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ABSTRACT

We introduce a new partial prestack-migration operator, named azimuth move-

out (AMO), that rotates the azimuth and modifies the offset of 3-D prestack data.

Followed by partial stacking, AMO can reduce the computational cost of 3-D prestack

imaging. We have successfully applied AMO to the partial stacking of a 3-D marine

data set over a range of offsets and azimuths. When AMO is included in the partial-

stacking procedure, high-frequency steeply-dipping energy is better preserved than

when conventional partial-stacking methodologies are used. Because the test data set

requires 3-D prestack depth migration to handle strong lateral variations in velocity,

the results of our tests support the applicability of AMO to prestack depth-imaging

problems.

AMO is a partial prestack-migration operator defined by chaining a 3-D prestack

imaging operator with a 3-D prestack modeling operator. The analytical expression

for the AMO impulse response is derived by chaining constant-velocity DMO with

its inverse. Equivalently, it can be derived by chaining constant-velocity prestack

migration and modeling. Because 3-D prestack data are typically irregularly sampled

in the surface coordinates, AMO is naturally applied as an integral operator in the

time-space domain. The AMO impulse response is a skewed saddle surface in the

time-midpoint space. Its shape depends on the amount of azimuth rotation and offset

continuation to be applied to the data. The shape of the AMO saddle is velocity

independent, whereas its spatial aperture is dependent on the minimum velocity.
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When the azimuth rotation is small (≤ 20◦), the AMO impulse response is compact

and its application as an integral operator is inexpensive. Implementing AMO as

an integral operator is not straightforward because the AMO saddle may have a

strong curvature when it is expressed in the midpoint coordinates. An appropriate

transformation of the midpoint axes to regularize the AMO saddle leads to an effective

implementation.

INTRODUCTION

To improve the accuracy and reduce the cost of 3-D prestack imaging, it can be

useful to modify the effective azimuth and offset distribution of the data during pro-

cessing without detailed a priori assumptions about the underlying velocity function

or geology. In this paper, we introduce a partial prestack-migration operator that

rotates the data’s azimuth and changes the data’s absolute offset. Because of its

ability to modify the azimuth of the data, we named this operator azimuth moveout

(AMO).

There are many potential applications for the AMO operator. In this paper we

discuss its application to partial stacking of 3-D data before prestack migration. We

show that the application of AMO significantly improves, with respect to conventional

methods, the result of partial stacking of a 3-D marine data set over a range of offsets

and azimuths. Partial stacking reduces the cost of 3-D prestack imaging by reducing

the amount of data to be migrated (Hanson and Witney, 1995), because the cost

of migration is approximately proportional to the amount of data to be migrated.

However, for partial stacking to enhance reflections and suppress noise, reflections

need to be coherent across the traces to be stacked. Normal moveout (NMO) increases

the coherency of reflections over offsets by a first-order correction of their traveltime.

Therefore, NMO is often applied to traces before partial stacking (Hanson and Witney,

1995). However, a simple trace-to-trace transformation such as NMO is insufficient
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when the reflections have conflicting dips or diffractions occur. By correctly moving

the dipping energy across midpoints, AMO insures the preservation of all dips in the

data during partial stacking. In preserving dipping energy during the stacking process

AMO is analogous to DMO, but the two processes substantially differ in the nature

of their respective output. DMO transforms prestack data into equivalent zero-offset

data that cannot be properly imaged by prestack depth migration. In contrast, AMO

transforms prestack data into equivalent not-zero-offset data that can be used as input

to prestack depth migration.

For reducing the computational cost of prestack migration, an alternative to par-

tial stacking is to migrate only a subset of the available traces. To minimize the

effects of data aliasing caused by the data subsampling, the input traces can be se-

lected according to a quasi-random selection criterion (Zhou and Schuster, 1995).

This method can be attractive in high signal-to-noise areas when all the data offsets

are stacked during migration. However, when the signal-to-noise ratio is low, and/or

when a prestack analysis of migration results is desired, either for velocity estimation

or for AVO purposes, partial stacking is more robust with respect to noise, either

coherent or uncoherent, because it uses all the available traces to improve the signal-

to-noise ratio. A combination of the two methods, that is, the synthesis by AMO and

partial stacking of a quasi-randomly sampled data set, has the potential of reducing

the cost of imaging even further, but its testing is beyond the scope of this paper.

AMO can be considered a generalization of dip moveout (DMO) (Deregowski and

Rocca, 1981; Hale, 1984), in the sense that it transforms prestack data into equiv-

alent data with an arbitrary offset and azimuth; in contrast, DMO is only capable

of transforming non zero-offset data to zero-offset data. AMO is derived by analyt-

ically evaluating the operator that is equivalent to the the chain of a 3-D prestack

imaging operator with the corresponding 3-D prestack modeling. Any 3-D prestack

imaging operator can be used for defining AMO. However, our analytical closed-form

expression for AMO was derived only by use of constant-velocity DMO and constant
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velocity prestack migration and modeling. Goldin (1994) and Hubral et al. (1996)

have recently presented a very general theory for chaining imaging operators; however

the implementation of their theory would require an expensive numerical evaluation of

the chained operators. The derivation of AMO from constant-velocity operators has

the further advantage of making the kinematics of the operator velocity-independent.

Notwithstanding the constant-velocity assumption underlying its derivation, AMO

can be effectively applied to data recorded from a complex velocity model, as the

data example in this paper demonstrates. The first-order effects of velocity variations

are removed by NMO, which is applied before AMO, as it is also usually assumed

when applying DMO. However, AMO can successfully transform data to nearby off-

sets and azimuths, when velocity variations are too strong for DMO to transform

data correctly all the way to zero-offset. Because AMO is correct to the first order,

its results are accurate if the amounts of azimuth rotation and offset continuation are

sufficiently small.

In addition to the data-reduction application presented in this paper, the AMO

operator has a wide spectrum of potential applications in the processing of 3-D seis-

mic data. A promising application is the transformation of narrow-azimuth marine

surveys to effective common-azimuth data. Common-azimuth data can be efficiently

depth-imaged by new 3-D prestack migration methods (Canning and Gardner, 1996b;

Biondi and Palacharla, 1996), when the underlying assumptions of these methods are

satisfied. AMO can also improve the amplitude accuracy of prestack imaging wide-

azimuth data recorded with irregular geometry by applying it before full prestack

imaging to regularize the data geometry (Chemingui and Biondi, 1996). For some

applications, such as the synthesis of 2-D lines from 3-D data, AMO is related to the

3-D data regularization method proposed by Canning and Gardner (1996a), which is

based on the successive application of DMO and inverse DMO. However, AMO can be

applied to a wider set of problems and data sets because the geometry of the output

data is not constrained to be common-azimuth. Therefore, in addition to transform-
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ing marine surveys to effective common-azimuth data, AMO can be applied to more

general data-regularization problems, as well as to data reduction and interpolation.

