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SUMMARY

In transversely isotropic media with a vertical axis of symmetry (VTI media), we
represent the image in vertical time, as opposed to depth, thus eliminating the inherent
ambiguity of resolving the vertical P-wave velocity from surface seismic data. In this
new (x±t)-domain, the ray tracing and eikonal equations are completely independent of
the vertical P-wave velocity, with the condition that the ratio of the vertical to normal-
moveout (NMO) P-wave velocity (a) is laterally invariant. Moderate size departures of a
from lateral homogeneity affect traveltimes only slightly. As a result, for all practical
purposes, the VTI equations in the (x±t)-domain become dependent on only two para-
meters in laterally inhomogeneous media: the NMO velocity for a horizontal re¯ector,
and an anisotropy parameter, g. An acoustic wave equation in the (x±t)-domain is also
independent of the vertical P-wave velocity. It includes an asymmetric Laplacian
operator to accommodate the unbalanced axis units in this new domain. In summary,
we have established the basis for a full inhomogeneous time-processing scheme in VTI
media that is dependent on only o and g, and independent of the vertical P-wave
velocity.
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I N T R O D U C T I O N

The main feature of the anisotropic parameter representation

suggested by Alkhalifah & Tsvankin (1995) is that time pro-

cessingÐnormal moveout (NMO) correction, dip moveout

(DMO) and time migrationÐbecome independent of vertical

P-wave velocity, a parameter necessary to resolve re¯ector depth.

As a result, estimating the vertical velocity is unnecessary for

time processing, which depends on only two parameters: the

NMO velocity for a horizontal re¯ector and an anisotropy para-

meter denoted by g. However, this rather fortunate behaviour

of seismic waves in transversely isotropic media with a vertical

symmetry axis (VTI media) seems to hold only for vertically

inhomogeneous media. When lateral inhomogeneity exists,

three parameters are needed to characterize the medium and

implement processing.

Our goal is to implement time processing that truly honours

the lateral inhomogeneity of the medium and yet is independent

of the vertical P-wave velocity. Separating the P-wave vertical

velocity, ov, from the image processing procedure helps to

avoid the intrinsic ambiguity that this velocity introduces into

the problem of estimating parameters in VTI models. This

separation allows us to correct for the depth whenever such

information becomes available, for example from well-log data.

This report shows that certain lateral inhomogeneities fall

into this fortunate category of independence from vertical

P-wave velocity when we replace the depth axis with the

vertical time. We refer to such an inhomogeneity as being

factorized laterally. The term factorized was introduced by

Shearer & Chapman (1988) to describe a medium in which the

ratio between the different elastic coef®cients remains constant

throughout the medium. In the case of our new coordinate

system, this constraint is needed only between the P-wave NMO

velocity and vertical velocity and it is needed only laterally.

In other words, a, de®ned as the ratio between the vertical

and NMO P-wave velocities, can change only vertically. This

condition still allows for data processing in media of any lateral

inhomogeneity, but does not allow for applying any depth con-

version. In fact, this condition is extremely convenient consider-

ing that re¯ector depth is typically resolved at only one location

along a given seismic line (at the well), and that we can there-

fore use this a(z), extracted from the well, to estimate depths.

When a varies laterally, the accuracy of the processing depends

on the size of the variation. Our analysis shows that such a

dependence is small for typical variations and, as a result, can

be ignored.

The term time processing implies that an image of the sub-

surface is obtained with its vertical axis given in time rather
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than in depth. Traditionally, only vertical inhomogeneity is

treated in time processing. Such processing might include

approximations to treat mild inhomogeneities, but nothing that

could come close to properly imaging complex data such as the

Marmousi model. Time processing takes on a quite different

meaning in this paper. It includes exact treatment for media

with any lateral inhomogeneity. Speci®cally, we develop ray-

theoretical solutions of wave propagation in the time domain,

including the eikonal and ray-tracing equations that can handle

any lateral inhomogeneity. An acoustic wave equation constrains

all other aspects (such as amplitudes) of wave propagation

in the (x±t)-domain. We also show numerical results of ray

tracing and examine its dependence on only two parameters in

VTI media.

P A R A M E T R I Z A T I O N I N A N I S O T R O P I C
M E D I A

In homogeneous transversely isotropic media with a vertical

symmetry axis (VTI media), P and SV waves (we omit the

quali®ers in quasi-P and quasi-SV waves for brevity) can be

described by the vertical velocities VP0 and VS0 of P and S

waves, respectively, and two dimensionless parameters e and d
(Thomsen 1986). Tsvankin & Thomsen (1994) and Alkhalifah

(1998) demonstrated that P-wave velocity and traveltime are

practically independent of VS0, even for strong anisotropy.

