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SUMMARY
A significant improvement of seismic image resolution can beob-
tained by setting the shot-profile migration imaging condition as a
2-D deconvolution in the shot position-time dimension (xs ,t) do-
main.

INTRODUCTION

Shot-profile migration is a method used to construct an imageof the
earth interior from seismic data. This technique is implemented in
two steps. The first step, consist in constructing the sourceand re-
ceiver wavefield for each shot position, and the second step,consist
in applying the imaging condition. The imaging step is basedon
Claerbout’s imaging principle (Claerbout, 1971).

A practical way to implement Claerbout’s imaging principleis by
using match filters (crosscorrelation of the shot and receiver wave-
fields). Therefore, for each shot position, a partial image is ob-
tained by matching the source and the receiver wavefields along
the time dimension. Then, the image is form stacking the partial
images.

We propose a different imaging condition that is based on Claer-
bout’s imaging principle. It consist in deconvolving the receiver
wavefield by the source wavefield in two dimensions (xs ,t). This
imaging condition satisfies Claerbout’s imaging principle(Claer-
bout, 1971). It also improves the resolution of the image andre-
duces illumination effects in the final the image.

In this paper we show the advantages of the 2-D deconvolutionover
the crosscorrelation and the 1-D deconvolution imaging conditions.
This model consists in four reflectors dipping pinching-out. There,
we demonstrate the advantages of 2-D deconvolution for image res-
olution.

DATA AND WAVEFIELDS DIMENSIONALITY

To implement a better imaging condition that is feasible in practice
it is important to understand the 3-D prestack data and wavefields
dimensionality. 3-D prestack seismic data is defined in a 5-Dcon-
tinuum (t,xs , ys ,xg , yg) (Biondi, 1998), wheret is time, xs is the
sourcex position,ys is the sourcey position,xg is the geophonex
position, andyg is the geophoney position. After applying the first
step of shot-profile migration (source and receiver wavefields con-
struction) we have for each shot position (xs , ys ) the source and the
receiver wavefieldsu(x , y,z,t) and d(x , y,z,t). After wavefields
propagation a new dimension is added (z). Then the wavefields
have 6-D dimensions.

In the following analysis we explain how to combine the source
and the receiver wavefields to obtain an image. To make it easier
we restrict our analysis to 2-D prestack data. Thus the source ad
receiver wavefields are 4-D datasets defined in (x ,z,t) for each shot
positionxs .

1-D IMAGING CONDITIONS

Claerbout’s imaging principle
According to Claerbout (1971) imaging principle, a reflector exists
at a point where the source and the receiver wavefields coincide in
time and space. Claerbout (1971) expresses the imaging condition
as follows:

r (x ,z) =
u(x ,z,td )

d(x ,z,td )
, (1)

wherex is the horizontal coordinate,z is the depth, andtd is the

time at which the source wavefieldd(x ,z,td ) and the receiver wave-
field u(x ,z,td ) coincide in time and space. This principle states that
the reflectivity strengthr (x ,z) depends only on the source wave-
field and on the receiver wavefield at timetd .

We don’t know a priori the timetd , thus we need a practical way to
locate the reflector position in (x ,z) plane and compute its strength.

1-D Crosscorrelation
A practical way to compute the reflectivity strength is discussed
in Claerbout’s paper (Claerbout, 1971). He computes the reflector
strength and position as the zero lag of the crosscorrelation of the
source and receiver wavefields in the time dimension (Figure1).

Figure 1: Source and receiver wavefields to match in the time di-
mension.

This is expressed in the formula :

r (x ,z) =

∑

xs

∑

ω

U(x ,z,ω,xs )D∗(x ,z,ω,xs ), (2)

wherer (x ,z) is the zero lag coefficient of the crosscorrelation, that
is computed summing over the frequencies.U(x ,z,ω) andD(x ,z,ω)
are the one dimensional Fourier Transforms of the receiver and
source wavefields respectively. The contribution of each shot (lo-
cated atxs ) is added to form the final image.

1-D Deconvolution
The imaging condition can be extended beyond a simple crosscor-
relation by implementing a 1-D deconvolution (in the time dimen-
sion), adding more complexity to honor the physics of reflection as
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stated in:

r (x ,z) =

∑

xs

∑

ω

U(x ,z,ω,xs )D∗(x ,z,ω,xs )

D(x ,z,ω,xs )D∗(x ,z,ω,xs )+ ε2(x ,z,xs )
. (3)

Notice thatε(x ,z,xs ) is variable (even in the (xs ,t) plane). It is
calculated as

ε
2(x ,z,xs ) = λ < D(x ,z,ω,xs )D∗(x ,z,ω,xs ) > (4)

where<> means the mean.

2-D IMAGING CONDITIONS IN THE (X S ,T ) DIMENSIONS

Another practical way of computing the reflectivity strength can be
by applying the imaging condition, 2-D crosscorrelation or2-D de-
convolution, in the shot position time dimensions (xs ,t). Figure 2
shows the domain where this operations should be done. For a fix
(x ,z) position in the image there is a plane with dimensions (xs ,t).

