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ABSTRACT

We analyze the kinematic properties of offset-domain Common Image Gathers (CIGs) and Angle-

Domain CIGs (ADCIGs) computed by wavefield-continuation migration. Our results are valid re-

gardless of whether the CIGs were obtained by using the correct migration velocity. They thus can be

used as a theoretical basis for developing Migration Velocity Analysis (MVA) methods that exploit

the velocity information contained in ADCIGs.

We demonstrate that in an ADCIG cube the image point lies on the normal to the apparent reflec-

tor dip that passes through the point where the source ray intersects the receiver ray. The image-point

position on the normal depends on the velocity error; when the velocity is correct, the image point

coincides with the point where the source ray intersects the receiver ray. Starting from this geometric

result, we derive an analytical expression for the expected movements of the image points in ADCIGs

as functions of the traveltime perturbation caused by velocity errors. By applying this analytical re-

sult and assuming stationary raypaths (i.e. small velocity errors), we then derive two expressions for

the Residual Moveout (RMO) function in ADCIGs. We verify our theoretical results and test the
1Rice University
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accuracy of the proposed RMO functions by analyzing the migration results of a synthetic data set

with a wide range of reflector dips.

Our kinematic analysis leads also to the development of a new method for computing ADCIGs

when significant geological dips cause strong artifacts in the ADCIGs computed by conventional

methods. The proposed method is based on the computation of offset-domain CIGs along the vertical-

offset axis and on the “optimal” combination of these new CIGs with conventional CIGs. We demon-

strate the need for and the advantages of the proposed method on a real data set acquired in the North

Sea.

INTRODUCTION

With wavefield-continuation migration methods being used routinely for imaging projects in com-

plex areas, the ability to perform Migration Velocity Analysis (MVA) starting from the results of

wavefield-continuation migration is becoming essential to advanced seismic imaging. As for Kirch-

hoff imaging, MVA for wavefield-continuation imaging is mostly based on the information provided

by the analysis of Common Image Gather (CIGs). For wavefield-continuation methods, most of the

current MVA methods start from Angle-Domain CIGs (ADCIGs) (Biondi and Sava, 1999; Clapp and

Biondi, 2000; Mosher et al., 2001; Liu et al., 2001), though the use of more conventional surface-

offset-domain CIGs is also being evaluated (Stork et al., 2002).

Both kinematic and amplitude properties (de Bruin et al., 1990; Wapenaar et al., 1999; Sava et

al., 2001; de Hoop et al., 2002) have been analyzed in the literature for ADCIGs obtained when

the migration velocity is accurate. On the contrary, the properties of the ADCIGs obtained when

the migration velocity is inaccurate have been only qualitatively discussed in the literature. This

lack of quantitative understanding may lead to errors when performing MVA from ADCIGs. In
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this paper, we analyze the kinematic properties of ADCIGs under general conditions (accurate or

inaccurate velocity). If the migration velocity is inaccurate, our analysis requires only a smooth

migration velocity function in the neighborhood of the imaging point. We discuss this condition

more extensively in the first section. The application of the insights provided by our analysis may

substantially improve the results of the following three procedures: a) measurement of velocity errors

from ADCIGs by residual moveout (RMO) analysis, b) inversion of RMO measurements into velocity

updates, and c) computation of ADCIGs in the presence of complex geologic structure.

Our analysis demonstrates that in an image cube transformed to angle domain (in the following

I will refer to this image cube as ADCIG cube) the image point lies on the normal to the apparent

reflector dip passing through the point where the source ray intersects the receiver ray. We exploit this

result to define an analytical expression for the expected movements of the image points in ADCIGs

as a function of the traveltime perturbation caused by velocity errors. This leads us to the definition of

two alternative residual moveout functions that can be applied when measuring velocity errors from

migrated images. We test the accuracy of these alternatives and discuss their relative advantages and

disadvantages. Furthermore, the availability of a quantitative expression for the expected movements

of the image points is crucial when inverting those movements into velocity corrections by either

simple vertical updating or sophisticated tomographic methods. Therefore, our results ought to be

incorporated in velocity updating methods.

Our theoretical result also implies that ADCIGs are immune, at least to first order in velocity

perturbations, from the distortions caused by image-point dispersal. Image-point dispersal occurs

when migration velocity errors cause events from the same segment of a dipping reflector to be

imaged at different locations (Etgen, 1990). This inconsistency creates substantial problems when

using dipping reflections for velocity updating; its absence makes ADCIGs even more attractive for

MVA.
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The computation of ADCIGs is based on a decomposition (usually performed by slant-stacks) of

the wavefield either before imaging (de Bruin et al., 1990; Mosher et al., 1997; Prucha et al., 1999; Xie

and Wu, 2002), or after imaging (Sava and Fomel, 2003; Rickett and Sava, 2002; Biondi and Shan,

2002). In either case, the slant stack transformation is usually applied along the horizontal subsurface-

offset axis. However, when the geologic dips are steep, this “conventional” way of computing CIGs

does not produce useful gathers, even if it is kinematically valid for geologic dips milder than 90

degrees. As the geologic dips increase, the horizontal-offset CIGs (HOCIGs) degenerate, and their

focusing around zero offset blurs. This limitation of HOCIGs can be sidestepped by computing

offset-domain CIGs along the vertical subsurface-offset axis (VOCIGs) (Biondi and Shan, 2002).

Although neither set of offset-domain gathers (HOCIG or VOCIG) provides useful information for

the whole range of geologic dips, an appropriate combination of the two sets does. Our analysis of

the kinematic properties of ADCIGs suggests a simple and effective method for combining a HOCIG

cube with a VOCIG cube to create an ADCIG cube that is immune to artifacts in the presence of

arbitrary geologic dips.

We present and demonstrate the main results of this paper using a ray-theoretical approach,

though we apply the theory to analyze ADCIGs obtained by wavefield-continuation method. Our

approach is apparently inconsistent, but it is motivated by the fact that the ray-based analysis is

more intuitive than the equivalent wave-based analysis. The two approaches are obviously connected

through the plane-wave decomposition performed by slant-stacking. We equate the propagation di-

rection of plane waves with the propagation direction of specular rays, and thus we implicitly make

a stationary-phase approximation that assumes that the seismic events are not dispersive; that is, that

wavefronts are locally planar and coherent for all frequencies. This assumption is not strictly neces-

sary because our analysis is valid for each frequency component, but nonetheless we believe that the

advantages in simplicity are worthwhile despite the apparent loss of generality.
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Our ray-based analysis of ADCIGs is also founded on the concept of subsurface offset. The

physical interpretation of the subsurface offset is immediate when source-receiver migration is used.

In this case the subsurface offset coincides with the data offset after datuming by survey sinking.

For shot-profile migration, the equivalence between data offsets at depth and subsurface offsets is

demonstrated by Wapenaar and Berkhout (1987) and Biondi (2003). de Bruin (1992) presents an

alternative wave-theoretical analysis of ADCIGs obtained by shot-profile migration using wavefield-

continuation when the migration velocity is correct.

ADCIGs have been introduced also for Kirchhoff migration (Xu et al., 2001; Brandsberg-Dahl et

al., 2003), and they can be used for MVA with Kirchhoff methods as well (Brandsberg-Dahl et al.,

1999). We believe that the analysis presented in this paper might be extended to ADCIGs computed

by Kirchhoff migration. However, in complex media the two types of ADCIG have subtle kinematic

differences, as clearly demonstrated by Stolk and Symes (2003). Therefore, the application of our

results to Kirchhoff ADCIGs may require further analysis that is beyond the scope of this paper.