Thus, for practical purposes, P-wave kinematic signatures can

be considered as a function of just three parameters: VP0, d and e.
Alkhalifah & Tsvankin (1995) further demonstrated that a

new representation in terms of just two parameters is suf®cient

for performing all time-related processing such as NMO

correction (including non-hyperbolic moveout correction, if

necessary), dip-moveout removal and pre- and post-stack time

migration, assuming that the velocity varies only vertically.

These two parameters are the NMO velocity for a horizontal

re¯ector,

Vnmo�0� � VP0

��������������
1� 2d
p

, (1)

and the anisotropy coef®cient,

g:0:5
V2

h

V2
nmo�0�

ÿ 1

� �
� eÿ d

1� 2d
, (2)

where Vh is the horizontal velocity. Instead of Vnmo, we use o
to denote the interval NMO velocity in both isotropic and TI

media.

T H E D E P T H I S S U E

The depth axis has always been a source of uncertainty in

seismic processing. Geophysicists have shied away from pre-

dicting depths from surface seismic P-wave data. Typically,

well-log data are used for such a task. However, since well-log

data are rare and sparse, seismically based interpolations of

well-log information are commonly used. Although the con-

ventional isotropic theory suggests that depth can be resolved

using the velocity ®eld that focuses the seismic image, ®eld data

have rarely agreed with this isotropic principal. Anisotropy, on

the other hand, suggests that depth cannot be resolved using

surface seismic data. The velocity needed to resolve depth is the

vertical velocity, which is different from the imaging velocity

(the velocity that yields the best image). This difference is

in agreement with typical ®eld data experience. In fact, in

VTI media, processing is controlled by three velocities: one

responsible for depthing, another for stacking and the third

for migration. Although this is a simplistic representation and

theory suggests that there is more interaction between these

velocities and their in¯uences, such a representation is close

to what actually happens in practice. Two of these velocities

are resolvable from surface seismic data, or, in a general

inhomogeneous case, two combinations of these velocities are

resolvable, which implies the existence of a null space in the

three-parameter representation of VTI media.

Considering that depth in VTI media is determined by

multiplying half of the vertical traveltime by the vertical velocity,

it seems that representing data with the vertical time, instead of

depth, can absorb the vertical velocity in¯uence. This has been

shown to be the case for vertically inhomogeneous media

(Alkhalifah & Tsvankin 1995) but has yet to be shown for more

general inhomogeneity. In the next section, we replace the depth

axis with vertical time to represent more general, arbitrarily

inhomogeneous media.

R E P R E S E N T I N G D E P T H W I T H
V E R T I C A L T I M E

In this section, we derive the relation between the depth and the

vertical time axis for a general inhomogeneous medium. Using

this relation, the VTI eikonal equation is represented in the

new (x±t)-domain coordinate system. Hatton et al. (1981)

implemented a similar mapping to show the limitations of time

migration in isotropic media.

Two-way vertical time is related to depth by the following

relation:

q�x, z� �
�z

0

2

ov�x, f� df , (3)

where ov is the vertical P-wave velocity, which can vary

vertically as well as laterally. As follows from eq. (3), the stretch

applied to the depth axis varies laterally.

Alkhalifah (2000) derived a simple form of the eikonal

equation for VTI media, based on setting the shear wave velocity

to zero. For 2-D media it is

o2 1� 2 g� � Lt

Lx

� �2

� o2
v

Lt

Lz

� �2

1ÿ 2 o2 g
Lt

Lx

� �2
" #

� 1 : (4)

This equation, based on the acoustic medium assumption in

VTI media, although not physically possible, yields extremely

accurate traveltime solutions that are close to what we obtain

for the conventional elastic media equations.

