Acquisition geometry regularization for multicomponent data
Daniel A. Rosales* and Biondo Biondi, Geophysics Department, Stanford University

SUMMARY

Acquisition geometry regularization is a key process for ob-
taining reliable subsurface images with 3D seismic data. 3D
geometry regularization is, so far, a technique mainly used on
PP land data. Multicomponent ocean bottom cable (OBC)
technology simulates 3D land acquisition for multicompo-
nent geophones at the ocean bottom. In order to obtain
reliable subsurface PS images, that provide amplitude in-
formation, we should perform an acquisition geometry regu-
larization process on both PP and PS data. We propose an
acquisition geometry regularization methodology in the least-
squares sense that uses a converted waves Azimuth Moveout
(PSAMO) operator as a regularization term in the model
space.

INTRODUCTION

Multicomponent ocean bottom seismic reestablishes the use
and importance of converted waves (PS) data, yet opens the
door for a series of new and existing problems with PS data.
Irregular acquisition geometries are a serious impediment for
accurate subsurface imaging. Irregularly sampled data af-
fects the image with amplitude artifacts and phase distor-
tions. Irregular geometry problems are more evident in cases
for which the amplitude information is one of the main goals
of study. For PS data, this problem is crucial since most of
the PS processing focuses on the estimation of rock proper-
ties from seismic amplitudes.

The application of inverse theory satisfactorily regularizes ac-
quisition geometries of 3D prestack seismic data (Audebert,
2000; Chemingui, 1999; Duijndam et al., 2000; Rousseau et
al., 2000; Albertin et al., 1999; Bloor et al., 1999; Nemeth et
al., 1999; Duquet et al., 1998). For PP data, there are two
distinct approaches to apply: 1) data regularization before
migration and 2) irregular geometries correction during mi-
gration. Biondi and Vlad (2002) combine the advantages of
the previous two approaches. Their methodology regularizes
the data geometry before migration, filling in the acquisi-
tion gaps with a partial prestack migration operator. This
operator exploits the intrinsic correlation between prestack
seismic traces. The partial prestack migration operator used
is Azimuth Moveout.

This paper address irregularities in the acquisition geome-
try for PS data. We follow Biondi and Vlad’s (2002) work,
solving for geometry irregularities using a preconditioned-
regularized least-squares scheme. In order to do that, we
develop an azimuth moveout operator for converted waves
(PSAMO). This operator acts as a regularization term in the
model space while solving the least-squares problem. More-
over, the PSAMO operator ensures the preservation of dip-
ping events and correct for the lateral shift of the common
conversion point.

Our methodology depends on the ratio between the P and
the S velocities (v), since the PSAMO operator depends on
this ratio. This situation makes our methodology an itera-
tive procedure that focuses on minimizing the difference for
v before and after the geometry regularization procedure.
The development of PSAMO and its implementation as a
roughener operator in a least-squares scheme satisfactorily
compensates for acquisition gaps in converted waves data.

First, we present the development of the PSAMO operator.
We discuss a regularized least-squares scheme, that includes
the PSAMO operator, in order to solve for acquisition geom-
etry irregularities. Finally, we present the results of applying
our methodology over a portion of the 3D OBC data set ac-
quired above the Alba reservoir in the North Sea.

PS AZIMUTH MOVEOUT

Azimuth moveout (AMO) is a partial prestack migration op-
erator that transforms prestack data into equivalent data
with a different offset and azimuth position (Biondi et al.,
1998; Chemingui and Biondi, 1997; Chemingui, 1999). AMO
has the advantage of transforming prestack data into equiv-
alent data with arbitrary offset and azimuth, moving events
across midpoints according to their dip.

AMO is not a single trace to trace transformation. It is a
partial prestack migration operator that moves events across
midpoints according to their dip. Due to the nature of PS-
data, where multiple coverage is obtained through common
conversion point gathers (CCP), the PSAMO operator moves
events across common conversion points according to their
geological dip.