Furthermore, the application of AMO as a single-step procedure has two benefits:

substantial computational savings because of the small size of the AMO operator

when azimuth rotation and offset continuation are small, and simplified handling of

large data sets because one less pass through the data is required.

The next section introduces the AMO operator and analyzes the characteristics

of the AMO impulse response. The second section introduces a transformation of the

midpoint coordinates that is important to an efficient and accurate implementation

of AMO as an integral operator. Finally, the third section of the paper presents

the results obtained when AMO was applied to the partial stacking of a 3-D marine

survey. The appendices contain the derivations of the main analytical results; that

is, the expressions for the kinematics, the amplitudes, and the aperture extent of the

AMO impulse response.

AMO OPERATOR

We define AMO as an operator that transforms 3-D prestack data with a given

offset and azimuth to equivalent data with different offset and azimuth. To derive the

AMO operator we collapse into one single step the sequence of an imaging operator

and a forward modeling operator. In principle, any 3-D prestack imaging operator

can be used for defining AMO. We initially chained DMO and “inverse” DMO, but,

to derive an accurate expression for the spatial aperture of AMO, we had to use full

3-D prestack constant-velocity migration and its inverse. As expected, the kinematics

of AMO are independent from its derivation.

AMO is not a single-trace to single-trace transformation, but it is a partial-

migration operator that moves events across midpoints according to their dip.

Its impulse response is a saddle in the output’s midpoint domain. The shape
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of the saddle depends on the offset vector of the input data h1 = h1 cos θ1x +

h1 sin θ1y = h1(cos θ1, sin θ1) and on the offset vector of the desired output data

h2 = h2(cos θ2, sin θ2), where the unit vectors x and y point respectively in the in-line

direction and the cross-line direction. The time shift to be applied to the data is a

function of the difference vector ∆m = ∆m(cos ∆ϕ, sin ∆ϕ) between the midpoint

of the input trace and the midpoint of the output trace. The analytical expression of

the AMO saddle, as derived in Appendices A and B, is

t2 (∆m,h1,h2, t1) = t1
h2

h1

√√√√h2
1 sin2(θ1 − θ2) − ∆m2 sin2(θ2 − ∆ϕ)

h2
2 sin2(θ1 − θ2) − ∆m2 sin2(θ1 − ∆ϕ)

. (1)

The traveltimes t1 and t2 are respectively the traveltime of the input data after NMO

has been applied, and the traveltime of the results before inverse NMO has been

applied.

The surface represented by equation (1) is a skewed saddle; its shape and spatial

extent are controlled by the values of the absolute offsets h1 and h2, and by the

azimuth rotation ∆θ = θ1 − θ2 (Figure ??). Consistent with intuition, the spatial

extent of the operator has a maximum for rotation of 90 degrees, and it vanishes when

offsets and azimuth rotation tend to zero. Furthermore, it can be easily verified that

t2 = t1 for the zero-dip components of the data; that is, the kinematics of zero-dip

data after NMO do not depend on azimuth and offset.

The expression for the kinematics is velocity independent, but the lateral aperture

of the operator is velocity dependent. An upper bound on the spatial extent of the

AMO operator is defined by the region where the expression in equation (1) is valid.

Equation (1) becomes singular when

|∆m × h1|
|h1 × h2|

= 1, (2)

or

|∆m × h2|
|h1 × h2|

= 1. (3)
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The geometric interpretation of these conditions is that the support of the AMO op-

erator is limited to the region within the parallelogram with main diagonal (h1 + h2)

and minor diagonal (h1 − h2). The shaded area in Figure 2 shows an example paral-

lelogram that represents the maximum possible spatial extent of the AMO operator.

More stringent bounds for the AMO aperture can be derived (Appendix C) by impos-

ing the condition that the reflector dip must be equal or less than 90◦. These bounds

are, for given h1 and h2, functions of the minimum velocity Vmin and of the input

traveltime. The parallelogram in Figure 2 is thus the worse case, when either the

velocity or the input traveltime is equal to zero. Figure ?? shows the effective AMO

impulse response when the velocity-dependent aperture limitation, corresponding to

a realistic minimum velocity of 2 km/s, is applied to the impulse response shown in

Figure ??. The surface shown in Figure ?? is significantly narrower than the whole

impulse response shown in Figure ??. This velocity-dependent aperture limitation

is important for an efficient use of AMO and it contributes to make the cost of ap-

plying AMO to the data small compared to the cost of applying a full 3-D prestack

migration.

The smaller is the azimuth rotation ∆θ, the smaller the effective aperture be-

comes. At the limit, the expression in equation (1) is singular when the azimuth

rotation vanishes and the AMO surface reduces to a 2-D line. This 2-D operator, cor-

responding to the case of offset continuation (Bolondi et al., 1984), has been derived

independently by Biondi and Chemingui (1994), Stovas and Fomel (1996), and (in a

different form) by Bagaini et al. (1994). It is given by the following quadric equation,

t2(∆m, h1, h2, t1) =

t1
√

2h1√
(h2

1+h2
2)−∆m2+

√
[(h1−h2)2−∆m2][(h1+h2)2−∆m2]

h2 ≥ h1

t1

√
(h2

1+h2
2)−∆m2+

√
[(h1−h2)2−∆m2][(h1+h2)2−∆m2]

√
2h2

h2 ≤ h1. (4)

The apparent dichotomy between the 3-D and the 2-D solutions is reconciled when
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the effective aperture of the AMO operator is taken into account; Fomel and Biondi

(1995a) showed that the 3-D operator monotonously shrinks to a line, and the limit

of the kinematics of the 3-D operator [equation (1)] approaches the 2-D operator

[equation (4)].