The eikonal equation includes ®rst-order derivatives of

traveltime with respect to position. In order to transform this

eikonal equation from the depth to the time coordinate, we

need to replace x with xÄ . Using the chain rule, ht/hx in eq. (4) is

given by

Lt

Lx
� Lt

L~x
� Lt

Lq
p , (5)

where s, extracted from eq. (3), is written as

p�x, z� � Lq
Lx
�
�z

0

L
Lx

2

ov�x, f�
� �

df : (6)
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Likewise, the partial derivative in z in the eikonal equation is

Lt

Lz
� 2

ov
Lt

Lq
: (7)

Therefore, the transformation from (x, z) to (xÄ , t) is governed

by the following Jacobian matrix in 2-D media:

J �
1 p

0
2

ov

0B@
1CA : (8)

Substituting eqs (5) and (7) into the eikonal eq. (4) yields

o2 1� 2 g� � Lt

L~x
� Lt

Lq
p

� �2

� 4
Lt

Lq

� �2

1ÿ 2 o2 g
Lt

L~x
� Lt

Lq
p

� �2
" #

� 1 , (9)

which is indirectly independent of the vertical velocity. However,

according to eq. (6), s still depends on the vertical P-wave

velocity. Rewriting eq. (6) in terms of the two-way vertical time

(see Appendix A) gives us

p�~x, q� � ÿ1

ov�~x, q�
�q

0

Lov�~x, ~q�
L~x

d~q , (10)

where xÄ corresponds to the new coordinates (xÄ , t). In the

case of ov(x, z)=a(z)o(x, z), which is a special case of lateral

inhomogeneity, referred to here as laterally factorized, eq. (6)

takes the form

p�x,q� �
�q

0

L
Lx

1

o

� �
od~q , (11)

which is clearly independent of the vertical P-wave velocity.

Also, eq. (10) becomes

p�~x, q� � ÿ1

o�~x, q�
�q

0

Lo�~x, ~q�
L~x

d~q : (12)

The eikonal equation can be used to compute seismic travel-

times in laterally factorized inhomogeneous media without the

need to estimate the vertical P-wave velocity. The departure of

the medium from this special condition of laterally factorized

media will cause errors in traveltime calculation. We can

estimate these errors by evaluating how much s varies between

eqs (6) and (11). Speci®cally, if ov(x, z)=a(x, z)o(x, z), then

*p�x, q� �
�q

0

L
Lx

1

a

� �
d~q : (13)

If the ratio of the vertical to NMO velocity, a, does not change

laterally, Ds is equal to zero, and thus no errors will occur in the

traveltime calculation. The departure of Ds from zero affects

only the x-axis component of the wave front; according to

eqs (5) and (7) it is only ht /hx that depends on s. The vertical

component of the traveltime remains accurate no matter how

much a varies laterally. Also, because the eikonal equation is

independent of s for horizontally travelling waves (ht/ht=0),

such waves are error-free. The majority of the errors caused by

lateral a variation occur around 45u wave propagation.

In terms of VTI parameters, the NMO velocity is given by

(Thomsen 1986)

o�x, z� � ov�x, z�
�������������������������
1� 2d�x, z�

p
:

Therefore,

a�x, z� � 1�������������������������
1� 2d�x, z�p

and

d

dx

1

a
� 1

�1� 2d�x, z��1=2

dd
dx

&
dd
dx

:

Then

*p&
�q

0

dd
dx

d~q :

We can see that the absolute error, resulting from the integral

formulation, clearly increases with time.

In addition, when we use the new coordinate system (x, t),

the transport equation becomes independent of the vertical

velocity under the same condition of laterally factorized media

(see Appendix B). Below, and for simplicity, we will replace xÄ

with x to denote the lateral coordinate in the new coordinate

system.

R A Y - T R A C I N G E Q U A T I O N S

Using the method of characteristics, we can derive a system of

ordinary differential equations that de®ne the ray trajectories.

To do so, we need to transform eq. (9) to the following form:

F x, q,
Lt

Lx
,

Lt

Lq

� �
� 0 (14)

or

F x, q, px, pq� � � 0 , (15)

where px=ht/hx and pt=ht/ht. According to the classic rules

of mathematical physics (Courant & John 1966), the solutions

of this kinematic equation can be obtained from the system of

ordinary differential equations,

dx

ds
� 1

2

LF

Lpx
,

dq
ds
� 1

2

LF

Lpq
,

dpx

ds
� ÿ 1

2

LF

Lx
,

dpq

ds
� ÿ 1

2

LF

Lq
, (16)

where s is a running parameter along the rays, related to the

traveltime t as follows:

dt

ds
� 1

2
pq

LF

Lpq
� px

LF

Lpx
,

with

dx

dt
� dx

ds

dt

ds

�
,

dq
dt
� dq

ds

dt

ds

�
,

dpx

dt
� dpx

ds

dt

ds

�
,

dpq

dt
� dpq

ds

dt

ds

�
: (17)
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Using eq. (9), we obtain

dx

ds
� a o2 1� 2 g 1ÿ 4 p2

q

ÿ �� �
, (18)

