be visible in the plot.

In constant velocity, the correction operator is unitary (all-pass filter) because its eigenvalues

have zero imaginary part. Numerical instability originates when variations in the velocities terms
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multiplying the second derivative [vrvX2 and
(
v2

r +v2
+vrv

)
X2] cause the imaginary part to become

different from zero. To assure that this does not happen, we first rewrite equation (8) as

1kz

1s
1s ≈ ω

 (vr −v)

vrv
+

[
2(vr −v)

v2
r +v2 +vrv

] (v2
r +v2

+vrv)X2

4

1−
(v2

r +v2+vrv)X2

4

 . (10)

Then we rewrite
(
v2

r +v2
+vrv

)
X2 as the product of a matrix with its adjoint, that is,

6
′

X26 = −
1

ω21x26
′

D′D6 = −
1

ω21x26
′

T6 = −
1

ω21x26
′



2 −1 0 . . . 0

−1 2 −1 . . . 0

0 −1 2 . . . 0

...
...

...
...

...

0 0 0 . . . 2


6

(11)

where

6 =
1

2
Diag



√
1v2 + 1vr

2 + 1v 1vr

...√
i −1v2 + i −1vr

2 + i −1v i −1vr

√
i v2 + i vr

2 + i v i vr

√
i +1v2 + i +1vr

2 + i +1v i +1vr

...√
nv2 + nvr

2 + nvnvr



, (12)

wherei vr andi v are respectively the reference velocity and medium velocity at thei grid horizontal

location.

The matrix6
′

X26 is now guaranteed to have real eigenvalues. Because bothI and6
′

X26 are

normal matrices that can be diagonalized by the same similarity transformation (Brown, 1979), the
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matrix
(
I +6

′

X26
)−1

6
′

X26 is also guaranteed to have real eigenvalues.

In matrix notation, equation (10) can be rewritten as

1kz

1s
1s ≈ ω

[
(vr −v)

vrv
+sign(v −vr)1

6
′

X26

I +6
′ X26

]
(13)

where

1 = 2Diag



|1vr−1v|

1v
2+1vr2+1v 1vr

...

|i −1vr−i −1v|

i −1v
2+i −1vr2+i −1v i −1vr

|i vr−i v|

i v
2+i vr2+i v i vr

|i +1vr−i +1v|

i +1v
2+i +1vr2+i +1v i +1vr

...

|nvr−nv|

nv2+nvr2+nv nvr



. (14)

To perform the next, and last, step of the bullet-proofing process, I pulled the sign of the velocity

perturbations outside the diagonal matrix1. To demonstrate that the multiplication by1 does not

introduce instability, I first recognize that multiplying the wavefield by the exponential of the second

term in equation (13), is equivalent to solving the differential equation

d

dz
P = i ω sign(v −vr)1

6
′

X26

I +6
′ X26

P. (15)

Notice that the equivalence is true only if sign(v −vr) is constant; that is, if the reference velocity

vr is always lower or always higher than the medium velocityv. Second, I perform the change of

variableP = 1
1
2 Q, and equation (15) becomes

d

dz
Q = 1

1
2

(
i ω sign(v −vr)

6
′

X26

I +6
′ X26

)
1

1
2 Q = 1

1
2 (i ωS)1

1
2 Q. (16)
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The norm‖Q‖1−1 is constant with depth because the eigenvalues ofS are real, and it obeys the

following differential equation

d

dz
‖Q‖

2
1−1 = Q∗

(
i ωS− i ωS∗

)
Q = 0. (17)

Equation (17) guarantees the stability of the new FFD correction, independently from the value of

sign(v −vr), as long the sign is constant. In theory,(vr −v) should be never equal to zero to avoid

singularities in the norm‖Q‖1−1. In practice, however, I never had to enforce this condition, though

it would be easy to do so.

The reference velocityvr and the medium velocityv can be interchanged at will in the previous

development without changing the stability conditions. Therefore, the stable FFD correction is not

only stable in presence of sharp discontinuities in the medium velocity, but also in presence of sharp

discontinuities in the reference velocity. This property is exploited in the next section, for the design

of an efficient and accurate interpolation scheme.

Equation (15) can be solved using a Crank-Nicolson scheme and the wavefield at depthz+1z

computed as

Pz+1z =

1+ i sign(v −vr)ω1z
2 1 6

′
X26

I +6
′ X26

1− i sign(v −vr)ω1z
2 1 6

′ X26

I +6
′ X26

Pz. (18)

Figure 8, shows the same impulse response as in Figure 7, but computed by the stable FFD

correction. In this case no numerical instability is encountered and the wavefield propagates without

problems through the region with random slowness perturbations.