We start our paper by briefly reviewing the methodology for computing offset-domain and angle-

domain CIGs by wavefield-continuation migration. The second section analyzes the kinematic prop-

erties of CIGs and ADCIGs, and contains the main theoretical development of the paper. The third

section exploits the theoretical results to define a robust algorithm to compute ADCIGs in the pres-

ence of geological structure and illustrates its advantages with a real-data example. The fourth section

verifies the theoretical analysis by using it to predict reflector movements in the migrated images of

a synthetic data set. Finally, the fifth section derives two expressions for the RMO function to be

applied for measuring velocity errors from migrated images.
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COMPUTATION OF COMMON IMAGE GATHERS BY WAVEFIELD CONTINUATION

In this section we briefly revisit the method for computing Common Image Gathers (CIG) by wavefield-

continuation migration. The following development assumes that both the source wavefield and the

receiver wavefield have been numerically propagated into the subsurface. The analytical expressions

represent wavefields in the time domain, and thus they appear to implicitly assume that the wavefields

have been propagated in the time domain. However, all the considerations and results that follow are

independent of the specific numerical method that was used for propagating the wavefields. They are

obviously valid for reverse-time migration when the wavefields are propagated in the time domain

(Whitmore, 1983; Baysal et al., 1983; Etgen, 1986; Biondi and Shan, 2002). They are also valid

when the wavefields are propagated by downward continuation in the frequency domain, if there are

no overturned events. Furthermore, our results are valid when source-receiver migration is used in-

stead of shot-profile migration; the physical interpretation of the concepts of subsurface offset and

of the imaging point in the subsurface-offset domain is actually more immediate for source-receiver

migration than for shot-profile migration.

The conventional imaging condition for shot-profile migration is based on the crosscorrelation in

time of the source wavefield (S) with the receiver wavefield (R). The equivalent of the stacked image

is the average over sources (s) of the zero lag of this crosscorrelation; that is:

I (z, x) =
∑

s

∑

t

Ss (t , z, x) Rs (t , z, x) , (1)

where z and x are respectively depth and the horizontal axes, and t is time. The result of this imaging

condition is equivalent to stacking over offsets with Kirchhoff migration.

The imaging condition expressed in equation (1) has the substantial disadvantage of not providing

prestack information that can be used for either velocity updates or amplitude analysis. Equation (1)
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can be generalized (Rickett and Sava, 2002; Biondi and Shan, 2002) by crosscorrelating the wave-

fields shifted horizontally with respect to each other. The prestack image becomes a function of the

horizontal relative shift, which has the physical meaning of a subsurface half offset (xh). It can be

computed as:

I (z, x , xh) =
∑

s

∑

t

Ss (t , z, x − xh) Rs (t , z, x + xh) . (2)

A section of the image cube I (z, x , xh) taken at constant horizontal location x is a Horizontal

Offset Common Image Gather, or HOCIG. The whole image cube can be seen as a collection of

HOCIGs. Sava and Fomel (2003) presented a simple method for transforming HOCIGs into ADCIGs

by a slant stack transformation (Schultz and Claerbout, 1978) applied independently to each HOCIG:

Iγx (z, x ,γ ) = SlantStack[I (z, x , xh)] ; (3)

where γ is the aperture angle of the reflection, as shown in Figure 1.

This transformation from HOCIG to ADCIG is based on the following relationship between the

aperture angle and the slope, ∂z/∂xh , measured in image space:

−
∂z
∂xh

∣∣∣∣
t ,x

= tanγ = −
kxh

kz
; (4)

where kxh and kz are respectively the half-offset wavenumber and the vertical wavenumber. The

relationship between tanγ and the wavenumbers suggests that the transformation to ADCIGs can be

accomplished in the Fourier domain by a simple radial-trace transform (Sava and Fomel, 2003).

Equation (4) relates slopes in the wavenumber domain to ray-propagation directions in the time

domain; it is based on an implicit stationary-phase assumption, as we discussed in the previous

section. In other words, we identify the direction of the phase-velocity vector of a plane wave with

the direction of propagation of the ray normal to the plane wave. This identification of plane waves
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with rays is necessary only locally around the imaging point, as it is graphically represented by the

box around the imaging point in Figure 1.

Sava and Fomel (2003) demonstrated the validity of equation (4) based only on Snell’s law and

on the geometric relationships between the propagation directions of the source ray (determined by

βs in Figure 1) and receiver ray (determined by βr in Figure 1). Its validity is thus independent of

the focusing of the reflected energy at zero offset; that is, it is valid regardless of whether the image

point coincides with the intersection of the two rays (marked as Ī in Figure 1). In other words, it

is independent of whether the correct migration velocity is used. The only assumption about the

migration velocity is that the velocity at the imaging depth is the same along the source ray and the

receiver ray. This condition is obviously fulfilled when the reflected energy focuses at zero offset, but

it is, at least approximately, fulfilled in most practical situations of interest. In most practical cases we

can assume that the migration velocity function is smooth in a neighborhood of the imaging point.

The extent of this neighborhood depends on the velocity error because it depends on the distance

between the end point of the source ray and the end point of the receiver ray (see Figure 2). The only

exception of practical importance is when the reflection is caused by a high-contrast interface, such

as a salt-sediment interface. In these cases, our results must be applied with particular care. When

the migration velocity is correct, α and γ are respectively the true reflector dip and the true aperture

angle; otherwise they are the apparent reflector dip and the apparent aperture angle. In Figure 1, the

box around the imaging point signifies the local nature of the geometric relationships relevant to our

discussion; it emphasizes that these relationships depend only on the local velocity function.

When the velocity is correct, the image point obviously coincides with the crossing point of

the two rays Ī. However, the position of the image point when the velocity is not correct has been

left undefined by previous analyses (Prucha et al., 1999; Sava and Fomel, 2003). In this paper, we

demonstrate the important result that in an ADCIG, when the migration velocity is incorrect, the
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image point lies along the direction normal to the apparent geological dip. We identify this normal

direction with the unit vector n that we define as oriented in the direction of decreasing traveltimes

for the rays (see Figure 1). Stork (1992) and Meng and Bleistein (2001) postulate a similar behavior

for the CIGs obtained by common-offset Kirchhoff migration.

Notice that the geometric arguments presented in this paper are based on the assumption that the

source and receiver rays cross even when the data were migrated with the wrong velocity; below the

imaging point in case of too low migration velocity and above the imaging point in the opposite case.

This assumption is valid in 2-D except in degenerate cases of marginal practical interest (e.g. diverg-

ing rays). In 3-D, this assumption is more easily violated because two rays are not always coplanar. In

contrast with the 2-D case, in 3-D the plane-wave interpretation of ADCIGs would actually simplify

the analysis with respect to the ray interpretation because plane waves always intersect even when

the migration velocity is wrong. We consider the generalization to 3-D of our 2-D results beyond the

scope of this paper; though this generalization is possible once 3-D ADCIGs are defined (de Bruin,

1992; Biondi et al., 2003).

As will be discussed in the following and illustrated by the real-data example in Figure 4a, the

HOCIGs, and consequently the ADCIGs computed from the HOCIGs (Figure 5a), have problems

when the reflectors are steeply dipping. At the limit, the HOCIGs become useless when imaging

nearly vertical reflectors using either overturned events or prismatic reflections. To create useful

ADCIGs in these situations Biondi and Shan (2002) introduced a new kind of CIG. This new kind of

CIG is computed by introducing a vertical half offset (zh) into equation (1) to obtain:

I (z, x , zh) =
∑

s

∑

t

Ss (t , z − zh , x) Rs (t , z + zh , x) . (5)

A section of the image cube computed by equation (5) taken at constant depth z is a Vertical Offset

Common Image Gather, or VOCIG.
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As for the HOCIGs, the VOCIGs can be transformed into an ADCIG by applying a slant stack

transformation to each individual VOCIG; that is:

Iγz (z, x ,γ ) = SlantStack[I (z, x , zh)] . (6)

This transformation is based on the following relationship between the aperture angle and the slope

∂x/∂zh measured in image space:

∂x
∂zh

∣∣∣∣
t ,z

= tanγ =
kzh

kx
. (7)

Equation (7) is analogous to equation (4), and its validity can be trivially demonstrated from equa-

tion (4) by a simple axes rotation. However, notice the sign differences between equation (7) and

equation (4) caused by the conventions defined in Figure 1.