dq
ds
� 4 pq ÿ a o2 ÿp� 2 g ÿp� 4 px pq � 8 p p2

q

ÿ �� �
, (19)

dpx

ds
�ÿ a2 o 1� 2 g 1ÿ 4 p2

q

ÿ �� �
ox

ÿ a o2 a 1ÿ 4 p2
q

ÿ �
gx � pq 1� 2 gÿ 8 g p2

q

ÿ �
px

� �
, (20)

dpq

ds
�ÿ o a2 1� 2 g 1ÿ 4 p2

q

ÿ �� �
oq

ÿ o2 a a 1ÿ 4 p2
q

ÿ �
gq � pq 1� 2 gÿ 8 g p2

q

ÿ �
pq

� �
(21)

and

dt

ds
� 4 p2

q � a2 o2 1� 2 g 1ÿ 8 p2
q

ÿ �� �
,

where

a � px � p pq ,

and ox=ho/hx and ot=ho/ht, and the same holds for g and s.

To trace rays, we must ®rst identify the initial values x0,

t0, px0 and pt0. The variables x0 and t0 describe the source

position, and px0 and pt0 are extracted from the initial take-off

angle of propagation. Note that, from eq. (9),

pq0 � 1ÿ o2p2
x0

1ÿ 2go2p2
x0

,

because s=0 at the source position (z=0).

The ray-tracing system of equations (18)±(21) describes the

ray-theoretical aspect of wave propagation in the (x±t)-domain,

and can be used as an alternative to the eikonal equation.

Numerical solutions of the ray-tracing equations, as opposed

to the eikonal equation, provide multi-arrival traveltimes and

amplitudes. In the numerical examples, we use ray tracing to

highlight some of the features of the (x±t)-domain coordinate

system.

T H E x ± t A C O U S T I C W A V E E Q U A T I O N

Following the approach of Alkhalifah (2000), an acoustic wave

equation is simply derived from the eikonal equation using

Fourier transformations. The addition of s results in a more

intriguing wave equation than the one derived by Alkhalifah

(2000). Instead of the symmetric form of the familiar Laplacian in

isotropic media, two sources of asymmetry are introduced into

the new wave equation. One is caused by the new unbalanced

coordinate system with one axis given in time and the other in

position. The second, caused by anisotropy, is similar to that

described by Alkhalifah (2000).

Using kx=vht/hx and kt=vht /ht, where kx is the horizontal

component of the wavenumber vector, kt is the vertical-time-

normalized component of the wavenumber vector (normalized

by the vertical velocity, thus it has frequency units) and v is the

angular frequency, we can transform eq. (9) into

o2 1� 2 g� � kx

u
� kq

u
p

� �2

ÿ 4
kq

u

� �2

1ÿ 2 o2 g
kx

u
� kq

u
p

� �2
" #

� 1 : (22)

Multiplying both sides of eq. (22) by the wave®eld in the

Fourier domain, F(kx, kt, v), as well as using inverse Fourier

transform on kt, kx and v (ktpxid/dt, kxpxih/hx and

vpih /ht), we obtain the acoustic wave equation in this new

vertical-velocity-independent coordinate system,

L4F

Lt4
�ÿ 8

L4F

Lx2Lq2
o2 g� L4F

Lx2Lt2
o2 1� 2 g� �

ÿ 16
L4F

LxLq3
o2 g p� 2

L4F

Lt2LxLq
o2 1� 2 g� �p

ÿ 8
L4F

Lq4
o2 g p2 � L4F

Lt2Lq2
4� o2 1� 2 g� �p2
� �

: (23)

This equation is a fourth-order partial differential equation.

Unlike the acoustic wave equation of Alkhalifah (2000) for VTI

media, eq. (23) has odd-order derivatives caused by the asym-

metry of the coordinate system. Setting s=0 [da/dx=0], we

obtain a similar equation to that of Alkhalifah, with hz replaced

by ovht as follows:

L4F

Lt4
� ÿ8

L4F

Lx2Lq2
o2 g� L4F

Lx2Lt2
o2 1� 2 g� � � 4

L4F

Lt2Lq2
: (24)

Setting g=0 in eq. (23) yields the acoustic equation for

elliptically anisotropic media in the (x±t)-domain,

L2

Lt2

L2F

Lt2
ÿ o2 L2F

Lx2
� 2

L2F

LxLq
p

 !
ÿ L2F

Lq2
4� o2 p2
ÿ �" #

� 0 : (25)