The stable FFD correction could be also applied to downward continue 3-D wavefield within a

Crank-Nicolson solver, as summarized in equation (18). However, in 3-D, equation (18) would imply

the solution of a linear system with a banded matrix with much wider band than that in 2-D. The cost

of the exact 3-D solution would be thus considerably higher than the 2-D solution, because the cost
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of banded-matrix solvers is proportional to the width of the band. To reduce computational cost, a

splitting algorithm (Jakubowicz and Levin, 1983) can be employed. The stability of a splitting algo-

rithm derives directly from the analysis above, since splitting consists of the successive application

of the FFD correction along the two horizontal coordinate axes. In the next section I discuss how the

capability of using both positive and negative velocity corrections yields a significant improvement

in the accuracy of the splitting algorithm.

Boundary conditions

A necessary component of deriving a stable downward-continuation scheme is to define stable bound-

ary conditions. It is also desirable for the boundaries to be absorbing. Following Clayton and

Engquist (1980), and Rothman and Thorson (1982), this goal can be easily accomplished if the

values at the edges of the diagonal ofT in equation (11) are changed from 2 to(1+ pb), where

pb =
[
pr , i sign(v −vr) |pi |

]
; that is substitutingT with

Tb =



(1+ pb) −1 0 . . . 0

−1 2 −1 . . . 0

0 −1 2 . . . 0

...
...

...
...

...

0 0 0 . . . (1+ pb)


. (19)

The sign of the imaginary part ofpb determines whether the boundaries are absorbing or amplifying;

therefore, the sign of(v −vr) must be constant so that instability cannot develop at the boundaries.

This requirement is consistent with the stability analysis developed in equations (15–17). The actual

values ofpr and pi determine the propagation angle of the incident wavefield that is most strongly

attenuated. In practice, to assure both strong attenuation and weak reflection from the boundaries, I

use boundary strips a few samples wide, instead of a single boundary layer.
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THE FOURIER FINITE-DIFFERENCE PLUS INTERPOLATION (FFDPI) ALGORITHM

The stable FFD correction developed in the previous section has the desired characteristics for being

used as the main building block of an efficient and accurate wide-angle downward continuation algo-

rithm. To achieve accuracy, we can interpolate between wavefields that have been phase shifted with

several reference velocities, and corrected by the stable FFD method. In theory, arbitrary accuracy

can be achieved by an increase in the number of reference velocities. The structure of the algorithm

is similar to the PSPI method (Gazdag and Sguazzero, 1984) and the extended split-step method

(Kessinger, 1992), except that a wide-angle correction (FFD) is employed instead of a narrow-angle

one (vertical shift). This improvement reduces the errors over the whole range of propagation angles.

Two results reached in the previous section are important for the definition of a stable and accu-

rate interpolation scheme. First, the stability of the FFD correction is independent of the sign of the

velocity perturbation to be applied, as long as the sign is constant within the same correction step.

This result enables alinear interpolationbetween a wavefield corresponding to reference velocities

lower than the medium velocity, and a wavefield corresponding to reference velocities higher than the

medium velocity. Previously, because of the requirement for the reference velocity to be lower than

the medium velocity, only anearest-neighborhood interpolationwas possible when multiple veloci-

ties were used in conjunction with wide-angle corrections (Huang et al., 1999). Second, the reference

velocity can vary at will laterally, without compromising the stability of the method. Because of these

results, it is sufficient to apply the FFD correction only twice at each depth step, and thus compu-

tations can be saved. The first correction would be applied to a wavefield constructed from all the

reference wavefields computed with a reference velocity lower than the medium velocity. The second

one would be applied to a wavefield constructed from all the reference wavefields computed with a

reference velocity higher than the medium velocity.
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The algorithm outlined above can be described in more detail as the sequence of the following

steps.

1. Determine a set ofNvr reference velocitiesv j
r as a function of the velocity range within the

depth level. Gazdag and Sguazzero (1984) discuss the advantages of setting the reference ve-

locities to form a geometric progression. The ratio between two successive velocities depends

on the maximum propagation angle required to image all the reflectors of interest.