Notice that our notation distinguishes the result of the two transformations to ADCIG
(
Iγx and Iγz

)
,

because they are different objects even though they are images defined in the same domain (z, x ,γ ).

One of the main results of this paper is the definition of the relationship between Iγx and Iγz , and the

derivation of a robust algorithm to “optimally” merge the two sets of ADCIGs. To achieve this goal

we will first analyze the kinematic properties of HOCIGs and VOCIGs.

KINEMATIC PROPERTIES OF COMMON IMAGE GATHERS

To analyze the kinematic properties of HOCIGs and VOCIGs, it is useful to observe that they are just

particular cases of offset-domain gathers. In general, the offset can be oriented along any arbitrary di-

rection. In particular, the offset direction aligned with the apparent geological dip of the imaged event

has unique properties. We will refer to this offset as the geological-dip offset, and the corresponding

CIGs as Geological Offset CIGs, or GOCIGs.

Figure 2 illustrates the geometry of the different kinds of offset-domain CIGs for a single event.
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In this sketch, the migration velocity is assumed to be lower than the true velocity, and thus the

reflections are imaged too shallow and above the point where the actual source ray crosses the actual

receiver ray
(
Ī
)
. When HOCIGs are computed, the end point of the source ray (Sxh) and the end

point of the receiver ray (Rxh) are at the same depth. By definition, the imaging point Ixh is midway

between Sxh and Rxh , and the imaging half offset is xh =
(
Rxh − Ixh

)
· x. Similarly, when VOCIGs

are computed, the end point of the source ray (Szh) and the end point of the receiver ray (Rzh) are at

the same horizontal location. The imaging point Izh is midway between Szh and Rzh , and the imaging

half offset is zh =
(
Rzh − Izh

)
· z. When the offset direction is oriented along the apparent geological

dip α (what we called the geological-dip offset direction), the end point of the source ray is S0 and

the end point of the receiver ray is R0. The imaging point I0 is midway between S0 and R0, and the

imaging half offset is h0 = R0 − I0. Notice that we define the geological-dip half offset h0 as a vector

because it can be oriented arbitrarily with respect to the coordinate axes.

Figure 2 shows that both Ixh and Izh lie on the line passing through S0,I0 and R0. This is an

important property of the offset-domain CIGs and is based on a crucial constraint imposed on our

geometric construction; that is, the traveltime along the source ray summed with the traveltime along

the receiver ray is the same for all the offset directions, and is equal to the recording time of the event.

The independence of the total traveltimes from the offset directions is a direct consequence of taking

the zero lag of the crosscorrelation in the imaging conditions of equation (2) and (5). This constraint,

together with the assumption of locally constant velocity that we discussed above, directly leads to

the following equalities:

∣∣Sxh −S0
∣∣ =

∣∣Rxh −R0
∣∣ , and

∣∣Szh −S0
∣∣ =

∣∣Rzh −R0
∣∣ , (8)

which in turn are at the basis of the collinearity of I0, Ixh and Izh .

The offsets along the different directions are linked by the following simple relationship, which
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can be readily derived by trigonometry applied to Figure 2:

xh =
h̃0

cosα
, (9)

zh =
h̃0

sinα
, (10)

where h̃0 = |h0|sign(sinδ), with δ being the angle formed by h0 with the normal n (see Figure 2).

Notice that the definition of h̃0 is such that its sign depends on whether I0 is before or beyond Ī.

Although Ixh and Izh are both collinear with I0, they are shifted with respect to each other and with

respect to I0. The shifts of the imaging points Ixh and Izh with respect to I0 can be easily expressed

in terms of the offset h0 and the angles α and γ as follows:

1Ixh =
(
Ixh − I0

)
= h0 tanγ tanα, (11)

1Izh =
(
Izh − I0

)
= −h0

tanγ

tanα
. (12)

The two imaging points Ixh and Izh are always on the opposite side of I0; their distance prevents us

from constructively averaging HOCIGs with VOCIGs to create a single set of offset-domain CIGs.

Notice the dependence of 1Ixh and 1Izh on the aperture angle γ and the geological dip α. The

dependence on γ causes events with different aperture angles to be imaged at different locations, even

if they originated at the same reflecting point in the subsurface. This phenomenon is related to the

well known reflector-point dispersal in common midpoint gathers. In this context, this dispersal is a

consequence of using a wrong imaging velocity, and we will refer to it as image-point dispersal. We

will now discuss how the transformation to ADCIGs overcomes the problems related to the image-

point shift and thus removes, at least to first order, the image-point dispersal.
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Kinematic properties of ADCIGs

The transformation to the angle domain, as defined by equations (3) and (4) for HOCIGs, and equa-

tions (6) and (7) for VOCIGs, acts on each offset-domain CIG independently. Therefore, when the

reflected energy does not focus at zero offset, the transformation to the angle domain shifts the image

point along the direction orthogonal to the offset. to reach the image point in the angle domain Iγ .

The horizontal-offset image point (Ixh) shifts vertically, and the vertical-offset image point (Izh) shifts

horizontally. We will demonstrate the two following important properties of this normal shift:

I) The normal shift corrects for the effects of the offset direction on the location of the image

point; that is, the transformation to the angle domain shifts the image points from different

locations in the offset domain (Ixh , Izh and I0) to the same location in the angle domain (Iγ ).

II) The image location in the angle domain (Iγ ) lies on the normal to the apparent geological dip

passing through the crossing point of the source and receiver rays (Ī). Iγ is located at the cross-

ing point of the lines passing through S0 and R0 and orthogonal to the source ray and receiver

ray, respectively. The shift along the normal to the reflector, caused by the transformation to

angle domain, is thus equal to:

1nγ =
(
Iγ − I0

)
= h̃0tanγ n = tan2 γ 1nh0 , (13)

where 1nh0 =
(
h̃0/ tanγ

)
n is the normal shift in the geological-dip domain. The total normal

shift caused by incomplete focusing at zero offset is thus equal to:

1ntot =
(
Iγ − Ī

)
= 1nh0 +1nγ = 1nh0

(
1+ tan2 γ

)
=

1nh0

cos2 γ
. (14)

Figure 3 illustrates Properties I and II. These properties have several important consequences; the

three results most relevant to migration velocity analysis are:
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1. ADCIGs obtained from HOCIGs and VOCIGs can be constructively averaged, in contrast

to the original HOCIGs and VOCIGs. We will exploit this property to introduce a robust

algorithm for creating a single set of ADCIGs that is insensitive to geological dips, and thus it

is ready to be analyzed for velocity information.

2. The reflector-point dispersal that negatively affects offset-domain CIGs is corrected in the AD-

CIGs, at least to first order. If we assume the raypaths to be stationary (i.e. small velocity

error), for a given reflecting segment the image points for all aperture angles γ share the same

apparent dip, and thus they are all aligned along the normal to the apparent reflector dip.

3. From equation (14), invoking Fermat’s principle and applying simple trigonometry, we can

also easily derive a relationship between the total normal shift 1ntot and the total traveltime

perturbation caused by velocity errors as follows (Etgen, 1990; Stork, 1992):

1ntot =
1t

2S cosγ
n, (15)

where S is the background slowness around the image point and 1t is defined as the difference

between the perturbed traveltime and the background traveltime. We will exploit this rela-

tionship to introduce a simple and accurate expression for measuring residual moveouts from

ADCIGs.