While the kinematics of AMO are independent from its derivation, the amplitude

term varies according to the derivation. For the AMO applications presented in this

paper, we used the AMO amplitude that is related to Zhang-Black DMO (Zhang,

1988; Black et al., 1993). It can be shown that the choice of the Zhang-Black’s

Jacobian yields an amplitude-preserving AMO operator, at least when applied on

regularly sampled common offset-azimuth cubes (Chemingui and Biondi, 1995). This

particular choice of the Jacobian results in the following amplitude term:

A (∆m,h1,h2, t2) ≈

|ω2| t2
2 π h1h2 sin ∆θ

1 + ∆m2 sin2(θ2−∆ϕ)
h2
1 sin2 ∆θ(

1 − ∆m2 sin2(θ2−∆ϕ)
h2
1 sin2 ∆θ

) (
1 − ∆m2 sin2(θ1−∆ϕ)

h2
2 sin2 ∆θ

) . (5)

Notice that the frequency |ω2| enters as multiplicative factor in the expression for

AMO amplitudes. This term can be applied to the output data in the time domain

by chaining a causal half-differentiator with an anti-causal half-differentiator.

INTEGRAL IMPLEMENTATION OF AMO

One of the main advantages of AMO is that it is a narrow operator and that

consequently its application to a full 3-D prestack data set is much less costly than

the application of full 3-D prestack migration. However, designing an accurate and

efficient implementation of the AMO operator is not straightforward. Therefore, in

this section we discuss the issues relevant to an effective implementation of the AMO

process, as defined in the previous sections. The main challenge is to devise an

efficient method that avoids operator aliasing and simultaneously takes advantage of
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the opportunity for saving computation, by properly limiting the spatial extent of the

numerical integration.

The AMO integration surface has the shape of a saddle. The exact shape of the

saddle depends on the azimuth rotation and offset continuation that are applied to the

input data. When the azimuth rotation is small, the saddle has a strong curvature.

Conventional anti-aliasing methods (Gray, 1992; Bevc and Claerbout, 1992; Lumley

et al., 1994) are based on an adaptive low-pass filtering of the data as a function

of the operator local dips. When there is a strong curvature, the dips change too

quickly for a simple low-pass filter of the input trace to both suppress the aliased dips

and preserve the non-aliased dips. To address this problem, we perform the spatial

integration in a transformed coordinate system. In this new coordinate system, the

AMO surface is well behaved, and its shape is invariant with respect to the amount

of azimuth rotation and offset continuation.

Transformation of midpoint axes

The appropriate midpoint-coordinate transformation to be applied to the AMO

impulse response is described by the following chain of transformations ξ1

ξ2

 =

 1
h2 sin∆θ

0

0 1
h1 sin∆θ


 − sin θ1 cos θ1

− sin θ2 cos θ2


 ∆mx

∆my

 , (6)

where ξ1, and ξ2 are the transformed midpoint coordinates. Figure 4 shows a

schematic of the relationship between the input and output offset vectors h1 and

h2, and the transformed midpoint-coordinate unit vectors ξ1 and ξ2. Notice that the

ξ axes are dual with respect to h1 and h2, but they define a new coordinate system

for the midpoint axes of the AMO operator. The right matrix in equation (6) repre-

sents a space-invariant rotational squeezing of the coordinate, while the left matrix

is a simple rescaling of the axes by a factor dependent on the azimuth rotation ∆θ,

and by the length of the dual offset vectors. When the azimuth rotation is zero, the

9



transformation described in equation (6) becomes singular. In this case the AMO

operator degenerates into the 2-D offset continuation operator, as discussed in a pre-

vious section. In practice, a simple pragmatic method to avoid the singularity is to

set a lower limit for the product h1h2 sin (∆θ). Because the 3-D AMO operator con-

verges smoothly to the 2-D offset continuation operator (Fomel and Biondi, 1995b),

the error introduced by this approximation is negligible.

In this new coordinate system, the kinematics of AMO are described by the fol-

lowing simple relationship between the input time t1 and the output time t2:

t2 (ξ1, ξ2) = t1

√√√√1 − ξ2
2

1 − ξ1
2 , (7)

and the amplitudes (based on Zhang-Black amplitudes for DMO) are described by

the following equation

A (ξ1, ξ2) =
t2 |ω2|

2π

(
1 + ξ1

2
)

(
1 − ξ1

2
) (

1 − ξ2
2
) . (8)

This expression for the amplitudes takes into account the Jacobian of the trans-

formation described in equation (6).

Operator antialiasing

The AMO operator can be steeply dipping, and thus antialiasing is critical to

produce high-quality results. To apply antialiasing, we use a simple low-pass filtering

of the input trace with a bandwidth that varies spatially along the operator and is

a function of the local time dips of the operator. The time dips can be computed

analytically according to the following equations:

∂t2
∂ξ1

= t2
ξ1

1 − ξ1
2 , (9)

and

∂t2
∂ξ2

= −t2
ξ2

1 − ξ2
2 . (10)
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Operator aperture

Expressions (7) and (8) for the kinematics and amplitudes of AMO are valid for

ξ1 and ξ2 ranging between −1 and 1. However, for finite propagation velocities, the

AMO operator has a much narrower aperture, as shown in Appendix C. Taking into

account this finite aperture is crucial both for accuracy and for efficiency. For a given

minimum propagation velocity Vmin, the maximum output time can be evaluated

according to the following condition:

γ1 =
∂t2
∂ξ1

t2h2 sin ∆θ
, (11)

γ2 = −
∂t2
∂ξ2

t2h1 sin ∆θ
, (12)

and

t2 ≤
2

Vmin

√
(γ2

1 + γ2
2 − 2γ1γ2 cos ∆θ)

(
1 − ξ1

2
) . (13)

To avoid truncation artifacts a tapering function is used at the edges of the operator

aperture.

APPLICATION OF AMO TO A 3-D MARINE DATA SET

This section presents the results of applying AMO prior to partial stacking, to a

marine data set recorded in the North Sea. We compare the results of partial stacking

after NMO and AMO, with the results of partial stacking after simple NMO. The

results show that adding AMO to the processing sequence better preserves the steeply

dipping energy in the partially-stacked data. The partially-stacked data are still in

the prestack domain; that is they are equivalent to data recorded at not-zero offset.