The cascade operation of PSDMO and inverse PSDMO yields
to the PSAMO operator. We use the PSDMO operator
in the log-stretch frequency-wavenumber domain (Xu et al.,
2001). Performing the cascade operation of this PSDMO op-
erator with its inverse, we obtain the PSAMO operator. This
PSAMO operator consists of two main operations:

1. The input data (P(t,x,hy)) is transformed to the
wavenumber domain (P(¢,k,h1)) using FFT. Then,
a lateral shift correction is applied as:

P(t,k, h1) = P(t,k, hy)e* P1-P2) (1)

Then, we apply a log-stretch along the time axis (7 =

In(t/tc))-

2. The log-stretched time domain (7) axis is transformed
into the log-stretched frequency domain (Q2) by FFT.
Then, the filters F(,k,h1) and F(Q,k, h2) are ap-
plied as follow:

D F(Q7k7 hl)
P(Q,k, ha) = P(Q,k, hy)—22
(1 ha) = P(,Je ) nis. - (2)
The filter F(Q,k, h;) is
0 fork-h;=0
k- H; for=0
%Q{ 1+(2k§.;{i)2—1—1n% [, / (%)24—&1] }
e else.
(3)

The vectors H; are a modified expression of the offset vectors
(H; = (2,/7/1 + 7)h;). The vectors D; represent a lateral
shift correction given by:
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DATA REGULARIZATION

Regularized least-squares theory is the fundamental basis for
solving the acquisition geometry regularization problem in
this work. To preserve the resolution of dipping events in the
final image, the regularization term includes a transformation
by Azimuth Moveout (Biondi and Vlad, 2002). Additionally,
Biondi and Vlad’s method is computationally efficient be-
cause it applies the AMO operator in the Fourier domain
and preconditions the regularized least-squares problem.

Using the PSAMO operator [equations (1) and (2)] as the
regularization term in the model space allows to: 1) preserve
the resolution of the dipping events, 2) correct for the spatial
lateral shift of the common conversion point.

We discuss the concerns of handling PS data due to the de-
pendency of the PSAMO operator on the ratio between the
P and the S velocities.

PSAMO regularization

Partial stacking of the data recorded with irregular geome-
tries within offset and azimuth ranges yields uniformly sam-
pled common offset/azimuth cubes. In order to enhance the
signal and reduce the noise, the reflections should be coherent
among the traces that are stacked. Normal Moveout (NMO)
is a common method used to create this coherency among
the traces.

Let’s define a simple linear model that links the recorded
traces (at arbitrary midpoint locations) to the stacked vol-
ume (defined on a regular grid). Each data trace is the result
of interpolating the stacked traces and equal to the weighted
sum of the neighboring stacked traces. In matrix notation,
this transforms to:

d = Am, (5)

where d is the data space, m is the model space and A is
the linear interpolation operator. Formulating problem (5)
in the least-squares sense, we have:

min |[[Am —d|% (6)
m

In general, the operator A is not square, and its inverse is
not defined; therefore, we use its least-squares inverse. The
least-squares solution to this overdetermined problem is given
by

m=(A'A)"" A (7)

The least-squares solution is equivalent to applying the ad-
joint operator, A’, followed by a spatial filtering of the model
space. The inverse of A’A represents this spatial filtering.
Note that a fold normalization, acting as a diagonal opera-
tor W,,, can be seen as a particular approximation of the
inverse of A’A.

With the knowledge of model regularization in the least-
squares inverse theory, it is possible to introduce smoothing
along offset/azimuth in the model space. The regularized
least-squares problem becomes:

min {|[Am —d||> + ||epDp'Dpm|}, (8)

where the roughener operator Dy, can be an integration oper-
ator. However, the use of an integration operator may yield
to the loss of resolution when geological dips are present.
The substitution of the identity matrix in the lower diago-
nal of Dj, with the PSAMO operator correctly transforms a
common offset azimuth cube into an equivalent cube with a
different offset and azimuth. This transformation also pre-
serves the geological dip.

Partial stacking requires the data to be coherent among the
traces. NMO obtains this coherency well for PP data. How-
ever, for converted waves we know that the moveout is not a
perfect hyperbola, even in constant velocity media.