Demonstration of kinematic properties of ADCIGs

Properties I and II can be demonstrated in several ways. In this paper, we will follow an indirect path

that might seem circuitous but will allow us to gather further insights on the properties of ADCIGs.

We first demonstrate Property I by showing that the radial-trace transformations represented by

equation (4), and analogously equation (7), are equivalent to a chain of two transformations. The first
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one is the transformation of the HOCIGs (or VOCIGs) to GOCIGs by a dip-dependent stretching of

the offset axis; that is:

h̃0 = xh cosα, or h̃0 = zh sinα; (16)

or in the wavenumber domain,

kh0 =
kxh

cosα
, or kh0 =

kzh

sinα
; (17)

where kh0 is the wavenumber associated with h̃0, and kxh and kzh are the wavenumbers associated

with xh and zh .

The second is the transformation of HOCIGs to the angle domain according to the relation

tanγ =
kh0

kn
, (18)

where kn is the wavenumber associated with the direction normal to the reflector.

The transformation of HOCIGs to GOCIGs by equations (16) and (17) follows directly from

equations (9) and (10). Because the transformation is a dip-dependent stretching of the offset axis, it

shifts energy in the (z, x) plane. Appendix A demonstrates that the amount of shift in the (z, x) plane

exactly corrects for the image-point shift characterized by equations (11) and (12).

Appendix B demonstrates the geometrical property that for energy dipping at an angle α in the

the (z, x) plane, the wavenumber kn along the normal to the dip is linked to the wavenumbers along

(z, x) by the following relationships:

kn = −
kz

cosα
=

kx

sinα
. (19)

Substituting equations (17) and (19) into equation (18), we obtain equations (4) and (7). The graph-

ical interpretation of this analytical result is immediate. In Figure 3, the transformation to GOCIG

[equations (17)] moves the imaging point Ixh (or Izh) to I0, and the transformation to the angle domain
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[equation (18)] moves I0 to Iγ . This sequence of two shifts is equivalent to the direct shift from Ixh

(or Izh) to Iγ caused by the transformation to the angle domain applied to a HOCIG (or VOCIG).

We just demonstrated that the results of the transformation to ADCIGs are independent from

which type of offset-domain CIGs we started from (HOCIG, VOCIG, or GOCIG). Consequently,

the imaging point Iγ must be common to all kinds of ADCIGs. Furthermore, the image point must

lie along each of the normals to the offset directions passing through the respective image points.

In particular, it must lie along the normal to the apparent geological dip, and at the crossing point

of the the vertical line passing through Ixh and the horizontal line passing through Izh . Given these

constraints, the validity of Property II [equations (13) and (14)] can be easily verified by trigonometry,

assuming that the image-point shifts are given by the expressions in equations (9) and (10).

ROBUST COMPUTATION OF ADCIGS IN PRESENCE OF GEOLOGICAL STRUCTURE

Our first application of the CIG kinematic properties analyzed in the previous section is the definition

of a robust method to compute high-quality ADCIGs for all events, including steeply dipping and

overturned reflections. In presence of complex geological structure, the computation of neither the

conventional HOCIGS nor the new VOCIGs is sufficient to provide complete velocity information,

because the image is stretched along both the subsurface-offset axes.

According to equation (9), as the geological dip increases the horizontal-offset axis is stretched.

At the limit, when α is equal to 90 degrees, the relation between the horizontal-offset and the

geological-dip offset becomes singular. Similarly, VOCIGs have problems when the geological dip is

nearly flat (α = 0 degrees) and equation (10) becomes singular. This dip-dependent offset-stretching

of the offset-domain CIGs causes artifacts in the corresponding ADCIGs. Furthermore, according to

equations (11–12) the image points Ixh and Izh diverge as well in either case.
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The fact that relationships (9) and (10) diverge only for isolated dips (0, 90, 180, and 270 degrees)

may falsely suggest that problems are limited to rare cases. However, in practice there are two factors

that make the computation of ADCIGs in presence of geological dips prone to artifacts:

• To limit the computational cost, we would like to compute the offset-domain gathers over a

range of offsets as narrow as possible. This is particularly true for shot-profile migrations,

where the computation of the imaging conditions by equation (2) can add substantially to the

computational cost when it is performed over a wide range of subsurface offsets.

• The attractive properties of the ADCIGs that we demonstrated above, including the elimina-

tion of the image-point dispersal, depend on the assumption of locally constant velocity. In

particular, velocity is assumed to be constant along the ray segments SxhS0, RxhR0, SzhS0, and

RzhR0 drawn in Figure 2. The longer those segments are, the more likely it is that the constant

velocity assumption will be violated sufficiently to cause substantial errors.

These considerations suggest that, in presence of complex structures, high-quality ADCIGs ought

to be computed using the information present in both HOCIGs and VOCIGs. In practice, VO-

CIGs should be computed in combination with numerical methods that are capable of handling

nearly-horizontal propagating events; such as a time-domain propagator or a steep-dips downward-

continuation method.

There are two alternative strategies for obtaining a single set of ADCIGs from the information

present in HOCIGs and VOCIGs. The first method merges HOCIGs with VOCIGs after they have

been transformed to GOCIGs by the application of the offset stretching expressed in equation (16).

The merged GOCIGs are then transformed to ADCIGs by applying the radial-trace transformation

expressed in equation (18). The second method merges HOCIGs with VOCIGs directly in the angle

domain, after both have been transformed to ADCIGs by the radial-trace transforms expressed in
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equations (4) and (7).

The two methods are equivalent if the offset range is infinitely wide, but they may have different

artifacts when the offset range is limited. Since the first method merges the images in the offset

domain, it can take into account the offset-range limitation more directly, and thus it has the potential

to produce more accurate ADCIGs. However, the second method is more direct and simpler to

implement. In both methods, an effective, though approximate, way for taking into account the

limited offset ranges is to weight the CIGs as a function of the apparent dips α in the image. A simple

weighting scheme is:

wxh = cos2 α,

wzh = sin2 α, (20)

where the weights wxh and wzh are respectively for the CIGs computed from the HOCIGs and the

VOCIGs. These weights have the attractive property that their sum is equal to one for any α. Al-

though the weights are dependent on the geological dip α, their computation is straightforward and

accurate in the Fourier domain because they are independent from the spatial coordinates. We used

this weighting scheme for all the results shown in this paper.

ADCIGs in the presence of geological structure: a North Sea example

The following marine-data example demonstrates that the application of the robust method for com-

puting ADCIGs presented in this section substantially improves the quality of ADCIGs in the pres-

ence of geological structure. Our examples show migration results of a 2-D line extracted from a 3-D

data set acquired in the North Sea over a salt body with a vertical edge. The data were imaged using

a shot-profile reverse time migration, because the reflections from the salt edge had overturned paths.

As predicted by our theory, in the presence of a wide range of reflector dips (e.g. flat sediments

18



and salt edges), both the HOCIGS and the VOCIGs are affected by artifacts. Figure 4 illustrates this

problem. It displays orthogonal sections cut through the HOCIG cube (Figure 4a), and through the

VOCIG cube (Figure 4b). The front faces show the images at zero offset and are the same in the two

cubes. The side face of Figure 4a shows the HOCIGs taken at the horizontal location corresponding

to the vertical salt edge. We immediately notice that, at the depth interval corresponding to the salt

edge, the image is smeared along the offset axis, which is consistent with the horizontal-offset stretch

described by equation (9). On the contrary, the image of the salt edge is well focused in the VOCIG

displayed in the top face of Figure 4b, which is consistent with the vertical-offset stretch described

by equation (10). However, the flattish reflectors are unfocused in the VOCIG cube, whereas they are

well focused in the HOCIG cube. The stretching of the offset axes causes useful information to be lost

when significant energy is pushed outside the range of offsets actually computed. In this example, the

salt edge reflection is clearly truncated in the HOCIG cube displayed in Figure 4a, notwithstanding

that the image was computed for a fairly wide offset-range (800 meters, starting at -375 meters and

ending at 425 meters).