Substituting P=h2F /ht2, we obtain the second-order wave

equation for elliptically anisotropic media,

L2P

Lt2
� o2 L2P

Lx2
� 2

L2P

LxLq
p

 !
� L2P

Lq2
4� o2 p2
ÿ �

: (26)

Rewriting eq. (23) in terms of P(x, y, z, t) rather than

F(x, y, z, t) wherever possible yields

L2P

Lt2
�ÿ 8

L4F

Lx2Lq2
o2 g� L2P

Lx2
o2 1� 2 g� �

ÿ 16
L4F

LxLq3
o2 g p� 2

L2P

LxLq
o2 1� 2 g� �p

ÿ 8
L4F

Lq4
o2 g p2 � L2P

Lq2
4� o2 1� 2 g� �p2
� �

, (27)

where

F�x, y, z, t� �
�t

0

dt0
�t0

0

P�x, y, z, q�dq :

Because of its second-order nature in time, eq. (27) is simpler to

use in a numerical implementation than eq. (23). The acoustic

wave equation in the (x±t)-domain is clearly independent of the

vertical velocity when s is given by eq. (12) and a is laterally

invariant.

N U M E R I C A L E X A M P L E S

Using the ray-tracing system of equations (18)±(21), we can

compute traveltimes numerically. Unlike numerical solutions

of the eikonal equation, ray tracing provides multi-arrival

traveltimes and amplitudes. In this section, we want to con®rm

numerically two features of implementing ray tracing in the

new coordinate system:
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(i) the traveltime solution when transformed to depth agrees

with results from conventional depth-domain ray tracing;

(ii) the traveltime solution in the (x±t)-domain is independent

of the vertical P-wave velocity for media that are factorized

laterally [ha/hx=0].

Fig. 1 shows two sets of 16 rays originating from a source on

the surface at position x=0 through the same depth±velocity

model of ov(x, z)=1.5+0.225z+0.15x, o(x, z)=2.0+0.3z+0.2x

and g(x, z)=0.1+0.05z+0.05x using conventional ray tracing

in the depth domain (black curves), and the new ray tracing in

the (x±t)-domain (grey curves). We achieved the (x±t)-domain

ray-tracing results by mapping the depth velocity model to time

using eq. (3) and then mapping the ray solutions back to depth

using eq. (A2) after ray tracing. The 16 rays have ray para-

meters ranging from zero to the maximum value of 1/Vh (Vh is

the horizontal velocity), with a ®xed ray-parameter spacing of

1/(15Vh). The rays terminate at the same time of 8 s, and the

wave fronts (given by the dashed curves) are plotted at about

1.6 s intervals. The wave fronts that correspond to the different

ray tracings are virtually coincident, a result that agrees with our

analytical ®ndings.

In Fig. 2, we check for another aspect of the theory, that is,

the independence of ray tracing from the vertical velocity for

laterally factorized VTI media. Again, 16 rays were ray traced

through a VTI model with o(x, z)=2+0.2x km sx1 and

g(x, z)=0.1+0.05z+0.05x. The ray tracing was performed

in the (x±t)-domain coordinates and, as a result, the rays and

corresponding wave fronts appear in the (x±t)-domain. The

vertical velocity varies considerably between the two models

corresponding to the two sets of curves (black and grey), yet the

curves coincide exactly. That is because in both models a,

which is the ratio of the vertical to NMO P-wave velocity, does

not vary laterallyÐa condition for the independence of ray

tracing from vertical velocity in the (x±t)-domain. Therefore,

under this condition, ray tracing is dependent on only o and g.

However, when a varies laterally, ray tracing does depend on

the vertical velocity. The amount of dependence is controlled

by the size of the lateral variation in a. Fig. 3 shows rays

penetrating in the same model as in Fig. 2, but with the grey

curves corresponding to a laterally varying a that satis®es

a�x, z� � �1:5� 0:1x��1� 0:5z�
2� 0:2x

:

On the other hand, for the black curves, a=0.75. For the

laterally varying a model, at x=0 and z=5 km, a=2.625, while

at x=5 and z=5 km, a=2.333. This big difference corresponds

to a large variation in the ratio of the vertical to NMO P-wave

velocity, a lot more than would be expected in practice.

However, the differences in traveltimes between the two models

are moderate. This fact implies that, despite the apparent

in¯uence of vertical velocity on ray tracing in the (x±t)-domain

coordinates when a varies laterally, such in¯uence is small

overall.