This is important, because the goal of partial stacking is to reduce the cost of the

subsequent 3-D prestack depth migration. Therefore, the results of partial stacking

after AMO cannot be directly compared with the results of partial stacking after

DMO, that transforms data to zero offset.
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The data set is a valuable test case for AMO because it shows numerous fault

diffractions and because proper imaging of it requires 3-D prestack depth migration

(Hanson and Witney, 1995). Figure 5 shows an in-line geological section of the area of

the survey and the respective velocities of the layers. Figure 6 shows a common-offset

in-line section of the data set, at the offset of 1 km. The middle of the Jurassic layer,

above the salt swell is highly faulted; it creates the diffractions and fault reflections

visible in the middle of the section between 0.8 and 1.2 s. These reflections are affected

by shallow velocity variations created by variable thickness in the low-velocity Tertiary

sediments and in a high-velocity Cretaceous chalk layer; they are potential targets

for showing the advantages of applying AMO prior to partial stacking. The brighter

reflectors at around 1.6 s are generated at the salt-sediments interfaces. The fairly

steep reflections between 1.6 and 2 s, at the left edge of the section, are caused by the

flanks of the salt swells. These deeper reflections are affected not only by the shallow

velocity variations, but also by the high contrast in velocity between the Jurassic and

the Triassic layers.

The data-acquisition configuration was dual-source and triple streamer. The nom-

inal common-midpoint spacing was 9.375 m in the in-line direction, and 25 m in the

cross-line direction. The cable length was 2, 200 m with maximum feathering of

approximately 17 degrees. To make the data handling and processing quicker, we

processed only a subset of the whole data set. We windowed in time the data traces

up to 600 time-samples, for a maximum time of 2.4 s. We selected the central 512

midpoints in the in-line direction, for a total length of 4, 800 m, and 130 midpoints

in the cross-line, for a total width of 3, 250 m. Figure 7 shows the offset-azimuth

distribution of a small subset of the data traces. As it is typical for such acquisition

geometry, the figure shows six distinct trends, which are most distinguishable at small

offsets; each trend corresponding to individual source-streamer pairs.

To test the effects of AMO on the prestack data, we applied two distinct partial

stacking methods to the data: NMO followed by partial stacking (NMO-stacking);
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and NMO followed by AMO and partial stacking (NMO-AMO-stacking). To make

the comparison as fair as possible to the conventional methodology of simple NMO-

stacking, the traces after NMO were laterally interpolated in the midpoint direction

before they were stacked into the output cube. Our tests showed that this lateral

interpolation preserved the dipping events significantly better than a simple binning

procedure.

We applied partial stacking independently on six different subsets of the data.

The subsets were determined according to the absolute value of the offset. Each offset

range was 400 m wide, starting from zero. The boundaries between the offset ranges

are shown as vertical bars in Figure 7. For all offset ranges, the output data were

a regularly sampled cube with nominal offset equal to the midpoint of the range;

that is, 200, 600, 1, 000, 1, 400, 1, 800 and 2, 200 m. The number of traces input

into the partial-stacking process depended on the offset range; for example, for the

800−1, 200 m range the number of input traces was about 460, 000. The output cube

had 512 midpoints in the in-line direction, and 130 in the cross-line, for a total of

66, 560 output traces. Therefore, the data-reduction achieved by partial stacking is

approximately a factor of 7.

Before processing the data, we applied a hyperbolic mute with a sharp cut-off. To

assure the removal of the first arrival and some severely aliased noise at the far-offset,

we set the mute velocity slightly lower than water velocity. After muting, we applied

NMO with a velocity function varying with midpoint and time. The NMO velocity

function was given to us together with the data. No inverse NMO was applied to

the results before they were plotted, thus the reflection timings are equivalent “zero-

offset” times. Of course, inverse NMO must be applied before the AMO results are

input into a prestack depth migration.

In general, the wider the offset and the larger the azimuth rotation, the more

significant is the effect of AMO on the data. For the geometry of our data set,

the most significant effects are visible for the longer offset ranges, starting from the
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800 − 1, 200 m range. Figure 8 compares the results obtained with the two flows

described above, for the 800 − 1, 200 m offset range. The figure displays a window

of an in-line section, located at 19, 590 m along the cross-line axis and centered on

the fault blocks where the data show numerous high-frequency diffractions. Figure 8a

shows the section obtained by simple NMO-stacking, while Figure 8b shows the results

of NMO-AMO-stacking. As expected, the addition of AMO to the partial stacking

process preserves the diffractions much better than simple NMO. Figure 8c shows

the differences between the two sections; diffractions and fault reflections are clearly

evident.

Figure 9 compares the time slices cut at 1.068 s, for the same offset range (800−

1, 200 m) as in Figure 8. As in Figure 8, Figure 9a shows the results of NMO-

stacking, while Figure 9b shows the results of NMO-AMO-stacking. The difference

section (Figure 9c) clearly shows that the high-frequency diffractions were strongly

attenuated by the conventional process. The most evident differences tend to occur

for reflections that are oriented at an angle with respect to the in-line direction. This

observation is consistent with the fact that the conventional NMO-stacking process is

most inaccurate for reflections that are oblique with respect to the nominal azimuth;

the angle of maximum error is dependent on the reflector’s dip. Although there are

not many such reflections in this data set, which shows geological dips mostly aligned

along the in-line directions, the AMO process enhances the ones that are present.

Figure 10 compares the time slices cut at 1.1 s, for the next offset range, that

is, the 1, 200 − 1, 600 m range. For this offset range, as in the previous one, the

trend of diffractions from the fault blocks are strongly attenuated by the conventional

procedure of NMO followed by partial stacking. On the contrary, AMO preserves

these important events during the stacking procedure.

Figure 11 shows windows of an in-line section for the 1, 200−1, 600 m offset range.

This in-line section is located at 20, 940 m and centered around the salt-flank reflection

visible in the lower-left corner of Figure 6. The dipping salt flank reflection is better
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preserved by the application of AMO. Further, as for the shallower section, some

mildly dipping reflections appear to be “cleaner” after AMO. A possible explanation

for this phenomenon is that the incoherent stacking of the diffractions, and of other

steeply dipping reflections, contributes to the general level of background noise in the

data obtained by simple NMO-stacking.

DISCUSSIONS AND CONCLUSIONS

The AMO operator presented in this paper is a new partial prestack-migration

operator that can be efficiently applied to 3-D prestack seismic data to transform their

effective offset and azimuth. AMO is a generalization of the migration-to-zero-offset

operators (e.g. DMO) because it can transform data to arbitrary offsets as well as

azimuths.

To derive the AMO operator we analytically evaluated the operator equivalent to

applying a 3-D prestack imaging operator followed by 3-D prestack modeling opera-

tor. We used DMO chained with inverse DMO, and alternatively we used constant-

velocity full prestack migration chained with constant-velocity prestack modeling.