The ADCIGs computed from either the HOCIGs or the VOCIGS have similar problems with

artifacts caused by the wide range of reflectors dips. Figure 5 shows the ADCIG computed from

the offset-domain CIGs shown in Figure 4. The salt edge is smeared in the ADCIG computed from

HOCIG (side face of Figure 5a), whereas it is fairly well focused in the ADCIG computed from

VOCIG (top face of Figure 5b). Conversely, the flattish reflectors are well focused in the ADCIG

computed from HOCIG, whereas they are smeared in the ADCIG computed from VOCIG.

The artifacts are strongly attenuated when the ADCIG cubes shown in Figure 5 are merged ac-

cording to the simple scheme discussed above, which uses the weights defined in equations (20).

Figure 6 shows the ADCIG cube resulting from the merge. The flat moveouts for the salt edge (in

the horizontal slice on the top) and the sediment reflections (in the vertical slice on the side) are now
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clearly visible in the merged ADCIG cube and confirm the correctness of the migration velocity for

the events displayed in the selected ADCIG. To confirm these conclusions we migrated the same data

after scaling the slowness function with a constant factor equal to 1.04. Figure 7 shows the ADCIG

cubes computed from the HOCIG cube (Figure 7a), and from the VOCIG cube (Figure 7b). When

comparing Figure 5 with Figure 7, we notice the 175-meter horizontal shift of the salt edge reflection

toward the left, caused by the decrease in migration velocity. However, the artifacts related to the salt

edge reflection are similar in the two figures, and they similarly obscure the moveout information.

On the contrary, the moveout information is ready to be analyzed in the cube displayed in Figure 8,

which shows the ADCIG cube resulting from the merge of the ADCIG cubes shown in Figure 7. In

particular, both the flattish event above the salt edge (at about 1,000 meters depth) and the salt edge

itself show a typical upward smile in the angle-domain gathers, indicating that the migration velocity

was too slow.

ILLUSTRATION OF CIGS KINEMATIC PROPERTIES WITH A SYNTHETIC DATA SET

To verify the results of our geometric analysis of the kinematic properties of CIGs, we modeled and

migrated a synthetic data set with a wide range of dips. The reflector has circular shape with radius

of 500 m. The center is at 1,000 meters depth and 3,560 meters horizontal coordinate. The velocity

is constant and equal to 2,000 m/s. The data were recorded in 630 shot records. The first shot was

located at a surface coordinate of -2,000 meters, and the shots were spaced 10 meters apart. The

receiver array was configured with an asymmetric split-spread geometry. The minimum negative

offset was constant and equal to -620 meters. The maximum offset was 4,400 meters for all the shots,

with the exception of the first 100 shots (from -2,000 meters to -1,000 meters), where the maximum

offset was 5,680 meters to record all the useful reflections. To avoid boundary artifacts at the top of

the model, both sources and receivers were buried 250 meters deep. Some of the reflections from
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the top of the circle were muted out before migration to avoid migration artifacts caused by spurious

correlations with the first arrival of the source wavefield. The whole data set was migrated twice: first

using the correct velocity (2,000 m/s), and second after scaling the slowness function by a constant

factor ρ = 1.04 (corresponding to a velocity of 1,923 m/s). The ADCIGs shown in this section and

the following section were computed by merging the ADCIGs computed from both the HOCIGs and

VOCIGs according to the robust algorithm presented in the previous section.

Figure 9a shows the zero-offset section (stack) of the migrated cubes with the correct velocity and

Figure 9b shows the zero-offset section obtained with the low velocity. Notice that, despite the large

distance between the first shot and the left edge of the circle (about 5,000 meters), normal incidence

reflections illuminate the target only up to about 70 degrees. As we will see in the angle-domain

CIGs, the aperture angle coverage shrinks dramatically with increasing reflector dip. On the other

hand, real data cases are likely to have a vertical velocity gradient that improves the angle coverage

of steeply dipping reflectors.

Transformation of HOCIGs and VOCIGs to GOCIGs

Figure 10 illustrates the differences between HOCIGs and VOCIGs caused by the image-point shift,

and it demonstrates that the image-point shift is corrected by the transformation to GOCIGs described

in equations (9) and (10).

Figures 10a and 10b show orthogonal sections cut through the offset-domain image cubes in

the case of the low velocity migration. Figure 10a displays the horizontal-offset image cube, while

Figure 10b displays the vertical-offset image cube. Notice that the offset axis in Figure 10b has

been reversed to facilitate its visual correlation with the image cube displayed in Figure 10a. The

side faces of the cubes display the CIGs taken at the surface location corresponding to the apparent
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geological dip of 45 degrees. The events in the two types of CIGs have similar shapes, as expected

from the geometric analysis presented in a previous section (cosα = sinα when α= 45 degrees), but

their extents are different. The differences between the two image cubes are more apparent when

comparing the front faces, which show the image at a constant offset of 110 meters (-110 meters

in Figure 10b). These differences are due to the differences in image-point shift for the two offset

directions [equation (11) and equation (12)].

Figure 10c and 10d show the image cubes of Figures 10a and 10b after the application of the

transformations to GOCIG, described in equations (9) and (10), respectively. The two transformed

cubes are more similar to each other than the cubes in Figures 10a and 10b are, because both the

offset stretching and the image-point shift have been removed. The only significant differences are

visible in the front face for the reflections corresponding to the top of the circle. These reflections

cannot be fully captured within the vertical-offset image cube because the expression in equation (10)

diverges as α goes to zero. Similarly, reflections from steeply dipping events are missing from the

horizontal-offset image cube because the expression in equation (9) diverges as α goes to 90 degrees.

Image mispositioning in ADCIGs migrated with wrong velocity

In a previous section, we demonstrated that in an ADCIG cube the imaging point Iγ lies on the line

normal to the apparent geological dip and passing through the point where the source and receiver

rays cross (Figure 3). This geometric property enabled us to define the analytical relationship be-

tween reflector movement and traveltime perturbation expressed in equation (15). This important

result is verified by the numerical experiment shown in Figure 11. This figure compares the images

of the circular reflector obtained using the low velocity (slowness scaled by ρ = 1.04) with the re-

flector position computed analytically under the assumption that Iγ is indeed the image point in an
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ADCIG. Because both the true and the migration velocity functions are constant, the migrated reflec-

tor location can be computed exactly by a simple “kinematic migration” of the recorded events. This

process takes into account the difference in propagation directions between the “true” events and the

“migrated” events caused by the scaling of the velocity function. Appendix C derives the equations

used to compute the migrated reflector location as a function of ρ, αρ , and γρ .

The images shown in the six panels in Figure 11 correspond to six different apparent aperture

angles: a) γρ = 0o, b) γρ = 10o, c) γρ = 20o, d) γρ = 30o, e) γρ = 40o, f) γρ = 50o. The black lines

superimposed onto the images are the corresponding reflector locations predicted by the relationships

derived in Appendix C. The analytical lines perfectly track the migrated images for all values of γρ .

The lines terminate when the corresponding event was not recorded by the data acquisition geometry

(described above). The images extend beyond the termination of the analytical lines because the

truncation artifacts are affected by the finite-frequency nature of the seismic signal, and thus they are

not predicted by the simple kinematic modeling described in Appendix C.

