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ABSTRACT

Subsalt imaging is strongly dependent on the quality of the velocity model. However, rugose salt bod-

ies complicate wavefield propagation and lead to subsalt multipathing, illumination gaps and shadow

zones which cannot be handled correctly by conventional traveltime-based migration velocity anal-

ysis. We overcome these limitations by the wave-equation migration velocity analysis technique

introduced in a companion paper (Sava and Biondi, 2004) and demonstrate the methodology on a re-

alistic synthetic dataset simulating a salt dome environment and a Gulf of Mexico dataset. We model

subsalt propagation using wavepaths created by one-way wavefield extrapolation. Those wavepaths

are much more accurate and robust than broadband rays, since they inherit the frequency dependence

and multipathing of the underlying wavefield. We formulate an objective function for optimization in

the image space by relating an image perturbation to a perturbation of the velocity model. The image

perturbations are defined using linearized prestack residual migration, thus ensuring stability relative

to the first-order Born approximation assumptions. Synthetic and real data examples demonstrate

that wave-equation MVA is an effective tool for subsalt velocity analysis, even when shadows and

illumination gaps are present.
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INTRODUCTION

Depth imaging of complex structures depends on the quality of the velocity model. However, con-

ventional Migration Velocity Analysis (MVA) procedures often fail when the wavefield exhibits com-

plex multi-pathing caused by strong lateral velocity variations. Imaging under rugged salt bodies is

an important case when ray-based MVA methods are not reliable. Sava and Biondi (2004) present

the theory and the methodology of an MVA procedure based on wavefield extrapolation with the

potential of overcoming the limitations of ray-based MVA methods. In this paper, we present the

application of the proposed procedure to Sigsbee 2A, a realistic and challenging 2-D synthetic data

set created by the SMAART JV (Paffenholz et al., 2002), and to a 2-D of a 3-D real dataset from the

Gulf of Mexico.

Many factors determine the failure of ray-based MVA in a sub-salt environment. Some of them

are successfully addressed by our Wave-Equation MVA (WEMVA) method, whereas others, for ex-

ample the problems that are caused by essential limitations of the recorded reflection data, are only

partially solved by WEMVA.

An important practical difficulty encountered when using rays to estimate velocity below rugose

salt bodies is the instability of ray tracing. Rough salt topology creates poorly illuminated areas,

or even shadow zones, in the subsalt region. The spatial distribution of these poorly illuminated

areas is very sensitive to the velocity function. Therefore, it is often extremely difficult to trace rays

connecting a given point in the poorly illuminated areas with a given point at the surface (two-point

ray-tracing). Wavefield extrapolation methods are robust with respect to shadow zones and they

always provide wavepaths usable for velocity inversion.

A related and more fundamental problem with ray-based MVA, is that rays poorly approximate

actual wavepaths when a band-limited seismic wave propagates through a rugose top of the salt.
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Figure 1 illustrates this issue by showing three band-limited (1 − 26 Hz) wavepaths, also known in

in the literature as fat rays or sensitivity kernels (Woodward, 1992; Pratt, 1999; Dahlen et al., 2000).

Each of these three wavepaths is associated with the same point source located at the surface but

corresponds to a different sub-salt “event”. The top panel in Figure 1 shows a wavepath that could

be reasonably approximated using the method introduced by Lomax (1994) to trace fat rays using

asymptotic methods. In contrast, the wavepaths shown in both the middle and bottom panels in

Figure 1 cannot be well approximated using Lomax’ method. The amplitude and shapes of these

wavepaths are significantly more complex than a simple fattening of a geometrical ray could ever

describe. The bottom panel illustrates the worst-case-scenario situation for ray-based tomography

because the variability of the top salt topology is at the same scale as the spatial wavelength of the

seismic wave. The fundamental reason why true wavepaths cannot be approximated using fattened

geometrical ray is that they are frequency dependent. Figure 2 illustrates this dependency by depicting

the wavepath shown in the bottom panel of Figure 1 as a function of the temporal bandwidth: 1−5 Hz

(top), 1 − 16 Hz (middle), and 1 − 64 Hz (bottom). The width of the wavepath decreases as the

frequency bandwidth increases, and the focusing/defocussing of energy varies with the frequency

bandwidth.