2-D crosscorrelation
It turns out that the zero lag of the 2-D crosscorrelation of the
source and the receiver wavefields in (xs ,t) give the same result
that taking the zero lag of the 1-D crosscorrelation in the time do-
main and stacking trough the shot position dimension. A simple
example with matrices illustrates the concept. If we 2-D crosscor-
relate 2 matrices,

[

1 2
2 3

]

? ?

[

4 1
2 5

]

=





5 12 4
11 25 14
2 11 12



 , (5)

and take the zero lag the result is 25. Now if we crosscorrelate the
columns,

[

1
2

]

?

[

4
2

]

=





2
8
8



 (6)

[

2
3

]

?

[

1
5

]

=





10
17
3



 (7)

take the zero lag and stack in the raws direction the result isalso
25.

2-D deconvolution
In the case of deconvolution the relation between 2-D and 1-D(plus
stacking), if exists, is not straightforward to show, because decon-
volution in the space domain is implemented by recursive filter-
ing. But, we know that 2-D deconvolution in the (xs ,t) plane com-
presses the information in both shot and the time dimensions. This
is a a better way of compressing than information 1-D deconvolu-
tion.

For the 2-D deconvolution, we can state the following imaging con-
dition:

r (x ,z) =

∑

kxs

∑

ω

U(x ,z,ω,kxs )D∗(x ,z,ω,kxs )

D(x ,z,ω,kxs )D∗(x ,z,ω,kxs )+ ε2(x ,z)
(8)

wherer (x ,z) is the zero lag of the 2-D deconvolution computed as
the sum over temporal frequency (ω) and shot position frequency
(kxs ). U(x ,z,ω,kxs ) and D(x ,z,ω,kxs ) are the two dimensional
Fourier transforms of the receiver and source wavefields respec-
tively. Notice thatε(x ,z) is variable but constant in (xs ,t) plane
and is calculated as

ε
2(x ,z) = λ < D(x ,z,ω,kxs )D∗(x ,z,ω,kxs ) > (9)

Figure 2: Source and receiver wavefields to match in the time shot
position dimensions.

where<> means the mean.

We have change a 1-D deconvolution in time and stacking in the
shot position direction by a 2-D deconvolution in the (xs ,t) plane.
The 2-D deconvolution imaging condition gives a better resolution
image as we show with the following example.

RESULTS WITH SYNTHETIC DATA

To test the previous idea we build a constant velocity model of five
dipping layers pinching-out to the right of the model. The deep-
est reflector has the steepest angle (≈ 63◦) and the shallower has
zero dip. Figure 3 shows a comparison of three different imaging
conditions. Figure 3(a) is the image obtained with the crosscorrela-
tion imaging condition, Figure 3(b) is the image obtained with the
1-D deconvolution imaging condition (time dimension) and Fig-
ure 3(c) is the image obtained with the 2-D deconvolution imaging
condition in the (xs ,t) dimensions. Figure 4 shows a close-up of
Figure 3 in the pinch-out region. Notice the better resolution of the
2-D deconvolution image.

The better resolution of the 2-D deconvolution image is corrobo-
rated comparing Figure 5 and Figure 6. They show the result of
1-D deconvolution and 2-D deconvolution for differentλ values at
a fixed x position (1.96 Km). Notice that whenλ decreases the 1-D
deconvolution result presents low frequency noise. In the case of 2-
D deconvolution whenλ decreases the random noise contaminates
the image.

After this comparison we can see that the 2-D deconvolution imag-
ing condition in the (xs ,t) dimensions gives a better resolution than
the other imaging conditions. The image, in this case, has more
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Figure 3: Comparison of 3 different imaging conditions.(a)image
obtained with the crosscorrelation imaging condition, (b)image ob-
tained with the 1-D deconvolution imaging condition (time dimen-
sion) and (c) image obtained with the 2-D deconvolution imaging
condition in the (xs ,t) dimensions.

Figure 4: Zoom of Figure 3 in the pinch-out region. (a) image ob-
tained with the crosscorrelation imaging condition, (b) image ob-
tained with the 1-D deconvolution imaging condition (time dimen-
sion) and (c) image obtained with the 2-D deconvolution imaging
condition in the (xs ,t) dimensions.
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Figure 5: Effect of lambda value on 1-D deconvolution. From bot-
tom to top: crosscorrelation,λ = 0.5, λ = 0.05, λ = 0.005 and
λ = 0.0005

Figure 6: Effect of lambda value on 2-D deconvolution. From bot-
tom to top: crosscorrelation,λ = 0.5, λ = 0.05, λ = 0.005 and
λ = 0.0005

random noise but this is a manifestation of the well known trade
off effect between signal to noise ratio and resolution.

CONCLUSIONS

Implementing the shot-profile migration imaging conditionas a 2-
D deconvolution in the (xs ,t) plane leads to a better image resolu-
tion. This implementation has the advantage of not stackingin the
shot position dimension thus increasing resolution.
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