2. Downward continue the data and compute all the reference wavefieldsPv
j
r

z+1z as

Pv
j
r

z+1z = Pze
ik

v
j
r

z 1z with j = 1,. . . , j , . . . , Nvr . (20)

3. Define two reference velocity functionsv−
r andv+

r , that at every point are respectively equal to

the reference velocity that is just lower and just higher than the medium velocity; that is,

v−

r =

Nvr∑
j =1

δ−v j
r where δ−

=


1 if v

j
r ≤ v < v

j +1
r

0 elsewhere

(21)

v+

r =

Nvr∑
j =1

δ+v j
r where δ+

=


1 if v

j −1
r ≤ v < v

j
r

0 elsewhere

. (22)

(23)

(Figure 9 shows an example of how the two velocity functionsv−
r andv+

r are defined, when

there are given four reference velocities and a medium velocity functionv that is laterally

varying and includes a fast salt layer.)

4. Extract two wavefields (P−

z+1zandP+

z+1z), corresponding tov+
r andv−

r , and correct them by the

stable FFD method:

P−

z+1z = e
i 1kz

1s
(v

−
r −v)
v
−
r v

1z
Nvr∑
j =1

δ− Pv
j
r

z+1z (24)
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P+

z+1z = e
i 1kz

1s
(v

+
r −v)
v
+
r v

1z
Nvr∑
j =1

δ+ Pv
j
r

z+1z. (25)

5. Linearly interpolate the two corrected wavefield as

Pz+1z = W− P−

z+1z + W+ P+

z+1z. (26)

The interpolation weights can be chosen in order to zero the phase error for a given propagation

angleθ0 as follows,

W−
=



kv
z−k

v
+
r

z −
1kz
1s

(v
+
r −v)
v
+
r v

k
v
−
r

z +
1kz
1s

(v
−
r −v)
v
−
r v

−k
v
+
r

z −
1kz
1s

(v
+
r −v)
v
+
r v

if =

(
k

v+
r

z

)
= 0

1 elsewhere

W+
= 1− W−.

(27)

Notice thatW−
= 1 where the reference wavefield becomes evanescent for the higher reference

velocity (v+
r ); that is, when=

(
k

v+
r

z

)
6= 0.

The interpolation weights can be made frequency dependent, to decrease the effects of fre-

quency dispersion on the interpolated wavefield. The effective value for the horizontal wavenum-

ber k̂m is substituted for the exact wavenumberkm, when computing1kz/1s in equation (27).

For example, when the second derivatives are computed with the first order approximationTb

in equation (19),̂km is given as a function ofkm by the following expression,

k̂m =
2

1x
sin

km1x

2
. (28)

It is important to notice that the stability analysis developed in the previous section strictly applies

only to the simple FFD correction, not to its combination with an interpolation scheme like FFDPI. In
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theory, when FFDPI is used, instability can still develop as it does for PSPI (Etgen, 1994; Dellinger

and Etgen, 1996; Margrave and Ferguson, 1999). However, the possibility for the FFDPI algorithm

to become unstable is mostly theoretical and does not represent a real practical limitation.

FFDPI error analysis

The most important advantage of the FFDPI algorithm is a drastic reduction of the propagation errors

achieved when the wavefields that have been downward continued with multiple reference velocities

are linearly interpolated. The errors are very small for all propagation angles up to the angle cor-

responding to the steepest wave that is non-evanescent with the reference velocity higher than the

medium velocity (v+
r ).

In this section, I analyze the errors introduced by FDDPI and compare them with the errors

introduced by the split-step correction used in conjunction with a wavefield interpolation scheme

similar to the one described above. With a fixed number of reference velocities, the use of split step

instead of FFD would reduce the computational cost. To analyze the improvement in accuracy gained

by the more accurate, but more expensive FFD correction method, it is thus useful to compare the

phase errors of the two competing methods.

Figure 10 compares the relative phase errors measured as a function of the propagation angle, for

split step, FFD, FFDPI, and Split Step Plus Interpolation (SSPI). As in Figure 2, the medium velocity

v is equal to 2 km/s, and two reference velocities are assumed: one 10% lower than the medium

velocity (1.8 km/s), the other one 10% higher than the medium velocity (2.2 km/s). The interpolation

weights were computed by equation (27), withθ0 set at 64 degrees. The temporal frequency of

the wavefield was assumed to be zero. The FFDPI error is contained within the± 1% band and is

considerably lower than both the simple FFD and the SSPI errors. As expected, both the FFDPI and

17



the SSPI curves show a zero crossing at 64 degrees.