Assuming that d, the parameter that relates the vertical and

NMO velocities, ranges typically between x0.1 and 0.4 (this is

a wide range; some studies have d with a narrower range),
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Figure 1. Ray paths (solid curves) and corresponding wave fronts

(dashed curves) for an inhomogeneous VTI model with o(x, z)=
2.0+0.3z+0.2x km sx1, ov(x, z)=1.5+0.225z+0.15x km sx1 and

g(x, z)=0.1+0.05z+0.05x. The black curves are obtained through

conventional ray tracing in the depth domain, and the grey curves are

obtained using the equivalent (x±t)-domain ray tracing, where the

results are ultimately converted to depth. In this case, the curves nearly

overlap; they are only barely distinguishable, which agrees with the

theoretical results. The small difference is numerical noise resulting

from the different schemes used to solve the ordinary differential

equations (Runge±Kutta versus Euler schemes).
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Figure 2. Ray paths and corresponding wave fronts in the (x±t)-

domain for an inhomogeneous VTI model with o(x, z)=2+0.2x km sx1

and g(x, z)=0.1+0.05z+0.05x. The black curves correspond to

ov(x, z)=1.5+0.15x km sx1 (a=0.75) and the grey curves correspond

to ov(x, z)=1.5+0.15x+0.75z+0.075xz km sx1 (a(z)=0.75+0.375z).

In both cases, a is laterally invariant, and as a result the two curves

overlap.
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Fig. 4 shows a more practical a variation, in which the curves

given by the two models are extremely close. The small variation

suggests that for practical applications of the (x±t)-domain

coordinate processing, we can simply ignore the vertical

velocity and rely on the NMO velocity and g for VTI media.

A L E N S E X A M P L E

The presence of a lens anomaly in a velocity model results

in a multi-pathing phenomena, the most interesting of which

is the development of a triplication in the wave front. This

multi-arrival traveltime phenomenon typically occurs when a

negative velocity anomaly is present. The intriguing issue is that

triplication can also occur when we have positive g anomalies

in a constant-velocity medium.

Fig. 5 shows rays and corresponding wave fronts that were

obtained using conventional ray tracing in the depth domain

(black curves) and using the equivalent ray tracing in the (x±t)-

domain (grey curves) through a VTI model with g=0.1. The

velocity model is shown in the background with a negative

velocity anomaly that has a peak deviation of x1.0 km sx1

from the surrounding background velocity. The result is a

noticeable triplication that develops soon after the rays pass the

anomaly. Despite the triplication, the results of ray tracing in

the two domains (depth and time) are similar.

Fig. 6 also shows ray paths through an anomaly. The anomaly

is now in g, and it is positive. Therefore, in the background

we display the g model, with g=0 everywhere other than at

the anomaly. Again, the black curves correspond to solutions

of ray tracing in the depth domain, while the grey curves corres-

pond to ray tracing in the (x±t)-domain. Triplication, smaller

than that associated with the velocity perturbation, occurs in

the wave front. Velocity-wise, this medium is homogeneous;
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Figure 3. Ray paths and corresponding wave fronts in the (x±t)-

domain for an inhomogeneous VTI model with o(x, z)=
2+0.2x km sx1 and g(x, z)=0.1+0.05z+0.05x. The black curves

correspond to ov(x, z)=1.5+0.15x km sx1 (a=0.75) and the grey

curves correspond to ov(x, z)=1.5+0.1x+0.75z+0.05xz km sx1

[a(x, z)=[(1.5+0.1x)(1+0.5z)]/(2+0.2x)]. While for the black curves

a is laterally invariant, for the grey curves a varies laterally, and as a

result, the black and grey curves no longer coincide.
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Figure 4. Ray paths and corresponding wave fronts in the (x±t)-

domain for an inhomogeneous VTI model with o(x, z)=
2+0.2x km sx1 and g(x, z)=0.1+0.05z+0.05x. The black curves

correspond to ov(x, z)=1.5+0.15x km sx1 (a=0.75) and the grey

curves correspond to ov(x, z)=1.5+0.13x+0.75z+0.065xz km sx1

[a(x, z)=[(1.5+0.13x)(1+0.5z)]/(2+0.2x)]. Despite the fact that for

the grey curves a varies laterally, the two curves are extremely close.
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Figure 5. Ray paths (solid curves) and corresponding wave fronts

(dashed curves) for an inhomogeneous VTI model, with g=0.1. The

rays are superimposed on the velocity model, given in km sx1, of a

negative velocity anomaly. The black curves are obtained through

conventional ray tracing in the depth domain, and the grey curves are

obtained using the equivalent (x±t)-domain ray tracing, where the

results are later converted to depth. The curves nearly overlap even in

the presence of a triplication.
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it is g that is causing the severe bending of the rays. The rays

with larger propagation angles from the vertical are the most

in¯uenced by the g anomaly.