The limited and uneven “illumination” of both the reflectivity model and the velocity model in

the subsalt region is a challenging problem for both WEMVA and conventional ray-based MVA (see

Figure 7 for an example of this problem). For the reflectors under salt, the angular bandwidth is

drastically reduced in the Angle Domain Common Image Gathers (ADCIGs). This phenomenon

is caused by a lack of oblique wavepaths in the subsalt, which deteriorates the “sampling” of the

velocity variations in the subsalt. Consequently, the velocity inversion is more poorly constrained in

the subsalt sediments than in the sediments on the side of the salt body.

Uneven illumination of subsalt reflectors is even more of a challenge than reduced angular cover-
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age. It makes the velocity information present in the ADCIGs less reliable by causing discontinuities

in the reflection events and creating artifacts. MVA methods assume that when the migration velocity

is correct, events are flat in ADCIGs along the aperture-angle axis. Velocity updates are estimated

by minimizing curvature of events in ADCIGs. MVA methods may provide biased estimates where

uneven illumination creates events that are bending along the aperture-angle axis, even where the

image is created with correct velocity. We address this issue by weighting the image perturbations

before inverting them into velocity perturbations. Our weights are function of the “reliability” of the

moveout measurements in the ADCIGs.

WAVE-EQUATION MVA ALGORITHM

In this section, we briefly summarize the theory of wave-equation migration velocity analysis (WEMVA).

In contrast with the companion paper (Sava and Biondi, 2004), we avoid mathematic detail and con-

centrate on the principles on which WEMVA is developed. Therefore, this section complements the

theory presented in Sava and Biondi (2004), and is designed as a quick introduction to WEMVA for

the reader less interested in mathematic detail.

The computation of the velocity updates from the results of migrating the data with the current

(background) velocity model comprises three main components that are summarized by the flow-

chart in Figure 3. The three components are labeled as A, B and C on the chart. Box A corresponds

to the computation of the background wavefield, based on the surface data and background slowness.

Boxes B and C correspond respectively to the forward and adjoint WEMVA operator.

The data recorded at the surface (D) are downward continued using wavefield extrapolation to all

depth levels using the background slowness (S), to generate a background wavefield (U). The known

background slowness (S) can incorporate lateral variations. Extrapolation can be done with kernels
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corresponding to such methods as Fourier finite-difference (Ristow and Ruhl, 1994), or generalized

screen propagator (Rousseau et al., 2003). From the extrapolated wavefield, we can construct the

background image (R) by applying a standard imaging condition, for example a simple summation

over frequencies.

The background wavefield (U) is an important component of the WEMVA operator. This wave-

field plays a role analogous to the one played in traveltime tomography by the ray-field obtained by

ray tracing in the background model. The wavefield is the carrier of information and defines the

wavepaths along which we spread the velocity errors measured from the migrated images obtained

using the background slowness function. The wavefield is band limited, unlike a ray-field which de-

scribes propagation of waves with an infinite frequency band. Therefore, the background wavefield

provides a more accurate description of wave propagation through complicated media than a corre-

sponding ray-field (Figures 1 and 2). Typical examples are salt bodies characterized by large velocity

contrasts where ray tracing is both unstable and inaccurate.

When evaluating the forward operator (Box B), the background wavefield (U) interacts with a

slowness perturbation (dS) and generates a scattered wavefield (dW) at every depth level. In our

method, scattering is based on the first-order Born approximation, which assumes perturbations to

be small both in size and magnitude. This approximation is appropriate, because scattering occurs

independently at every depth level. The contribution to the scattered wavefield, is added at each

depth level, and the total scattered wavefield (dU) is extrapolated to depth, using the same numerical

propagator as the one used to extrapolate the background wavefield from the surface data. There-

fore, the wavefield perturbation at any depth level contains the accumulated effects of scattering and

extrapolation from all the levels above it. Finally, we apply an imaging condition to the wavefield

perturbation (dU) and obtain an image perturbation (dR) corresponding to the slowness perturbation

(dS) and the background wavefield (U).
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In migration velocity analysis, we are interested in the inverse process, where we take an im-

age perturbation (dR) and construct a slowness perturbation (dS). We obtain image perturbations via

image enhancement operators (residual moveout, residual migration etc.) applied to the background

image (R). Since the scattering operator is based on the Born approximation, we need to take spe-

cial precautions to avoid cycle-skipping of phase function. We overcome the Born approximation

limitations by using linearized image perturbations, as described by Sava and Biondi (2004).