On conventional PP processing, the AMO operator is veloc-
ity independent. However, for converted waves the PSAMO
operator depends on the ratio between the P and the S ve-
locities (7). Therefore, we need a priori velocity estimation.
This suggests that for different  values we will have different
results.

Traditional PS processing attempts to first sort the data
in the common conversion point (CCP) domain. This pro-
cess has always been dependent on the value of ; therefore,
the PS processing community performs iterative processing
(CCP binning, velocity analysis) until obtaining a satisfac-
tory result.

After performing NMO on the PS data and the PP data, the
value of v is (Huub Den Rooijen, 1991):
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where v, ¢y is the NMO velocity of the PS section.

In order to proceed with the PS data regularization, a process
that depends on the value of 7y, we need to apply a PSNMO
operator and obtain both an RMS velocity model and a «y
value. We proceed with the following algorithm:

1. Sort the data in the CMP domain.
2. Estimate velocity model on the PS section.
3. Estimate the -y value with equation (9).

4. If it is not the first iteration, compare the previous
and the actual v values and:

(a) if they are the same, finish the process.

(b) if they are not, continue.
5. Apply NMO on the PS section.
6. Apply PSAMO acquisition geometry regularization.
7. Apply inverse NMO.

8. Go back to step 2.

RESULTS

We apply AMO regularization to a portion of a real OBC
data set, the Alba field. The Alba oil field is located in the
UK North Sea and elongates along a NW-SE axis. The oil



reservoir is 9km long, 1.5km wide, and up to 90m thick at a
depth of 1,900m subsea (Newton and Flanagan, 1993).

A multicomponent OBC data set consists of both a PP and
a PS section. Since the literature already presents extended
work on PP regularization, we will present compact but com-
plete regularization results for the PP portion. However, we
will present more results and extended analysis for the PS
section.

‘We use a portion of the entire 3D cube. This subsection
consists of 17 crosslines with 719 cmps each. The PP section
uses only the absolute value of the offset, for a total of 121
offsets. The PS section uses the full offset, the maximum
offset extension is 4000m.

PP regularization

Figure 1 (top) presents the PP data for one crossline of the
data set in our study. Observe the holes in the data due to
irregularities in the geometry acquisition.

Biondi and Vlad (2002) examine the differences among regu-
larizing the data with normalization, regularization with the
integration operator and regularization with the AMO oper-
ator. They conclude that the precondition of the regularized
least-squares problem with the AMO operator yields more
continuous results.

On this part of the problem, we present the interpolation
results using AMO regularization, bottom of Figure 1.
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Figure 1: Acquisition geometries regularization results, orig-
inal data (top) and AMO geometry regularization (bottom).

PS regularization

Figure 2 (top) depicts a PS line from the 3D data set. Again,
observe the holes in the data, as well as the presence of more
offset.

The data is sorted into CMP gathers. The PSAMO operator
internally performs the correction from CMP point to CCP
point based on the = value.

Figure 2 (bottom) exhibits the geometry regularization re-
sult with the PSAMO as the roughener operator. Note that
the moveout of the events is not a perfect hyperbola. This
characteristic corresponds to the nature of propagation of PS
waves.
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Figure 2: 2D line from the 3D OBC data set in process (top).
PS regularization results using the PSAMO operator (bot-
tom).

Figure 3 presents, from top to bottom, a detailed view of: 1)
data set, 2) first iteration result of the PS geometry regular-
ization process and 3) second iteration result. It is easy to
observe that both results fit the data equally well. However,
the second iteration is more realistic since it better follows
the information of the surrounding traces.

CONCLUSIONS

We introduced a partial prestack migration operator for con-
verted waves (PSAMO), this operator performs in the fre-
quency wavenumber domain, it depends on <y and internally
transforms a CMP into CCP.

We presented a regularized least-squares inverse theory that
uses this PSAMO operator as the regularization term. This
method satisfactorily interpolates the PP portion for the 3D
OBC Alba data set. For the PS section, we follow an iterative
scheme updating the P to S velocity ratio.
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Figure 3: Detailed view of: the original data (top), the first
(center) and the second (bottom) iterations.
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