F I N I T E D I F F E R E N C E S O L U T I O N S O F
T H E x ± t W A V E E Q U A T I O N

In a general inhomogeneous medium, the ®nite difference

method is the most practical method for solving the wave

equation. Despite their enormous computational cost, ®nite

difference schemes provide a comprehensive solution to the

wave equation, which often includes an accurate representation

of geometrical amplitudes.

In this example, we use the second-order acoustic wave

equation for VTI media in the (x±t)-domain, given by eq. (27),

and therefore we need to solve simultaneously

L2P

Lt2
�ÿ 8

L4F

Lx2Lq2
o2 g� L2P

Lx2
o2 1� 2 g� � ÿ 16

L4F

LxLq3
o2 g p

� 2
L2P

LxLq
o2 1� 2 g� �pÿ 8

L4F

Lq4
o2 g p2

� L2P

Lq2
4� o2 1� 2 g� � p2
� �� f (28)

and

P � L2F

Lt2
,

where f (x, t) is the forcing function. We use a second-order

®nite difference approximation for P-derivatives in eq. (28) and

a fourth-order approximation for F-derivatives. The solution

for elliptically anisotropic media is obtained by setting g=0.

Since Alkhalifah (2000) discusses, in detail, a ®nite difference

application of a fourth-order equation that closely resembles

this one, no detailed discussion is included here.

Fig. 7 shows a velocity model in depth (top) and its equivalent

mapping in time (bottom). Fig. 8 shows the wave®eld at 0.65 s

resulting from a source igniting at time 0 s that corresponds to

the isotropic velocity model in Fig. 7. The wave®eld is computed

using the ®nite difference approximations of eq. (26). The

velocity model given in the (x±t)-domain is the input velocity

model in the ®nite difference application. This same velocity

model is used to map the wave®eld solution back to depth. The

solid curve in Fig. 8 shows the solution of the conventional

eikonal solver (Vidale 1990) implemented in the depth domain,

and this curve nicely envelopes the wave®eld solution. Therefore,

computing the wave®eld in the (x±t)-domain and in the con-

ventional depth domain are equivalent, regardless of the lateral

inhomogeneity. However, the (x±t)-domain implementation

becomes independent of vertical P-wave velocity when da/dx=0.

It is also important to note that the apparent frequency of the

time section is velocity-independent, while waves in the depth

section have wavelengths very much dependent on velocity.

This has important implications for grid sampling to avoid

dispersion. Speci®cally, using the (x±t)-domain ®nite difference

wave equation, we are effectively scaling the vertical sampling to

®t the velocity model so that the wavelength (normalized here)

remains constant. Thus, we do not have to worry about the

vertical velocity variation. This is convenient since the majority of

the velocity variation in the subsurface is vertical.

C O N C L U S I O N S

We have derived an eikonal equation that describes the

kinematics of wave propagation in the time domain. This

eikonal equation provides exact traveltimes for a general
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Figure 6. Ray paths and wave fronts for an inhomogeneous VTI

model with o=3.5 km sx1. The rays are superimposed on the g

distribution, which includes a positive g anomaly. The black curves are

obtained through conventional ray tracing in the depth domain, and

the grey curves are obtained using the equivalent (x±t)-domain ray

tracing, where the results are later converted to depth. The curves

nearly overlap even in the presence of g-induced triplication.
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Figure 7. Velocity models in the conventional depth domain (top)

and in the (x±t)-domain (bottom). The velocity model includes a

negative velocity anomaly perturbed from a background medium with

o(x)=2000+0.4x m sx1.
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inhomogeneous VTI, or isotropic, medium. One of its main

features is its independence of the vertical P-wave velocity in

VTI media, assuming that the ratio of the vertical-to-NMO

velocity is laterally homogeneous, or in other words, that the

anisotropy parameter d does not change laterally. Even if d
varies laterally, the impact of the variation on traveltimes is

generally small. As a result, for practical purposes, traveltime

calculation in this new (x±t)-domain is dependent on two

parameters in VTI media and one in elliptically anisotropic

media. Using the eikonal equation, we derive an acoustic wave

equation that describes wave propagation in the (x±t) domain.