The constant-velocity assumption is necessary to an analytical derivation of the AMO

operator. However, because the same constant-velocity assumption is used for both

the forward and the inverse operator, AMO is correct at first order even in presence

of lateral velocity variations. The results of processing a marine data set demon-

strate that AMO can be effectively applied to data that were acquired over complex

structures and whose proper imaging requires 3-D prestack depth migration. Further

testing is necessary to validate its use in even more difficult situations.

This paper showed that the application of AMO improves the accuracy of partial

stacking 3-D data over a range of offsets. In particular, the high-frequency steeply-

dipping components of the reflected, or diffracted, energy benefit from the application

of AMO. These components are crucial for the correct interpretation of complex fault
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systems, as well as for high-resolution imaging of complex reservoirs. Partial stacking

is a valuable tool to reduce the cost of 3-D prestack depth migration because it reduces

the size of the data to be migrated. Therefore, AMO has the potential of reducing

the computational cost of 3-D prestack depth imaging, with only minimum influence

on the accuracy of the results.
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APPENDIX A–AMO AS A CHAIN OF DMO AND INVERSE DMO:

FREQUENCY-WAVENUMBER DOMAIN DERIVATION

The derivation of the AMO operator starts from the Fourier-domain formulation of

DMO (Hale, 1984) and “inverse” DMO (Ronen, 1987; Liner, 1990). However, because

3-D prestack data is often irregularly sampled, AMO is most conveniently applied as

an integral operator in the time-space domain. To derive a time-space representa-

tion of the AMO impulse response from its frequency-wavenumber representation, we

evaluate the stationary-phase approximation of the inverse Fourier transform along

the midpoint coordinates.

The DMO operator and its inverse (DMO−1) can be defined in the zero-offset

frequency ω0 and the midpoint wavenumber k as

DMO =
∫

dt1J1e
−iωot1

√
1+

(
k·h1
ωot1

)2

(A-1)

DMO−1 =
∫

dωoJ2e
+iωot2

√
1+

(
k·h2
ωot2

)2

. (A-2)

The AMO operator is given by the chaining of DMO and DMO−1; its impulse response

can be written as,

AMO =
1

4π2

∫
dke−ik·m

∫
dt1

∫
dωoJ1J2e

−iωo

(
t1

√
1+

(
k·h1
ωot1

)2

−t2

√
1+

(
k·h2
ωot2

)2

)
. (A-3)

The derivation of the stationary-phase approximation of the integral in dk is fairly

lengthy and complex. The following outline has a similar flavor to the stationary-

phase approximation of the conventional DMO impulse response presented in (Black

et al., 1993). We begin by changing the order of the integrals and rewriting (A-3) as

AMO =
1

4π2

∫
dt1

∫
dωo

∫
dk J1J2 ei[ωo(t1η1−t2η2)−k·∆m] .

(A-4)

The phase of this integral is,
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Φ ≡ ωo(t1η1 − t2η2) − k · ∆m, (A-5)

where,

η1 =

√√√√1 +

(
k.h1

ωot1

)2

and η2 =

√√√√1 +

(
k.h2

ωot2

)2

. (A-6)

Next we let

β1 =
h1.k

ωot1
and β2 =

h2.k

ωot2
. (A-7)

Therefore, η1 and η2 become

η1 =
√

1 + β2
1 and η2 =

√
1 + β2

2 . (A-8)

The derivatives of η1 and η2 with respect to the in-line component of the wavenumber

kx and the cross-line component ky can be written as

∂η1

∂kx

=
h1x

wot1

β1√
1 + β2

1

and
∂η2

∂kx

=
h2x

wot1

β2√
1 + β2

2

∂η1

∂ky

=
h1y

wot1

β1√
1 + β2

1

and
∂η2

∂ky

=
h2y

wot1

β2√
1 + β2

2

. (A-9)

Making one more change of variables, we let

ν1 =
β1√

1 + β2
1

and ν2 =
β2√

1 + β2
2

. (A-10)

Setting the derivative of the phase Φ to zero yields the system of equations:
h1xν1 − h2xν2 = ∆mx

h1yν1 − h2yν2 = ∆my

(A-11)

which we solve for ν1 and ν2 (i.e., η1 and η2) at the stationary path k0. The determi-

nant of the system is given by

∆ = h2xh1y − h1xh2y = h1h2 sin ∆θ, (A-12)

and the solutions for ν1 and ν2 are
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ν01 =
∆m sin(θ2 − ∆ϕ)

h1 sin ∆θ
, (A-13)

and

ν02 =
∆m sin(θ1 − ∆ϕ)

h2 sin ∆θ
. (A-14)

Now we need to evaluate the phase function Φ along the stationary path k0. By

respectively multiplying the equations in (A-11) by k0x and k0y and summing them

we obtain,

k0 · ∆m =
ωot1β01

2√
1 + β2

01

− ωot2β02
2√

1 + β2
02

. (A-15)

Substituting (A-15) into the expression for the phase function [equation (A-5)] we

obtain

Φ0 = ωo

 t1√
1 + β2

01

− t2√
1 + β2

02

 = ωo

(
t1
η01

− t2
η02

)
. (A-16)

The phase function along the stationary path is thus peaked for

t2 = t1
η02

η01

= t1

√
1 − ν2

01√
1 − ν2

02

. (A-17)

Substituting equations (A-13) and (A-14) into (A-17) we obtain (1) of the main text:

t2 = t1
h2

h1

√√√√h2
1 sin2 ∆θ − ∆m2 sin2(θ2 − ∆ϕ)

h2
2 sin2 ∆θ − ∆m2 sin2(θ1 − ∆ϕ)

. (A-18)

Next we derive an expression for the amplitudes of the AMO impulse response.

The general expression for the stationary-phase approximation of the k integral in

equation (A-3) is (Bleistein and Handelsman, 1975),

A ≈ 2πJ1J2∣∣∣det
(
C∼

)∣∣∣1/2
e

iΦ+sig

(
C∼

)
π
4 . (A-19)

Therefore we need to evaluate the determinant and the signature of the curvature

matrix C∼, which is defined as
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C∼ =

∣∣∣∣∣∣∣∣
∂2Φ
∂kx

2
∂2Φ

∂kx∂ky

∂2Φ
∂kx∂ky

∂2Φ
∂ky

2

∣∣∣∣∣∣∣∣ . (A-20)

Taking the second-order partial derivatives of Φ with respect to kx and ky and using

the definitions of β1 and β2 yields the following expressions for ∂2Φ
∂kx

2 ,
∂2Φ
∂ky

2 and ∂2Φ
∂kx∂ky

:

∂2Φ

∂kx
2 =

h1x
2

wot1
(1 − ν2

01)
3/2 − h2x

2

ωot2
(1 − ν2

02)
3/2

, (A-21)

∂2Φ

∂ky
2 =

h1y
2

wot1
(1 − ν2

01)
3/2 − h2y

2

ωot2
(1 − ν2

02)
3/2

, (A-22)

and

∂2Φ

∂kx∂ky
=

h1xh1y

wot1
(1 − ν2

01)
3/2 − h2xh2y

ωot2
(1 − ν2

02)
3/2

. (A-23)

With a little algebra, one may verify that the determinant of the curvature matrix

is

det(C) = − ∆2

|ωo|2 t1t2
(1 − ν2

01)
3/2

(1 − ν2
02)

3/2

= − ∆2

|ωo|2 t20
(1 − ν2

01)
2
(1 − ν2

02)
2
. (A-24)

We notice that the determinant of C∼, which is the product of the two eigenvalues

of C∼, is always negative; that is, that the two eigenvalues have opposite signs and

thus the signature of C∼, which is defined as the number of positive eigenvalues minus

the number of negative eigenvalues, is always null. Therefore, the second term of the

phase shift in equation (A-19) vanishes.

To obtain expressions for the AMO amplitude, we need to substitute equation (A-

24) into equation (A-19), together with the corresponding expressions for J1 and J2.

For the Jacobian J1 of the forward DMO we can use any of the Jacobians proposed

in the literature by Hale (1984), Zhang and Black (1988), and Bleistein (1990). The

Jacobian J2 of inverse DMO can be derived with Beylkin’s theory for the asymptotic

inverse of stacking operators (Beylkin, 1985; Cohen and Hagin, 1985). The expression

for the Jacobian of the asymptotic inverse for Hale’s DMO were derived by Liner and
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Cohen (1988). Chemingui and Biondi (1995) and Fowler (personal communication)

independently derived the inverse for Zhang-Black’s DMO. As mentioned in the main

text, we used Zhang-Black’s Jacobians for the actual application of AMO; that is,

J1 =
(1 + ν2

01)√
1 − ν2

01

, J2 = 1. (A-25)

Finally, after taking into account the Jacobian of the transformation from t1 to t0

(dt1 = dt0
√

1 − ν2
01) in the first integral of equation (A-4), we can write the amplitude

term for the AMO integral:

A ≈ |ωo| t0
2π∆

(1 + ν2
01)

(1 − ν2
01)(1 − ν2

02)
(A-26)

=
|ω2| t2
2π∆

(1 + ν2
01)

(1 − ν2
01)(1 − ν2

02)
. (A-27)

The last substitution, |ωo| t0 = |ω2| t2, enables us to apply the differentiation operator

|ω2| to the output data; this is correct because t0 and t2 are linked by the linear

relationship t0 = t2
√

1 − ν2
02.

The expression for the amplitudes presented in equation (5) of the main text

follows by substitution of the expressions for ∆, ν01, and ν02, from equations (A-

12), (A-13) and (A-14) into equation (A-27).

2-D AMO operator

When the input offset h1 is parallel to the output offset h2, the determinant

[equation (A-12)] of the system (A-11) is equal to zero. In this case, as we discussed

in the main text, the 3-D AMO operator degenerates into a 2-D operator. The fact

that the determinant of the system of equations is equal to zero means that the

two equations are linearly dependent, and that we are left with only one equation.

However, because the operator is two-dimensional, the number of components of

the unknown k0 also goes from two to one. Consequently, another stationary-phase

approximation to the AMO operator can be found. The new equation is a quartic,
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and unfortunately, we have not been able to solve this new equation analytically.

However, we have found the solution for the kinematics of the operator with the help

of Mathematica; the resulting expression for the 2-D AMO operator is presented in

equation (4) of the main text.
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APPENDIX B–AMO AS A CHAIN OF DMO AND INVERSE DMO:

TIME-SPACE DOMAIN DERIVATION

In this appendix, we present an alternative derivation of the AMO operator. The

entire derivation is carried out in the time-space domain. It applies the idea of

chaining DMO and inverse DMO, developed in appendix A, but uses the integral

formulation of DMO (Deregowski and Rocca, 1981; Deregowski, 1986; Hale, 1991) in

place of the frequency-domain DMO.

Let P1 (m1, t1;h1) be the input of an AMO operator (common-azimuth and com-

mon-offset seismic reflection data after normal moveout correction) and P2 (m2, t2;h2)

be the output. Then the three-dimensional AMO operator takes the following general

form:

P2 (m2, t2;h2) = |Dt2 |
∫ ∫

w12 (∆m,h1,h2, t2) P1 (m1, t2 σ12 (∆m,h1,h2) ; h1) dm1 ,

(B-1)

where |Dt2 | is the differentiation operator (equivalent to multiplication by |ω2| in the

frequency domain), ∆m = m2−m1 is the difference vector between the input and the

output midpoints, t2 σ12 is the summation path, and w12 is the weighting function.

To derive (B-1) in the time-space domain we chain an integral DMO operator of

the form

P0 (m0, t0;0) = D
1/2
−t0

∫
w10 (∆m10,h1, t0) P1 (m1, t0 σ10 (∆m10,h1) ;h1) dx̂1 (B-2)

with an inverse DMO of the form

P2 (m2, t2;h2) = D
1/2
t2

∫
w02 (∆m02,h2, t2) P0 (m0, t2 σ02 (∆m02,h2) ;0) dx̂0 . (B-3)

Where t0 σ10 and t2 σ02 are the summation paths of the DMO and inverse DMO

operators (Deregowski and Rocca, 1981):

σ10(∆m,h1) =
h1√

h2
1 − ∆m2

, σ02(∆m,h2) =

√
h2

2 − ∆m2

h2
; (B-4)
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w10 and w02 are the corresponding weighting functions (amplitudes of impulse re-

sponses); x̂1 is the component of m1 along the h1 azimuth; x̂0 is the component of

m0 along the h2 azimuth; and ∆m10 = m0 −m1, ∆m02 = m2 −m0. D1/2
t stands for

the operator of half-order differentiation (equivalent to the multiplication by (iω)1/2

in the Fourier domain).