To invert the linearized image perturbation into slowness updates by an iterative algorithm, such

as conjugate gradient (Golub and Loan, 1983), we need to evaluate the adjoint WEMVA operator

(Box C) as well as the forward operator. From the image perturbation (dR), we construct an adjoint

wavefield perturbation (dU) by applying the adjoint imaging operator. This wavefield is then up-

ward continued to all levels and an adjoint scattered wavefield (dW’) is isolated. Finally, using the

background wavefield (U), we generate the adjoint slowness perturbation (dS’).

Figures 4 and 5 illustrate the flow-chart in Figure 3 by showing its application to two simple

examples. In the first example (Figure 4), we use a monochromatic wavefield, whereas in the second

one (Figure 5), we use a wide-band wavefield. For both examples the data are recorded above a planar

horizontal reflector.

Figure 4a shows a snapshot (taken at time zero) of the monochromatic background wavefield

obtained by downward continuation of an incident plane wave in a constant medium. Figure 4b

shows a slowness perturbation, that under the influence of the incident wavefield (a), generates a

wavefield perturbation (c). The snapshots at zero time shown in panels (a) and (c) can also be regarded

as images. Finally, we back-propagate the image perturbation (c) and obtain the adjoint slowness

perturbation (d).

Figure 5 shows the analogous panels shown Figure 4, but for wide-band data. Figure 5a shows
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the image obtained by wavefield extrapolation of a wide-band plane wave in the background medium.

From the same slowness perturbation (b) as in the preceding example, we obtain an image perturba-

tion (c), from which we generate an adjoint slowness perturbation (d) using the background wavefield

used to compute the background image.

SUBSALT WAVE-EQUATION MVA

We demonstrate our WEMVA method using synthetic and real datasets corresponding to subsalt

environments.

Synthetic example

First, we illustrate our method with a realistic and challenging synthetic data set created by the

SMAART JV (Paffenholz et al., 2002). We have used the same model for our sensitivity kernel

analysis in the introduction to this paper (Figures 1 and 2). In this section, we concentrate on the

lower part of the model, under the salt body. The top panel in Figure 6 shows the background slow-

ness model, and the bottom panel shows the slowness perturbation of the background model relative

to the correct slowness. Thus, we simulate a common subsalt velocity analysis situation where the

shape of the salt is known, but the smoothly varying slowness subsalt is not fully known. Throughout

this example, we denote horizontal location by x and depth by z.

The original data set was computed with a typical marine off-end recording geometry. Prelimi-

nary studies of the data demonstrated that in some areas the complex overburden causes events to be

reflected with negative reflection angle (i.e. the source and receiver wavepaths cross before reach-

ing the reflector). To avoid losing these events we applied the reciprocity principle and created a

split-spread data set from the original off-end data set. This modification of the data set enabled us
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to compute symmetric ADCIGs that are easier to visually analyze than the typical one-sided AD-

CIGs obtained from marine data. Therefore, we display the symmetric ADCIGs in Figure 9 and

Figures 13-15. Doubling the dataset also doubles the computational cost of our process.

Figure 7 shows the migrated image using the correct slowness model. The top panel shows the

zero offset of the prestack migrated image, and the bottom panel depicts ADCIGs at equally spaced

locations in the image. Each ADCIG corresponds roughly to the location right above it.

This image highlights several characteristics of this model that make it a challenge for migration

velocity analysis. Most of them are related to the complicated wavepaths in the subsurface under

rough salt bodies. First, the angular coverage under salt (x > 11 km) is much smaller than in the

sedimentary section uncovered by salt (x < 11 km). Second, the subsalt region is marked by many

illumination gaps or shadow zones, the most striking being located at x = 12 and x = 19 km. The

main consequence is that velocity analysis in the poorly illuminated areas are much less constrained

than in the well illuminated zones, as will become apparent later on in our example.

We begin by migrating the data with the background slowness (Figure 8). As before, the top panel

shows the zero offset of the prestack migrated image, and the bottom panel depicts angle-domain

common image gathers at equally spaced locations in the image. Since the migration velocity is

incorrect, the image is defocused and the angle-gathers show significant moveout. Furthermore, the

diffractors at depths z = 7.5 km, and the fault at x = 15 km are defocused.