Because of numerical dispersion, the errors for the FFD and FFDPI methods increase as the

temporal frequency of the wavefield increases. Figure 11 compares the relative phase errors mea-

sured when the temporal frequency is 100 Hz. The frequency of 100 Hz corresponds to the Nyquist

wavenumber for the waves propagating at 90 degrees with velocity of 2 km/s and spatial sampling of

10 m horizontally and 5 m vertically. Therefore, the error curves shown in Figure 11 correspond to the

worst possible case for both the FFD and the FFDPI methods. There are two curves for the FFDPI

method: one corresponding to frequency-independent interpolation weights, the other correspond-

ing to frequency-dependent interpolation weights. It is apparent that by using frequency-dependent

weights we can greatly reduce the effects of numerical dispersion and maintain the accuracy advan-

tages of FFDPI over SSPI. In contrast, numerical dispersion severely degrades the accuracy of the

simple FFD correction at high frequency, as is evident in the impulse responses shown in Figure 4.

Figure 12 shows the impulse responses corresponding to the phase curves shown in Figures 10

and 11. They should be compared with the impulse responses shown in Figures 3 and 4. The im-

pulse response shown in Figure 12a was computed with frequency-independent interpolation weights.

While it is much closer to the exact impulse response (Figure 3) than either of the impulse responses

obtained with a simple FFD correction (Figure 4), it shows some frequency dispersion. The high

frequencies are imaged inside the semicircle. The frequency dispersion is greatly reduced when the

frequency-dependent interpolation weights are used, as demonstrated in Figure 12b, and predicted by

the curves in Figure 11.
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Azimuthal anisotropy

A recurring problem that hampers the application of implicit finite-difference methods to 3-D wave

extrapolation is the azimuthal anisotropy associated with splitting (Jakubowicz and Levin, 1983). Of

course, this problem affects also the FFD correction applied by splitting (Cockshott and Jakubow-

icz, 1996). Ristow and Rühl showed that multiway splitting can be successfully applied to reduce

the azimuthal anisotropy for both 3-D implicit finite-difference methods (1997a) and FFD methods

(1997b). Multiway splitting could be easily applied in conjunction with FFDPI to further reduce

azimuthal anisotropy. Another potentially attractive way of solving this problem is to use helical

boundary conditions, as it has been discussed by Rickett et al. (1998). However, in presence of sharp

discontinuities in the velocity function the helical solution may become unstable (Rickett, 2001).

Figure 13 compares relative phase errors as a function of the azimuth measured for a propagation

angle of 61 degrees. The frequency-dependent interpolation weights were computed to zero the

phase error along an azimuthal direction oriented at 22.5 degrees with respect to the inline/crossline

axes, and at a dip angle of 61 degrees (θ0 = 61◦). The azimuthal direction of 22.5 was chosen

because it is the midpoint between the two extrema of the error curves. As in the previous figures,

the medium velocityv is equal to 2 km/s, and two reference velocities are assumed: one 10% lower

than the medium velocity (1.8 km/s), the other one 10% higher than the medium velocity (2.2 km/s).

The plots show the phase errors at two frequencies (0 Hz and 100 Hz) for the FFDPI algorithm,

the FFD correction starting from the lower reference velocity, and the FFD correction starting from

the higher reference velocity. Notice that for both the simple FFD correction cases the azimuthal

anisotropy decreases as the frequency increases, though the average phase error increases as well.

But the crucial, and useful, feature of the phase errors function for the FFD corrections, is that

the azimuthal variations are in the opposite directions when the differences between the reference
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velocity and medium velocity have opposite signs. Consequently, the phase error of the interpolation

method is contained within the± 1% band and it is much lower than the error of either of the simple

FFD corrections. At higher frequencies (100 Hz) the impulse response of FFDPI is almost perfectly

isotropic.

The theoretical analysis is confirmed by the characteristics of the impulse responses. Figure 14

shows the depth slice of three impulse responses superimposed onto each other. The outermost cir-

cular event corresponds to the FFD correction starting from a reference velocity of 2.2 km/s. The

middle event corresponds to the exact impulse response with the medium velocity of 2 km/s. The

innermost event corresponds to the FFD corrections starting from a reference velocity of 1.8 km/s.