Both DMO and inverse DMO operate as 2-D operators on 3-D seismic data,

because their apertures are defined on a line. This implies that for a given input

midpoint m1, the corresponding location of m0 must belong to the line going through

m1, with the azimuth θ1 defined by the input offset h1. Similarly, m0 must be on the

line going through m2 with the azimuth θ2 of h2. These geometrical considerations

lead us to the following conclusion: For a given pair of input and output midpoints

m1 and m2 of the AMO operator, the corresponding midpoint m0 on the intermediate

zero-offset gather is determined by the intersection of two lines drawn through m1

and m2 in the offset directions. Applying the geometric connection among the three

midpoints, we can find the chain of the DMO and inverse DMO operators in one step.

For this purpose, it is sufficient to notice that the angles in the triangle, formed by

the midpoints m1, m0, and m2, satisfy the law of sines:

∣∣∣∣ ∆m

sin ∆θ

∣∣∣∣ =

∣∣∣∣∣ ∆m10

sin(θ2 − ∆ϕ)

∣∣∣∣∣ =

∣∣∣∣∣ ∆m02

sin(θ1 − ∆ϕ)

∣∣∣∣∣ . (B-5)

Substituting equation (B-2) into (B-3), taking into account (B-5), and neglecting

the low-order asymptotic terms, produces the 3-D integral AMO operator (B-1),

where

σ12 (∆m,h1,h2) = σ02 (∆m02,h2) σ10 (∆m10,h1)

=
h1

h2

√√√√h2
2 − ∆m2

02

h2
1 − ∆m2

10

=
h1

h2

√√√√h2
2 sin2 ∆θ − ∆m2 sin2(θ1 − ∆ϕ)

h2
1 sin2 ∆θ − ∆m2 sin2(θ2 − ∆ϕ)

, (B-6)

and
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w12 (∆m,h1,h2, t2) =
w02 (∆m02,h2, t2) w10 [∆m10,h1, t2 σ02 (∆m02,h2)]

sin ∆θ
. (B-7)

Equation (B-6) is the reciprocal of, and thus equivalent to equation (1) in the main

text. The factor sin ∆θ in the denominator of the equation (B-7) appears as the result

of the midpoint-coordinate transformation dm1 = dx̂0 dx̂1 sin ∆θ.

The time-and-space analogue of amplitude-preserving DMO (Black et al., 1993)

has the weighting function

w10 (∆m10,h1, t0) =

√
t0
2 π

h2
1 + ∆m2

10

h1 (h2
1 − ∆m2

10)
(B-8)

while its asymptotic inverse has the weighting function

w02 (∆m02,h2, t2) =

√
t2
2 π

h2

(h2
2 − ∆m2

02)
. (B-9)

Inserting (B-8) and (B-9) into (B-7), and using the equality
√

D−t2t2 =
√

D−t0t0,

similarly to appendix A, yields

w12 (∆m,h1,h2, t2) =

t2
2 π h1h2 sin ∆θ

1 + ∆m2 sin2(θ2−∆ϕ)
h2
1 sin2 ∆θ(

1 − ∆m2 sin2(θ2−∆ϕ)
h2
1 sin2 ∆θ

) (
1 − ∆m2 sin2(θ1−∆ϕ)

h2
2 sin2 ∆θ

) , (B-10)

which is equivalent to equation (5) in the main text.

2-D AMO operator

When the input-offset vector h1 is parallel to the output-offset vector h2, the

triangle m1-m0-m2, formed by the midpoints of the input trace, zero-offset trace,

and output trace, degenerates to a line. The location of the zero-offset midpoint m0

is not constrained by the input and output midpoints and can take different values

on the line. The chain of DMO and inverse DMO becomes a convolution on that line.

To find the summation path of 2-D AMO (offset continuation), one needs to consider

the envelope of the family of traveltime curves, where m0 is the parameter of a curve

in the family:
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t1 = t2 σ12 (m1, m2, h1, h2) = t2

∣∣∣∣∣h1

h2

∣∣∣∣∣
√√√√h2

2 − (m2 − m0)
2

h2
1 − (m1 − m0)

2 . (B-11)

Solving the envelope condition ∂σ12

∂m0
= 0 for the zero-offset midpoint m0 produces

m0 =
(∆m)2 + h2

2 − h2
1 + sign (h2

1 − h2
2)

√(
(∆m)2 − h2

1 − h2
2

)2
− 4 h2

1 h2
2

2 (∆m)
, (B-12)

where ∆m = m1 − m2. Substituting (B-12) into (B-11), we obtain the explicit

expression (4) for the offset continuation summation path.
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APPENDIX C–AMO APERTURE: CHAINING MIGRATION AND

MODELING

Chaining DMO and inverse DMO allowed the analytical evaluation of the AMO

operator’s summation path and the corresponding weighting function. However, this

procedure is not sufficient for evaluating the third major component of the integral

operator; that is, its aperture (range of integration). To solve this problem, we define

AMO as the chain of the 3-D common-offset common-azimuth migration and the 3-D

modeling for a different azimuth and offset.

The impulse response of common-offset common-azimuth migration is a symmetric

ellipsoid with the center in the input midpoint and axis of symmetry along the input-

offset direction. Such an ellipsoid is described by the general formula

z(m) =

√√√√R2 − ∆m2 + γ
(∆m · h1)

2

h2
1

, (C-1)

where z is the depth coordinate, m is the surface coordinate, ∆m = m−m1, R is the

small semi-axis of the ellipsoid, and γ is a nondimensional parameter describing the

stretching of the ellipse (γ < 1). Deregowski and Rocca (1981) derived the following

connections

R =
v t1
2

and γ =
4 h1

2

v2

t21 + 4 h1
2

v2

, (C-2)

between the geometric properties of the reflector and the coordinates of the corre-

sponding impulse in the data: where v is the propagation velocity.

The impulse response of the AMO operator corresponds kinematically to the re-

flections from the ellipsoid defined by equation (C-1) to a different azimuth and

different offset. To constrain the AMO aperture, we should look for the answer to the

following question: For a given elliptic reflector defined by the input midpoint, offset,

and time coordinates, what points on the surface can form a source-receiver pair valid

for a reflection? If a point in the output midpoint-offset space cannot be related to

a reflection pattern, it should be excluded from the AMO aperture.
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Fermat’s principle provides a general method of solving the kinematic reflection

problem (Goldin, 1986). The formal expression for the two-point reflection traveltime

is given by

t2 =

√
(s2 − m)2 + z2(m)

v
+

√
(r2 − m)2 + z2(m)

v
, (C-3)

where m is the vertical projection of the reflection point to the surface, s2 is the

source location, and r2 is the receiver location for the output trace. According to

Fermat’s principle, the reflection raypath between two fixed points must correspond

to the extremum value of the traveltime. Hence, in the vicinity of a reflected ray,

∂t2
∂m

= 0 . (C-4)

Solving equation (C-4) for m allows us to find the reflection raypath for a given

source-receiver pair on the surface.