RESIDUAL MOVEOUT IN ADCIGS

The inconsistencies between the migrated images at different aperture angles are the primary source

of information for velocity updating during Migration Velocity Analysis (MVA). Figure 11 demon-

strated how the reflector mispositioning caused by velocity errors can be exactly predicted by a kine-

matic migration that assumes the image point to lie on the normal to the apparent geological dip.

However, this exact prediction is based on the knowledge of the true velocity model. Of course, this

condition is not realistic when we are actually trying to estimate the true velocity model by MVA. In

these cases, we first measure the inconsistencies between the migrated images at different aperture

angles, and then we “invert” these measures into perturbations of the velocity model.
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An effective and robust method for measuring inconsistencies between images is to compute

semblance scans as a function of one “residual moveout” (RMO) parameter, and then pick the maxima

of the semblance scan. This procedure is most effective when the residual moveout function used for

computing the semblance scans closely approximates the true moveouts in the images. In this section,

we use the kinematic properties that we derived and illustrated in the previous sections to derive two

alternative RMO functions for scanning ADCIGs computed from wavefield-continuation migration.

As discussed above, the exact relationships derived in Appendix C cannot be used, because

the true velocity function is not known. Thus we cannot realistically estimate the changes in ray-

propagation directions caused by velocity perturbations. However, we can linearize the relations and

estimate the reflector movement by assuming that the raypaths are stationary. This assumption is

consistent with the typical use of measured RMO functions by MVA procedures. For example, in a

tomographic MVA procedure the velocity is updated by applying a tomographic scheme that “back-

projects” the image inconsistencies along unperturbed raypaths. Furthermore, the consequences of

the errors introduced by neglecting ray bending are significantly reduced by the fact that RMO func-

tions describe the movements of the reflectors relative to the reflector position imaged at normal

incidence (γ = 0), not the absolute movements of the reflectors with respect to the true (unknown)

reflector position.

Appendix D derives two expressions for the RMO shift along the normal to the reflector (1nRMO),

under the assumptions of stationary raypaths and constant scaling of the slowness function by a factor

ρ. The first expression is [equation (D-7)]:

1nRMO =
ρ −1
cosα

sin2 γ(
cos2 α − sin2 γ

) z0 n, (21)

where z0 is the depth at normal incidence.

The second RMO function is directly derived from the first by assuming flat reflectors (α = 0)
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[equation (D-8)]:

1nRMO = (ρ −1) tan2 γ z0 n. (22)

Albertin et al. (1998) had used a similar relationship describing the dependency of RMO with the

tangent-squared of the opening angle for common-offset Kirchhoff migration.

As expected, in both expressions the RMO shift is null at normal incidence (γ = 0), and when

the migration slowness is equal to the true slowness (ρ = 1). According to the first expression [equa-

tion (21)], the RMO shift increases as a function of the apparent geological dip |α|. The intuitive

explanation for this behavior is that the specular rays become longer as the apparent geological dip

increases, and consequently the effects of the slowness scaling increase. The first expression is more

accurate than the second one when the spatial extent of the velocity perturbations is large compared

to the raypath length, and consequently the velocity perturbations are uniformly felt along the entire

raypaths. Its use might be advantageous at the beginning of the MVA process when slowness errors

are typically large scale. However, it has the disadvantage of depending on the reflector dip α, and

thus its application is somewhat more complex.

The second expression is simpler and is not as dependent on the assumption of large-scale velocity

perturbations as the first one. Its use might be advantageous for estimating small-scale velocity

anomalies at a later stage of the MVA process, when the gross features of the slowness function have

been already determined.

The dependency of the RMO function on the geological dip α also highlights the fact that RMO

analysis implicitly assumes the existence of coherent reflectors with slowly varying geological dip.

When this assumption is not fulfilled, the measurements of RMO from migration results can be

misleading.

To test the accuracy of the two RMO functions we use the migration results of a synthetic data
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set acquired over a circular reflector. This data set was described in the previous section. Figure 12

illustrates the accuracy of the two RMO functions when predicting the actual RMO in the migrated

images obtained with a constant slowness function with ρ = 1.04. The four panels show the ADCIGs

corresponding to different apparent reflector dip: a) α = 0o; b) α = 30o; c) α = 45o; d) α = 60o.

Notice that the vertical axes change across the panels; in each panel the vertical axis is oriented

along the direction normal to the respective apparent geological dip. The solid lines superimposed

onto the images are computed using equation (21), whereas the dashed lines are computed using

equation (22). As in Figure 11, the images extend beyond the termination of the analytical lines

because of the finite-frequency nature of the truncation artifacts.

The migrated images displayed in Figure 12 were computed by setting both the true and the

migration slowness function to be constant. Therefore, this case favors the first RMO function [equa-

tion (21)] because it nearly meets the conditions under which equation (21) was derived in Appendix

D. Consequently, the solid lines overlap the migration results for all dip angles. This figure demon-

strates that, when the slowness perturbation is sufficiently small (4 % in this case), the assumption of

stationary raypaths causes only small errors in the predicted RMO.

In contrast, the dashed lines predicted by the second RMO function [equation (22)] are an ac-

ceptable approximation of the actual RMO function only for small dip angles (up to 30 degrees). For

large dip angles, a value of ρ substantially higher than the correct one would be necessary to fit the

actual RMO function with equation (22). If this effect of the reflector dip is not properly taken into

account, the false indications provided by the inappropriate use of equation (22) can prevent the MVA

process from converging.
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CONCLUSIONS

We analyze the kinematic properties of ADCIGs in presence of velocity errors. We prove that in

the angle domain the image point lies along the normal to the apparent reflector dip. This geometric

property of ADCIGs makes them immune to the image-point dispersal and thus attractive for MVA.

We derive a quantitative relationship between image-point movements and traveltime perturba-

tions caused by velocity errors, and verify its validity with a synthetic-data example. This relationship

should be at the basis of velocity-updating methods that exploit the velocity information contained in

ADCIGs.

Our analysis leads to the definition of two RMO functions that can be used to measure incon-

sistencies between migrated images at different aperture angles. The RMO functions describe the

relative movements of the imaged reflectors only approximately, because they are derived assuming

stationary raypaths. However, a synthetic example shows that, when the velocity perturbation is suf-

ficiently small, one of the proposed RMO functions is accurate for a wide range of reflector dips and

aperture angles.

The insights gained from our kinematic analysis explain the strong artifacts that affect conven-

tional ADCIG in presence of steeply dipping reflectors. They also suggest a procedure for overcom-

ing the problem: the computation of vertical-offset CIGs (VOCIGs) followed by the combination of

VOCIGs with conventional HOCIGs. We propose a simple and robust scheme for combining HO-

CIGs and VOCIGs. A North Sea data example clearly illustrates both the need for and the advantages

of our method for computing ADCIGs in presence of a vertical salt edge.
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APPENDIX A

PROOF THAT THE TRANSFORMATION TO GOCIG CORRECTS FOR THE

IMAGE-POINT SHIFT

This appendix proves that by applying the offset transformations described in equations (9) and (10)

we automatically remove the image-point shift characterized by equations (11) and (12). The demon-

stration for the VOCIG transformation is similar to the one for the HOCIG transformation, and thus

we present only the demonstration for the HOCIGs. HOCIGs are transformed into GOCIGs by ap-

plying the following change of variables of the offset axis xh , in the vertical wavenumber kz and

horizontal wavenumber kx domain:

xh =
h̃0

cosα
= sign(tanα) h̃0

√
1+ tan2 α = sign

(
kx

kz

)
h̃0

(
1+

k2
x

k2
z

) 1
2

. (A-1)

For the sake of simplicity, in the rest of the appendix we will drop the sign in front of expression (A-1)

and consider only the positive values of kx/kz .