In summary, this paper establishes the basis for a full time-

processing scheme in inhomogeneous VTI media that is

dependent on only o and g, and independent of the vertical

P-wave velocity.
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A P P E N D I X A : T H E S T R E T C H F A C T O R
I N T I M E

In this appendix, we derive s, given by eq. (6), in the (x±t)-

domain. Using such an equation allows us to avoid the process

of mapping s from depth to time and back. The vertical two-way

traveltime, t, is written as

q�x, z� �
�z

0

2

ov�x, f� df , (A1)

where z corresponds to depth. Similarly,

z�~x, q� � 1

2

�q

0

ov�~x, t�dt , (A2)

where xÄ corresponds to the new coordinate system.

Using the chain rule,

Lt

L~x
� Lt

Lx
� Lt

Lz
b , (A3)

where b extracted from eq. (A2) is given by

b�~x, q� � Lz

L~x
� 1

2

�q

0

Lov�~x, t�
L~x

dt , (A4)

and the partial derivative in t is

Lt

Lq
� ov

2

Lt

Lz
: (A5)

Therefore, the transformation from (xÄ , t) to (x, z) is governed

by the following Jacobian matrix in two dimensions:

Jc �
1 b

0
ov
2

0@ 1A : (A6)

The inverse of Jc is

Jÿ1
c �

1
ÿ2 b
ov

0
2

ov

0BBB@
1CCCA , (A7)

which should equal the Jacobian matrix for the transformation

from (x, z) to (xÄ , t), given by

J �
1 p

0
2

ov

0B@
1CA : (A8)
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Figure 8. Top: the wave®eld in the (x±t)-domain at 0.65 s resulting

from a source at distance 2000 m and t=0 for the isotropic velocity

model shown in Fig. 7. Bottom: the same wave®eld solution after

mapping back to depth using the same velocity model. The black curve

is the solution of the eikonal equation for the velocity model in Fig. 7

implemented using the conventional depth-domain eikonal solver.
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As a result,

p�~x, q� � ÿ2 b
ov
� ÿ1

ov�~x, q�
�q

0

Lov�~x, t�
L~x

dt ,

which is a convenient equation, since we want to keep all ®elds,

including the velocity ®eld, in xÄ -t coordinates.

A P P E N D I X B : T H E A M P L I T U D E
T R A N S P O R T E Q U A T I O N

To obtain the transport equation for this new (x±t)-domain

coordinate system, we use a ray-theoretical model of the image,

F�x, q, t� � A�x, q� f �tÿ ~t�x, q�� ,

as a trial solution to the wave equation (23). This procedure

yields the eikonal equation as well as the transport equation

that describes the amplitude behaviour, A(x, y, z), of wave

propagation. Substituting the trial solution into the partial

differential equation (23) and considering only the terms

with the highest asymptotic order (those containing the fourth-

order derivative of F) yields the eikonal equation (9). The next

asymptotic order (third order in derivatives of F) gives us a

linear partial differential equation of the amplitude transport,

as follows:

2 o2 Ax �~tx � p ~tq� �1� 2 gÿ 8 g ~t2
q�

� A�o2 �1� 2 g�p2 ÿ 8 o2 g �~t2
x � 6 p ~tx ~tq � 6 p2 ~t

2
q�~tqq�

� 2 Aq fÿ8 o2 g ~t
2
x

~tq � o2 p ~tx �1� 2 gÿ 24 g ~t
2
q�

� ~tq �4� o2 �1� 2 g�p2 ÿ 16 o2 g p2 ~t
2
q �g

� 4A� Ao2f2 �p� 2 g pÿ 8 g ~tq �2 ~tx � 3 p ~tq��~txq

� �1� 2 gÿ 8 g ~t
2
q�~txxg � 0 : (B1)

Setting g=0 yields the corresponding transport equation for

elliptically anisotropic media,

2 o2 Ax �~tx � p ~tq� � 2 Aq �o2 p ~tx � �4� o2 p2� ~tq�

� A �o2 �~txx � 2 p ~txq� � �4� o2 p2� ~tqq� � 0 : (B2)

Both transport equations include ®rst- and second-order

derivatives of time with respect to position, calculated from

the solution of the eikonal equation. Despite the apparent

complexity of the transport equations, they are linear, and

contain only ®rst-order derivatives of A. As expected, ampli-

tudes depend on second-order derivatives of traveltime or wave-

front curvature. The dynamic ray-tracing equations behave

similarly.

VTI processing in inhomogeneous media 113

# 2001 RAS, GJI 144, 105±113