The depth of the slices corresponds to a propagation angle of 64.2 degrees, that is close to the max-

imum propagation angle (65.4 degrees) for the high reference velocity (2.2 km/s). As predicted by

the curves shown in Figure 13, the azimuthal anisotropy is frequency dependent and the frequency

dispersion is smaller for azimuths oriented at 45 degrees with respect to the coordinate axes.

The comparison of Figure 15 with Figure 14 demonstrates the reduction in migration anisotropy

achieved by employing FFDPI in conjunction with splitting. Figure 15 is the merge of two impulse

responses along the inline direction, cut at the same depth as the slices shown in Figure 14. For

negative values of the in-line coordinate, the plot shows the depth slice for the exact impulse response.

For positive values of the in-line coordinate, the plot shows the depth slice for the impulse response

obtained by FFDPI. It is evident that the result of the interpolation scheme is much less affected

by azimuthal anisotropy and frequency dispersion than the results of the two simple FFD correction

showed in Figure 14.
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ZERO-OFFSET MIGRATION OF THE SEG-EAGE SALT DATA SET

To test both the stability and the accuracy of the FFDPI algorithm, I migrated zero-offset data from the

SEG/EAGE salt data set (Aminzadeh et al., 1996). The zero-offset data were obtained by stacking the

near-offsets (0–500m) of the C3 Narrow Azimuth data set (SEG-EAGE, 1997) after normal moveout.

The data set is a good test for the stability of the FFDPI algorithm because the velocity model has

sharp discontinuities caused by the salt body. Furthermore, because of a low-velocity region intended

to model subsalt overpressure, several depth slices have a wide range of velocities. Figure 16 shows

one of these depth slices. In the plot the salt velocity is clipped, thus the scale-bar on the side

represents the range of velocities within the sediments. There is almost a factor of two between the

slow velocity sediments in the ‘overpressure zone’ in the middle, and the faster sediments at the

edges.

To image the reflectors above the salt, the migration algorithm does not need to handle accurately

lateral velocity variations, and the reflectors below the salt cannot be imaged by simple zero-offset

migration. Therefore, for my test I focus the analysis on a deep fault located between depths of 2 km

and 3 km and away from the salt body, that it is one of the few reflectors that is well suited to test

the accuracy of a zero-offset migration. Figure 17 shows an in-line section of the migrated cube that

cuts across the fault of interest. Notice that the staircase appearance of the imaged reflectors is due

to the coarse spatial sampling of the reflectivity function used for modeling the data. Figure 17 was

obtained with the FFDPI algorithm. Four reference velocities were used at each depth step. Figure 18

compares the zooms around the fault of interest. The light (light gray) lines superimposed onto both

plots represent the correct fault position, as picked from the velocity model. Figure 18a shows the

results obtained when the interpolation algorithm described above is used, but in conjunction with

the split-step correction instead of the stable FFD correction. The fault is undermigrated and thus it is
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imaged too shallow, and the sediment terminations are not well focused. The fault is better positioned

and the image is better focused when the FFDPI algorithm is used to migrate the data (Figure 18b).

CONCLUSIONS

The combination of Fourier methods’ accuracy for wide-angle propagation with implicit finite dif-

ferences’ flexibility for modeling lateral velocity variations yields accurate and efficient downward-

propagation methods. The FFD correction is the most attractive among several methods that employ

implicit finite-difference to correct constant-velocity phase shift for lateral velocity variations. How-

ever, the correction operator originally presented by Ristow and Rühl (1994) can be unstable in the

presence of sharp discontinuities in the velocity function. In this paper I present and successfully test

an unconditionally stable version of the FFD correction. A simple rearrangement of coefficients is all

that is necessary to make the FFD correction stable. Therefore, the stable version has computational

complexity similar to that of the potentially unstable one.

Using the stable FFD correction as a building block, I derive an accurate and stable wide-angle

migration (Fourier-Finite Difference Plus Interpolation). The FFDPI algorithm is based on the inter-

polation of two wavefields corrected with the FFD method, with opposite signs of the velocity per-

turbations. This interpolation step compensates for both the azimuthal anisotropy and the frequency-

dispersion of the simple FFD corrections. Therefore the FFDPI algorithm achieves high accuracy, as

demonstrated by the migration example of the SEG-EAGE salt data set.