We want to prove that by applying (A-1) we also automatically shift the image by

1Ixh · z = h̃0 tanγ tanα sinα (A-2)

in the vertical direction, and

1Ixh ·x = h̃0 tanγ tanα cosα (A-3)

in the horizontal direction.

The demonstration is carried out into two steps: 1) we compute the kinematics of the impulse re-

sponse of transformation (A-1) by a stationary-phase approximation of the inverse Fourier transform

along kz and kx , and 2) we evaluate the dips of the impulse response, relate them to the angles α and

γ , and then demonstrate that relations (A-3) and (A-2) are satisfied.
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Evaluation of the impulse response of the transformation to GOCIGs

The transformation to GOCIG of an image Ixh (kz,kx , xh) is defined as

I0 (kz ,kx , xh) =

∫
dh̃0 I0

(
kz ,kx , h̃0

)
eikh h̃0 =

∫
dxh

(
dh̃0

dxh

)
Ixh (kz,kx , xh)e

ikh xh

(
1+

k2
x

k2
z

)− 1
2

. (A-4)

The transformation to GOCIG of an impulse located at (z̄, x̄ , x̄h) is thus (after inverse Fourier trans-

forms):

Ĩmp
(
z, x , h̃0

)
=

∫
dkh

∫
dxh

∫
dkx

∫
dkz

(
dh̃0

dxh

)
e

i



kh


x̄h

(
1+

k2
x

k2
z

)− 1
2
−h̃0


+kz (z̄−z)+kx (x̄−x)





. (A-5)

We now approximate by stationary phase the inner double integral. The phase of this integral is,

8 ≡ kh


x̄h

(
1+

k2
x

k2
z

)− 1
2

− h̃0


+ kz (z̄ − z)+ kx (x̄ − x) (A-6)

The stationary path is defined by the solutions of the following system of equations:

∂8

∂kz
= kh x̄h

k2
x

k3
z

(
1+

k2
x

k2
z

)− 3
2

+ (z̄ − z) = 0, (A-7)

∂8

∂kx
= −kh x̄h

kx

k2
z

(
1+

k2
x

k2
z

)− 3
2

+ (x̄ − x) = 0, (A-8)

By moving both (z̄ − z) and (x̄ − x) to the right of equations (A-7) and (A-8), and then dividing

equation (A-7) by equation (A-8), we obtain the following relationship between (z̄ − z) and (x̄ − x):

z̄ − z
x̄ − x

= −
kx

kz
. (A-9)

Furthermore, by multiplying equation (A-7) by kz and equation (A-8) by kx , and then substituting

them appropriately in the phase function (A-6), we can evaluate the phase function along the station-

ary path as follows:

8stat = kh


x̄h

(
1+

k2
x

k2
z

)− 1
2

− h̃0


 , (A-10)
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which becomes, by substituting equation (A-9),

8stat = kh



x̄h

[
1+

(z̄ − z)2

(x̄ − x)2

]− 1
2

− h̃0



 . (A-11)

By substituting expression (A-11) in equation (A-5) we can evaluate the kinematics of the impulse

response as follows:

h̃0 = xh

[
1+

(z̄ − z)2

(x̄ − x)2

]− 1
2

. (A-12)

Evaluation of the image shift as a function of α ad γ

The final step is to take the derivative of the impulse response of equation (A-12) and use the rela-

tionships of these derivatives with tanα and tanγ :

∂z
∂x

= tanα = −

√
x2

h

h̃0
2 −1, (A-13)

−
∂z
∂xh

= tanγ = − (x̄ − x)
xh
h̃0√

x2
h

h̃0
2 −1

= − (z̄ − z)
xh
h̃0

x2
h

h̃0
2 −1

. (A-14)

Substituting equations (A-13) and (A-14) into the following relationships:

1Ixh · z = z̄ − z = h̃0 tanγ tanα sinα, (A-15)

1Ixh ·x = x̄ − x = h̃0 tanγ tanα cosα, (A-16)

and after some algebraic manipulation, we prove the thesis.
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APPENDIX B

RELATIONSHIPS BETWEEN WAVENUMBERS AND GEOLOGICAL DIPS

This appendix demonstrates equations (19) in the main text: that for energy dipping at an angle α in

the (z, x) plane, the wavenumber kn along the normal to the dip is linked to the wavenumbers kz and

kx by the following relationships:

kn = −
kz

cosα
=

kx

sinα
. (B-1)

For energy dipping at an angle α the wavenumbers satisfy the well-known relationship

tanα = −
kx

kz
, (B-2)

where the negative sign is determined by by the conventions defined in Figure 1. The wavenumber

kn is related to kx and kz by the axes rotation

kn = −kz cosα + kx sinα. (B-3)

Substituting equation (B-2) into equation (B-3) we obtain

kn =
kz

cosα

(
−cos2 α − tanα cosα sinα

)
= −

kz

cosα

(
cos2 α + sin2 α

)
= −

kz

cosα
, (B-4)

or,

kn =
kx

sinα

(
cotα sinα cosα + sin2 α

)
=

kx

sinα

(
cos2 α + sin2 α

)
=

kx

sinα
. (B-5)

35



APPENDIX C

KINEMATIC MIGRATION OF REFLECTIONS FROM A CIRCLE

In this Appendix we derive the equations for the “kinematic migration” of the reflections from a

circle, as a function of the ratio ρ between the true constant slowness S and the migration slowness

Sρ = ρS. For a given ρ we want to find the coordinates (zγ , xγ ) of the imaging point Iγ as a function

of the apparent geological dip αρ and the apparent aperture angle γρ . Central to our derivation is the

assumption that the imaging point Iγ lies on the normal to the apparent reflector dip passing through

Ī, as represented in Figure 3.

The first step is to establish the relationships between the true α and γ and the apparent αρ and γρ .

This can be done through the relationships between the propagation directions of the source/receiver

rays (respectively marked as the angles βs and βr in Figure 1), and the event time dips, which are

independent on the migration slowness. The true βs and βr can be thus estimated as follows:

βs = arcsin
(
ρ sinβsρ

)
= arcsin

[
ρ sin

(
αρ −γρ

)]
, (C-1)

βr = arcsin
(
ρ sinβrρ

)
= arcsin

[
ρ sin

(
αρ +γρ

)]
; (C-2)

and then the true α and γ are:

α =
βs +βr

2
, and γ =

βr −βs

2
. (C-3)

Next step is to take advantage of the fact that the reflector is a circle, and thus that the coordinates

(ẑ, x̂) of the true reflection point are uniquely identified by the dip angle α as follows:

ẑ = (zc − R cosα) , and x̂ = (xc + R sinα) , (C-4)

where (zc, xc) are the coordinates of the center of the circle and R is its radius.
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The midpoint, offset, and traveltime of the event can be found by applying simple trigonometry

(see (Sava and Fomel, 2003)) as follows:

xhsurf =
sinγ cosγ

cos2 α − sin2 γ
ẑ, (C-5)

xm surf = x̂ +
sinα cosα

cos2 α − sin2 γ
ẑ, (C-6)

tD = 2S
cosα cosγ

cos2 α − sin2 γ
ẑ. (C-7)

The coordinates (z̄, x̄ ), of the point Ī, where the source and the receiver rays cross, are:

z̄ = xhsurf
cos2αρ − sin2 γρ

sinγρ cosγρ

, (C-8)

x̄ = xmsurf −
sinαρ cosαρ

cos2 αρ − sin2 γρ

z̄

= xmsurf −
sinαρ cosαρ

cos2 αρ − sin2 γρ

cos2 αρ − sin2 γρ

sinγρ cosγρ

xhsurf

= xmsurf −
sinαρ cosαρ

sinγρ cosγρ

xh surf; (C-9)

and the corresponding traveltime tDρ is:

tDρ = 2ρS
cosαρ cosγρ

cos2 αρ − sin2 γρ

z̄. (C-10)