To find the solution of (C-4), it is convenient to decompose the reflection-point

projection m into three components: m = m1 + m‖ + m⊥, where m‖ is parallel to

the input offset vector h1, and m⊥ is perpendicular to h1. The plane, drawn through

the reflection point and the central line of ellipsoid (C-1), must contain the zero-offset

(normally reflected) ray because of the cylindrical symmetry of the reflector. The fact

that the zero-offset ray is normal to the reflector gives us the following connection

m0 = (m1 + m‖) + z
(
m1 + m‖

) ∂z

∂
(
m1 + m‖

) = m1 + γ m‖ , (C-5)

between the zero-offset midpoint m0 and the m‖ component of the reflection point

m. Equation (C-5) evaluates m‖ in terms of m0, as follows:

m‖ =
∆m10

γ
. (C-6)

where the length of the vector ∆m10 = m0−m1 can be determined from equation (B-

5) for any given input and output midpoints m1 and m2 and azimuths θ1 and θ2.

To find the third component of the reflection point projection (m⊥), we substitute

expression (C-6) into (C-3). Choosing a convenient parameterization s2 = m0 + hs
2,
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r2 = m0 + hr
2, where hr

2 − hs
2 = 2h2, and hr

2 + hs
2 = 2∆m02 = 2 (m2 − m0), we can

rewrite the two-point traveltime function from (C-3) in the form

t2 =

√
R2 − γ (1 − γ)m2

‖ + (hs
2)2 − 2hs

2 ·
(
m⊥ + (1 − γ)m‖

)
v

+

√
R2 − γ (1 − γ)m2

‖ + (hr
2)2 − 2hr

2 ·
(
m⊥ + (1 − γ)m‖

)
v

. (C-7)

Fermat’s principle (C-4) leads to a simple linear equation for the length of m⊥, which

has the explicit solution

m⊥ = (γ − 1) m‖ cot (θ2 − θ1) −
h2

(
R2 − γ (1 − γ)m2

‖

)
(
h2

2 − (∆m02)
2
)

sin (θ2 − θ1)
, (C-8)

where m‖ is defined by (C-6), and ∆m02 satisfies relationship (B-5).

Because the reflection point is contained inside the ellipsoid, its projection obeys

the inequality

z2(m) = R2 − m2
⊥ − (1 − γ) m2

‖ ≥ 0 , (C-9)

that defines the aperture of the AMO operator. After transformation (6) and algebraic

simplifications, it takes the form of inequality (13), which is convenient for an efficient

implementation of AMO.
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FIGURES

FIG. 1. The full AMO impulse response (Vmin � 0) when t1 = 1 s, h1 = 2 km,

h2 = 1.8 km, θ1 = 0◦, θ2 = 30◦.

FIG. 2. The maximum spatial support of the AMO operator (shaded parallelogram)

in the midpoint plane (∆mx, ∆my), as a function of the input offset h1, and the out-

put offset h2.

FIG. 3. The effective AMO impulse response when Vmin = 2 km/s, and t1 = 1 s,

h1 = 2 km, h2 = 1.8 km, θ1 = 0◦, θ2 = 30◦. Compare with Figure 1.

FIG. 4. The geometric relationship between the unit vectors ξ1 and ξ2 of the trans-

formed midpoint-coordinate axes, and the input offset h1 and the output offset h2.

FIG. 5. Geological in-line section and corresponding velocities of layers. From (Han-

son and Witney, 1995).

FIG. 6. In-line section of the North Sea data set used for testing AMO.

FIG. 7. Offset-azimuth distribution of the test data set. The vertical bars show

the boundaries among the offset ranges that were used for partial stacking.

FIG. 8. In-line sections (19, 590 m) for the 800 − 1, 200 m offset range, obtained

by a) NMO-stacking, b) NMO-AMO-stacking, c) subtracting a) from b).

FIG. 9. Time slices (1.068 s) for the 800 − 1, 200 m offset range, obtained by a)

NMO-stacking, b) NMO-AMO-stacking, c) subtracting a) from b).
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FIG. 10. Time slices (1.068 s) for the 1, 200 − 1, 600 m offset range, obtained by

a) NMO-stacking, b) NMO-AMO-stacking, c) subtracting a) from b).

FIG. 11. In-line sections (20, 940 m) for the 1, 200 − 1, 600 m offset range, obtained

by a) NMO-stacking, b) NMO-AMO-stacking, c) subtracting a) from b).
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FIG. 1. The full AMO impulse response (Vmin � 0) when t1 = 1 s, h1 = 2 km,

h2 = 1.8 km, θ1 = 0◦, θ2 = 30◦.
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FIG. 2. The maximum spatial support of the AMO operator (shaded parallelogram) in

the midpoint plane (∆mx,∆my), as a function of the input offset h1, and the output offset

h2.
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FIG. 3. The effective AMO impulse response when Vmin = 2 km/s, and t1 = 1 s,

h1 = 2 km, h2 = 1.8 km, θ1 = 0◦, θ2 = 30◦. Compare with Figure 1.
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FIG. 4. The geometric relationship between the unit vectors ξ1 and ξ2 of the transformed

midpoint-coordinate axes, and the input offset h1 and the output offset h2.
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FIG. 5. Geological in-line section and corresponding velocities of layers. From (Hanson

and Witney, 1995).
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FIG. 6. In-line section of the North Sea data set used for testing AMO.
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FIG. 7. Offset-azimuth distribution of the test data set. The vertical bars show the

boundaries among the offset ranges that were used for partial stacking.
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FIG. 8. In-line sections (19, 590 m) for the 800 − 1, 200 m offset range, obtained by a)

NMO-stacking, b) NMO-AMO-stacking, c) subtracting a) from b).
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FIG. 9. Time slices (1.068 s) for the 800 − 1, 200 m offset range, obtained by a)

NMO-stacking, b) NMO-AMO-stacking, c) subtracting a) from b).
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FIG. 10. Time slices (1.068 s) for the 1, 200 − 1, 600 m offset range, obtained by a)

NMO-stacking, b) NMO-AMO-stacking, c) subtracting a) from b).
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FIG. 11. In-line sections (20, 940 m) for the 1, 200 − 1, 600 m offset range, obtained by

a) NMO-stacking, b) NMO-AMO-stacking, c) subtracting a) from b).
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