The accuracy and the cost of FFDPI algorithm can be easily controlled by setting the number

of reference velocities. Small phase errors can be achieved across the whole range of propagation

angles, from zero to the limit determined by the evanescent limit for the reference velocity above the

true medium velocity. The method is thus particularly attractive when high accuracy is needed for
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the downward continuation operators, as in prestack depth migration below salt bodies.
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LIST OF FIGURES

1 Phase curves that compare the accuracy of the pseudo-screen correction with the simple

split-step correction.

2 Phase curves that compare the accuracy of Fourier Finite-Difference (FFD) correction with

the pseudo-screen correction.

3 Impulse response for the medium velocity equal to 2 km/s.

4 Impulse responses with FFD correction and reference velocity equal to: a) 1.8 km/s, b) 2.2

km/s.

5 Phase curves that compare the accuracy of Fourier Finite-Difference (FFD) correction with

the wide-angle screen correction.

6 Depth slice through the slowness function that causes the original FFD correction to be-

come unstable

7 Impulse response computed with the original FFD correction and assuming the slowness

function shown in Figure 6. The image was clipped at the 70th percentile before it was plotted, so

that the “shadow” of the familiar circular impulse response could be visible in the plot.

8 Impulse response computed with the stable FFD correction and assuming the slowness func-

tion shown in Figure 6.

9 Example of how the two velocity functionsv−
r andv+

r are defined, when there are given

four reference velocities and a medium velocity functionv that is laterally varying and includes a fast

(4.5 km/s) salt layer.

10 Relative phase-error curves assumingv=2 km/s and starting from two reference velocities

(v−
r =1.8 km/s andv+

r =2.2 km/s), for split step, FFD, FFDPI and Split Step Plus Interpolation (SSPI).

The temporal frequency of the wavefield was assumed to be zero. For both FFDPI and SSPI,θ0 was
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set at 64 degrees. The vertical solid line indicates the maximum propagation angle (65.4 degrees)

whenvr=2.2 km/s andv=2 km/s. The horizontal solid lines indicate the 1% phase error level.

11 Relative phase-error curves assumingv=2 km/s and starting from two reference veloci-

ties (v−
r =1.8 km/s andv+

r =2.2 km/s), for split step, FFD, FFDPI with frequency-dependent weights

[FFDPI with W (f)], FFDPI with frequency-independent weights (FFDPI with Wc ), and Split Step

Plus Interpolation (SSPI). In contrast with Figure 10, the temporal frequency of the wavefield was

assumed to be 100 Hz. For both FFDPI and SSPI,θ0 was set at 64 degrees. The vertical solid line

indicates the maximum propagation angle (65.4 degrees) whenvr=2.2 km/s andv=2 km/s. The hori-

zontal solid lines indicate the± 1% phase-error level.

12 Impulse responses after interpolation with: a) frequency-independent weights, b) frequency-

dependent weights. The maximum frequency in the data is 63 Hz and the spatial sampling is 10 m

horizontally and 5 m vertically. Panel a) corresponds to the phase-error curves shown in Figure 10

(FFDPI), and Figure 11 (FFDPI with Wc ). Panel b) corresponds to the phase-error curves shown in

Figure 10 (FFDPI), and Figure 11 [FFDPI with W (f)].

13 Relative phase-error curves for FFD and FFDPI, as a function of the azimuth. The medium

velocity was assumed to bev=2 km/s and the two reference velocities werev−
r =1.8 km/s andv+

r =2.2

km/s. Two temporal frequencies of the wavefield were assumed: 0 Hz and 100 Hz. The horizontal

solid lines indicate the± 1% phase-error level.

14 Depth slices through impulse responses: 1) innermost event corresponds to the FFD correc-

tions starting from a reference velocity of 1.8 km/s, 2) middle event corresponds to the exact impulse

response with the medium velocity of 2 km/s, 3) outermost event corresponds to the FFD corrections

starting from a reference velocity of 2.2 km/s.

15 Depth slices through impulse responses: 1) left half corresponds to the exact impulse re-

sponse with the medium velocity of 2 km/s, 2) right half corresponds to the FFDPI results.
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16 Depth slice of the velocity model at depth z=2 km. The salt velocity was clipped, thus the

scale bar on the side shows the range of velocities in the sediments.

17 In-line section of the migrated cube obtained by use of FFDPI.

18 Window of the same in-line section shown in Figure 17, and obtained by use of: a) split step

b) FFDPI. The light (light gray) lines superimposed onto the plots represent the correct fault position,

as picked from the velocity model. Notice that in panel a) the fault is misplaced; on the contrary, the

fault is correctly placed in in panel b).
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