Once that we have the traveltimes tD and tDρ , the normal shift 1ntot can be easily evaluated by

applying equation (15) (where the background velocity is Sρ and the aperture angle is γρ ), which

yields:

1ntot =

(
tDρ − tD

)

2ρS cosγρ

n. (C-11)

We used equation (C-11), together with equations (C-8) and (C-9), to compute the lines superim-

posed onto the images in Figure 11.
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APPENDIX D

RESIDUAL MOVEOUT IN ANGLE-DOMAIN COMMON IMAGE GATHERS

In this Appendix we derive the expression for the residual moveout (RMO) function to be applied

to ADCIGs computed by wavefield continuation. The derivation follows the derivation presented in

Appendix C. The main difference is that in this appendix we assume the rays to be stationary. In other

words, we assume that the apparent dip angle αρ and aperture angle γρ are the same as the true angles

α and γ . This assumption also implies that the (unknown) true reflector coordinates (ẑ, x̂) coincides

with the coordinates (z̄, x̄ ) of the point Ī where the source and the receiver ray cross.

Given these assumptions, the total traveltime through the perturbed slowness function Sρ is given

by the following expression:

tDρ = 2ρS
cosα cosγ

cos2 α − sin2 γ
z̄, (D-1)

which is different from the corresponding equation in Appendix C [equation (C-10)]. The difference

in traveltimes (tDρ − tD), where tD is given by equation equation (C-7), is thus a linear function of

the difference in slownesses [(ρ −1)S]; that is,

tDρ − tD = 2(ρ −1) S
cosα cosγ

cos2 α − sin2 γ
z̄. (D-2)

As in Appendix C, the normal shift 1ntot can be evaluated by applying equation (15) (where the

background velocity is Sρ and the aperture angle is γ ), which yields:

1ntot =
ρ −1

ρ

cosα

cos2 α − sin2 γ
z̄ n. (D-3)

The RMO function (1nRMO) describes the relative movement of the image point at any γ with respect

to the image point for the normal-incidence event (γ = 0). From equation (D-3), it follows that the
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RMO function is:

1nRMO = 1ntot (γ )−1ntot (γ = 0) =

ρ −1
ρ

[
cosα

cos2 α − sin2 γ
−

1
cosα

]
z̄ n =

ρ −1
ρ

sin2 γ(
cos2 α − sin2 γ

)
cosα

z̄ n. (D-4)

The true depth z̄ is not known, but at normal incidence it can be estimated as a function of the

migrated depth z0 by inverting the following relationship [derived from equation (D-3) with γ = 0]:

z0 =
z̄
ρ

, (D-5)

as:

z̄ = ρz0. (D-6)

Substituting relation (D-6) in equation (D-4) we obtain the result:

1nRMO =
ρ −1
cosα

sin2 γ(
cos2 α − sin2 γ

) z0 n, (D-7)

which for flat reflectors (α = 0) simplifies into:

1nRMO = (ρ −1) tan2 γ z0 n. (D-8)

In Figure 12, the solid lines superimposed into the images are computed using equation (D-7),

whereas the dashed lines are computed using equation (D-8).
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LIST OF FIGURES

1 Geometry of an ADCIG for a single event migrated with the wrong (low in this case) veloc-

ity. Depending on the context, the angles can be either the angles formed by the propagation direction

of the rays, or by the propagation direction of the associated plane waves. The propagation direction

of the source ray forms the angle βs with the vertical, and the propagation direction of the receiver ray

forms the angle βr with the vertical; γ is the apparent aperture angle, and α is the apparent reflector

dip. The source ray and the receiver ray cross at Ī. The arrows indicate positive angles; that is in the

figure βs , βr , and α are negative (larger than π ) and γ is positive. This sign convention is consistent

with upward propagating rays (waves).

2 Geometry of the three different kinds of offset-domain (horizontal, vertical and geological-

dip) CIG for a single event migrated with the wrong velocity. Ixh is the horizontal-offset image point,

Izh is the vertical-offset image point, and I0 is the geological-dip offset image point.

3 Geometry of an angle-domain CIG for a single event migrated with the wrong velocity. The

transformation to the angle domain shifts all the offset-domain image points (Ixh , Izh ,I0) to the same

angle-domain image point Iγ .

4 Migrated images of North Sea data set. Orthogonal sections cut through offset-domain CIG

cubes: a) HOCIG cube, b) VOCIG cube. Notice the artifacts in both cubes. The numbers close to

the black lines superimposed onto the orthogonal sections denote the physical coordinates of these

sections: z = 1,825 m, x = 5,025 m, and xh = 0 m.

5 Orthogonal sections cut through ADCIG cubes: a) ADCIG computed from HOCIG cube,

b) ADCIG computed from VOCIG cube. Notice the artifacts in both cubes that are related to the

artifacts visible in the corresponding offset-domain CIG cubes (Figure 4). The coordinates of these

sections are: z = 1,825 m, x = 5,025 m, and γ = 11.25◦.
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6 Orthogonal sections cut through the ADCIG cube that was obtained by merging the cubes

displayed in Figure 5 using the proposed method. Notice the lack of artifacts compared with Figure 5.

The coordinates of these sections are: z = 1,825 m, x = 5,025 m, and γ = 11.25◦.

7 Migrated images of North Sea data set. The migration slowness had been scaled by 1.04

with respect to the migration slowness used for the images shown in Figures 4–6. Orthogonal sec-

tions cut through ADCIG cubes: a) ADCIG computed from HOCIG cube, b) ADCIG computed from

VOCIG cube. Notice that the artifacts obscure the moveout information in both cubes. The coordi-

nates of these sections are: z = 1,875 m, x = 4,850 m, and γ = 11.25◦.

8 Orthogonal sections cut through the ADCIG cube that was obtained by merging the cubes

displayed in Figure 7 using the proposed method. Notice the typical upward smile in the move-

outs from both the salt edge and the flattish event above it. The coordinates of these sections are:

z = 1,875 m, x = 4,850 m, and γ = 11.25◦.

9 Images of the synthetic data set obtained with a) correct velocity, b) too low velocity

(ρ = 1.04).

10 Orthogonal sections cut through offset-domain CIG cubes obtained with too low velocity

(ρ = 1.04): a) HOCIG cube, b) VOCIG cube, c) GOCIG cube computed from HOCIG cube, d) GO-

CIG cube computed from VOCIG cube. Notice the differences between the HOCIG (panel a) and the

VOCIG (panel b) cubes, and the similarities between the GOCIG cubes (panel c and panel d). The

coordinates of these sections are: z = 850 m, x = 3,110 m, and xh = 100 m.

11 Comparison of the actual images obtained using the low velocity, with the reflector position

computed analytically under the assumption that the image point lies on the normal to the appar-

ent geological dip (Iγ in Figure 3). The black lines superimposed onto the images are the reflector

locations predicted by the relationships presented in Appendix C. The six panels correspond to six

different apparent aperture angles: a) γρ = 0o b) γρ = 10o c) γρ = 20o d) γρ = 30o e) γρ = 40o f)
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γρ = 50o.

12 ADCIGs for four different apparent reflector dips: a) α = 0o; b) α = 30o; c) α = 45o; d)

α = 60o with ρ = 1.04. Superimposed onto the images are the RMO functions computed using equa-

tion (21) (solid lines), and using equation (22) (dashed lines). Notice that the vertical axes change

across the panels; in each panel the vertical axis is oriented along the direction normal to the respec-

tive apparent geological dip.
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Figure 7.
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Figure 9.
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Figure 10.
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Figure 11.
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Figure 12.
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