As described by Sava and Biondi (2004), we run prestack Stolt residual migration for various

values of a velocity ratio parameter ρ between 0.9 and 1.6, which ensures that a fairly wide range

of the velocity space is spanned. Although residual migration operates on the entire image globally,

for display purposes we extract one gather at x = 10 km. Figure 9 shows at the top the ADCIGs

for all velocity ratios and at the bottom the semblance panels computed from the ADCIGs. We pick
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the maximum semblance at all locations and all depths (Figure 10), together with an estimate of the

reliability of every picked value which we use as a weighting function on the data residuals during

inversion.

Based on the picked velocity ratio, we compute the linearized differential image perturbation, as

described in the preceding sections. Next, we invert for the slowness perturbation depicted in the

bottom panel of Figure 11. For comparison, the top panel of Figure 11 shows the correct slowness

perturbation relative to the correct slowness. We can clearly see the effects of different angular

coverage in the subsurface: at x < 11 km, the inverted slowness perturbation is better constrained

vertically than it is at x > 11 km.

Finally, we update the slowness model and remigrate the data (Figure 12). As before, the top

panel shows the zero offset of the prestack migrated image, and the bottom panel depicts angle-

domain common image gathers at equally spaced locations in the image. With this updated velocity,

the reflectors have been repositioned to their correct location, the diffractors at z = 7.5 km are focused

and the ADCIGs are flatter than in the background image, indicating that our slowness update has

improved the quality of the migrated image.

Figures 13-15 show a more detailed analysis of the results of our inversion displayed as ADCIGs

at various locations in the image. In each figure, the panels correspond to migration with the correct

slowness (left), the background slowness (center), and the updated slowness (right). Figure 13 cor-

responds to an ADCIG at x = 8 km, in the region which is well illuminated. The angle gathers are

clean, with clearly identifiable moveouts that are corrected after inversion. Figure 14 corresponds to

an ADCIG at x = 10 km, in the region with illumination gaps, clearly visible on the strong reflector at

z = 9 km at a scattering angle of about 20◦. The gaps are preserved in the ADCIG from the image mi-

grated with the background slowness, but the moveouts are still easy to identify and correct. Finally,
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Figure 15 corresponds to an ADCIG at x = 12 km, in a region which is poorly illuminated. In this

case, the ADCIG is much noisier and the moveouts are harder to identify and measure. This region

also corresponds to the lowest reliability, as indicated by the low weight of the picks (Figure 10). The

gathers in this region contribute less to the inversion and the resulting slowness perturbation is mainly

controlled by regularization. Despite the noisier gathers, after slowness update and re-migration we

recover an image reasonably similar to the one obtained by migration with the correct slowness.

A simple visual comparison of the middle panels with the right and left panels in Figures 13-

15 unequivocally demonstrates that our WEMVA method overcomes the limitations related to the

linearization of the wave equation by using the first-order Born approximation. The images obtained

using the initial velocity model (middle panels) are vertically shifted by several wavelengths with

respect to the images obtained using the true velocity (left panels) and the estimated velocity (right

panels). If the Born approximation were a limiting factor for the magnitude and spatial extent of the

velocity errors that could be estimated with our WEMVA method, we would have been unable to

estimate a velocity perturbation sufficient to improve the ADCIGs from the middle panels to the right

panels.

Field data example

Our next example concerns a 2-D line extracted from a 3-D subsalt dataset from the Gulf of Mexico.

We follow the same methodology as the one used for the preceding synthetic example. In this case,

however, we run several non-linear iterations of WEMVA, each involving wavefield linearization,

residual migration and inversion.

Figure 16 (top) shows the image migrated with the background velocity superimposed on the

background slowness. This image serves as a reference against which we check the results of our
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velocity analysis. Two regions of interest are labeled A and B in the figure. The right edge of the

model corresponds to a salt body. The top edge of the image is not at the surface, because we have

datumed the surface data to a depth below the well-imaged overhanging salt body.

As for the preceding example, we run residual migration and analyze the moveouts of ADCIGs.

Figure 17 shows this analysis at one location in the left part of the model. The left panel shows this

ADCIG changing according to the velocity ratio parameter, while the right panel shows the semblance

scan corresponding to each of these ratios. The overlain line is a pick of maximum semblance,

indicating the flattest ADCIG at every depth level. This analysis is repeated at every location from

which we obtain two maps: a map of the residual migration parameter at every location in the image

(Figure 16, middle), and a map of the weight indicating the reliability of the picks (Figure 16, bottom).

The residual migration parameter is plotted relative to 1 (indicated in white), therefore the whiter the

map, the flatter the ADCIGs. Overlain is the stack of the background images for visual identification

of image features. Next, we generate an image perturbation based on the residual migration picks in

Figure 16 (middle) and invert for slowness perturbation using the weights in Figure 16 (bottom) as

an approximation for the inverse data covariance matrix.

The results obtained after two non-linear iterations of WEMVA are shown in Figures 18 and 19.

As for Figure 16, the three panels show the migrated image superimposed on slowness (top), residual

migration picks (middle), and pick weights (bottom). Two regions in which changes occur are labeled

A and B.

For both iterations 1 and 2, the residual migration picks converge toward 1, indicating flatter

ADCIGs, therefore better focused images. Reflectors in both regions shift vertically, according to

the slowness changes. A notable feature is the improved continuity of the strongest reflectors in the

region labeled B.
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Both image improve after migration with the updated slownesses from WEMVA. However, there

are regions where the image changes are small, if at all present. For example, the region to the left of

“B”, which corresponds to a shadow zone caused by the salt structure in the upper part of the model,

does not change. Better velocity could be estimated in this region with 3-D data, since the shadow

zones have three-dimensional expressions.

CONCLUSIONS

Subsalt imaging is one of the most challenging problems of modern seismic imaging because the

sharp and irregular salt-sediments interface causes multipathing and uneven illumination. Wavefield-

continuation migration methods produce high-quality images under salt, but the estimation of the

migration velocity function in the subsalt is an unresolved problem. Conventional MVA methods

based on traveltimes computed by ray tracing often fail to provide reliable velocity estimates because

ray tracing is unstable and sensitive to the fine details of the salt-sediment interface.

In this paper, we demonstrate that the Wave-Equation Migration Velocity Analysis (WEMVA)

method (Sava and Biondi, 2004) overcomes many of the problems encountered by ray-based MVA

methods when estimating velocity under salt. We use a complex and realistic subsalt datasets to test

our methodology. We also illustrate with numerical examples that wavepaths computed by wavefield

extrapolation are robust with respect to shadow zones, and they model the finite-frequency wave

propagation that occurs in such environments better than rays do. We demonstrate that velocity

errors can be effectively measured by residual migration scans. These scans provide useful velocity

information almost in all the subsalt areas, although the reliability of these measurements decreases

where poor illumination drastically deteriorates the quality of the Angle Domain Common Image

Gathers.
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To verify that our proposed methodology is capable of overcoming the limitations of the first-

order Born approximation, we test the convergence of WEMVA in presence of large velocity anoma-

lies. The magnitude and spatial extents of the anomalies are such that reflectors in the migrated

images shift by several wavelengths. Notwithstanding these large shifts, WEMVA converges to an

accurate approximation of the true velocity function. Further tests of our WEMVA method on other

real datasets are required; however, we believe that such a robust velocity analysis method is an

important step forward toward a solution to the subsalt imaging challenges.
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LIST OF FIGURES

1 Wave paths for frequencies between 1 and 26 Hz for various locations in the image and a

point on the surface. Each panel is an overlay of three elements: the slowness model, the wavefield

corresponding to a point source on the surface at x = 16 km, and wave paths from a point in the

subsurface to the source.

2 Frequency dependence of wave paths between a location in the image and a point on the

surface. Each panel is an overlay of three elements: the slowness model, the wavefield corresponding

to a point source on the surface at x = 16 km, and wave paths from a point in the subsurface to the

source. The different wave paths correspond to frequency bands of 1−5 Hz (top), 1−16 Hz (middle)

and 1−64 Hz (bottom). The larger the frequency band, the narrower the wave-path. The end member

for an infinitely wide frequency band corresponds to an infinitely thin geometrical ray.

3 WEMVA flowchart. Box A: the data recorded at the surface (D) are extrapolated in depth

using the background slowness (S), generating the background wavefield (U); we transform the back-

ground wavefield (U) into the background image (R) using an imaging operator. Box B: the back-

ground wavefield (U) interacts with a slowness perturbation (dS) generating a scattered wavefield

(dW); after depth extrapolation, we accumulate the scattered wavefield into a wavefield perturbation

(dU); we transform the wavefield perturbation (dU) into an image perturbation (dR) using an imaging

operator. Box C: we transform the image perturbation (dR) into a wavefield perturbation (dU’) using

the adjoint of the imaging operator; we upward continue the adjoint wavefield perturbation (dU’) and,

at every depth level, we isolate an adjoint scattered wavefield (dW’); using the background wavefield

(U), we transform the adjoint scattered wavefield into an adjoint slowness perturbation (dS’).

4 Monochromatic WEMVA example: background wavefield (a), slowness perturbation (b),

wavefield perturbation (c), slowness backprojection (d).
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5 Wide-band WEMVA example: background image (a), slowness perturbation (b), image

perturbation (c), slowness backprojection (d).

6 Sigsbee 2A synthetic model. The background slowness model (top) and the correct slow-

ness perturbation (bottom).

7 Migration with the correct slowness. Sigsbee 2A synthetic model. The zero offset of the

prestack migrated image (top) and angle-domain common image gathers at equally spaced locations

in the image (bottom). Each ADCIG corresponds roughly to the location right above it.

8 Migration with the background slowness. Sigsbee 2A synthetic model. The zero offset of

the prestack migrated image (top) and angle-domain common image gathers at equally spaced loca-

tions in the image (bottom). Each ADCIG corresponds roughly to the location right above it.

9 Residual migration for a CIG at x = 10 km. Sigsbee 2A synthetic model. The top panel

depicts angle-domain common-image gathers for all values of the velocity ratio, and the bottom panel

depicts semblance panels used for picking. All gathers are stretched to eliminate the vertical move-

ment corresponding to different migration velocities. The overlain line indicates the picked values at

all depths.

10 Sigsbee 2A synthetic model. The top panel depicts the velocity ratio difference 1ρ = 1−ρ

at all locations, and the bottom panel depicts a weight indicating the reliability of the picked values

at every location. The picks in the shadow zone around x = 12 km are less reliable than the picks in

the sedimentary region around x = 8 km. All picks inside the salt are disregarded.

11 Sigsbee 2A synthetic model. The correct slowness perturbation (top) and the inverted slow-

ness perturbation (bottom).

12 Migration with the updated slowness. Sigsbee 2A synthetic model. The zero offset of the

prestack migrated image (top) and angle-domain common image gathers at equally spaced locations

in the image (bottom). Each ADCIG corresponds roughly to the location right above it.

16



13 Angle-domain common-image gathers at x = 8 km. Sigsbee 2A synthetic model. Each

panel corresponds to a different migration velocity: migration with the correct velocity (left), migra-

tion with the background velocity (center) and migration with the updated velocity (right).

14 Angle-domain common-image gathers at x = 10 km. Sigsbee 2A synthetic model. Each

panel corresponds to a different migration velocity: migration with the correct velocity (left), migra-

tion with the background velocity (center) and migration with the updated velocity (right).

15 Angle-domain common-image gathers at x = 12 km. Sigsbee 2A synthetic model. Each

panel corresponds to a different migration velocity: migration with the correct velocity (left), migra-

tion with the background velocity (center) and migration with the updated velocity (right).

16 Gulf of Mexico data. Migrated image superimposed on slowness (top), residual migration

picks (middle), and picking weight (bottom). The migration corresponds to the background slowness.

17 Gulf of Mexico data. Residual migration for a common-image gather about one third from

the left edge of the image in Figure 16. Angle-domain CIGs (left) and semblance (right) with the

picked velocity ratio.

18 Gulf of Mexico data. Migrated image superimposed on slowness (top), residual migration

picks (middle), and picking weight (bottom). The migration corresponds to the updated slowness

after iteration 1. Compare with Figure 16.

19 Gulf of Mexico data. Migrated image superimposed on slowness (top), residual migration

picks (middle), and picking weight (bottom). The migration corresponds to the updated slowness

after iteration 2. Compare with Figure 16.
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