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SUMMARY

A significant improvement of seismic image resolution cambe
tained by setting the shot-profile migration imaging cooditas a
2-D deconvolution in the shot position-time dimensiog,{) do-
main.

INTRODUCTION

Shot-profile migration is a method used to construct an inodtfee

earth interior from seismic data. This technique is impleted in

two steps. The first step, consist in constructing the soanckre-

ceiver wavefield for each shot position, and the second steysist
in applying the imaging condition. The imaging step is based
Claerbout’s imaging principle (Claerbout, 1971).

A practical way to implement Claerbout’s imaging princijgeby
using match filters (crosscorrelation of the shot and receiave-
fields). Therefore, for each shot position, a partial imagyeh-
tained by matching the source and the receiver wavefieldgyalo
the time dimension. Then, the image is form stacking theigart
images.

We propose a different imaging condition that is based oriCla
bout’s imaging principle. It consist in deconvolving theeaer
wavefield by the source wavefield in two dimensiorg t). This
imaging condition satisfies Claerbout’'s imaging princif@aer-
bout, 1971). It also improves the resolution of the image @nd
duces illumination effects in the final the image.

In this paper we show the advantages of the 2-D deconvolatien
the crosscorrelation and the 1-D deconvolution imaginglg@ams.
This model consists in four reflectors dipping pinching-dthere,
we demonstrate the advantages of 2-D deconvolution forémesy
olution.

DATA AND WAVEFIELDS DIMENSIONALITY

To implement a better imaging condition that is feasibleraxctice
it is important to understand the 3-D prestack data and weldsfi
dimensionality. 3-D prestack seismic data is defined in acob
tinuum ¢, Xs, Ys, Xg, Yg) (Biondi, 1998), wherg is time, Xs is the
sourcex position, ys is the source position,xg is the geophonz
position, andyg is the geophong position. After applying the first
step of shot-profile migration (source and receiver wawvasiebn-
struction) we have for each shot positioq,(ys) the source and the
receiver wavefieldsi(x,y,z,t) andd(x,y,zt). After wavefields
propagation a new dimension is adde)l. (Then the wavefields
have 6-D dimensions.

In the following analysis we explain how to combine the seurc
and the receiver wavefields to obtain an image. To make ieeasi
we restrict our analysis to 2-D prestack data. Thus the soadc
receiver wavefields are 4-D datasets definedjg,() for each shot
positionXs.

1-D IMAGING CONDITIONS

Claerbout’s imaging principle

According to Claerbout (1971) imaging principle, a refleewists
at a point where the source and the receiver wavefields clgnci
time and space. Claerbout (1971) expresses the imagingtioond
as follows:

= @)

wherex is the horizontal coordinate, is the depth, andy is the

time at which the source wavefialfx, z,ty) and the receiver wave-
field u(x, z,tq) coincide in time and space. This principle states that
the reflectivity strengthi(x,z) depends only on the source wave-
field and on the receiver wavefield at tirge

We don't know a priori the timéy, thus we need a practical way to
locate the reflector position ix(z) plane and compute its strength.

1-D Crosscorrelation

A practical way to compute the reflectivity strength is dssed
in Claerbout’s paper (Claerbout, 1971). He computes theatsit
strength and position as the zero lag of the crosscorralatidghe
source and receiver wavefields in the time dimension (Figure
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Figure 1: Source and receiver wavefields to match in the time d
mension.

This is expressed in the formula :

rxz) =3y Y UXzaxs)D*(X,2,0,Xs), 2
Xs ®

wherer(x,2) is the zero lag coefficient of the crosscorrelation, that
is computed summing over the frequencigéx, z, w) andD(X, z, )

are the one dimensional Fourier Transforms of the receindr a
source wavefields respectively. The contribution of eadt éb-
cated atxs) is added to form the final image.

1-D Deconvolution

The imaging condition can be extended beyond a simple avossc
relation by implementing a 1-D deconvolution (in the timenén-
sion), adding more complexity to honor the physics of reibecas



2-D deconvolution imaging condition

stated in:
=y Y
Xs

Notice thate(x,z,xs) is variable (even in thexg,t) plane). It is
calculated as

U(X,2,0,Xs)D*(X,Z, @, Xs)
D(X,Z,w,%s)D*(X, Z,w, Xs) + £2(X, Z,Xs)

@)

£2(X,2,%s) = A < D(X,Z,0,%s)D*(X,Z,0, Xs) >

4)
where<> means the mean.
2-D IMAGING CONDITIONS INTHE (Xs, T) DIMENSIONS

Another practical way of computing the reflectivity streémgan be

by applying the imaging condition, 2-D crosscorrelatior2€dd de-
convolution, in the shot position time dimensions,(). Figure 2
shows the domain where this operations should be done. For a fi
(x,2) position in the image there is a plane with dimensiogst].

2-D crosscorrelation

It turns out that the zero lag of the 2-D crosscorrelation hef t
source and the receiver wavefields ig,t) give the same result
that taking the zero lag of the 1-D crosscorrelation in theetdo-
main and stacking trough the shot position dimension. A Bmp
example with matrices illustrates the concept. If we 2-Dssoor-
relate 2 matrices,

5 12 4
[% g]“[g é]: 11 25 14|, (5
2 11 12

and take the zero lag the result is 25. Now if we crosscoerela
columns,

(6)

@)

take the zero lag and stack in the raws direction the resalisis
25.

2-D deconvolution

In the case of deconvolution the relation between 2-D and/fihs
stacking), if exists, is not straightforward to show, besmadecon-
volution in the space domain is implemented by recursiverfilt
ing. But, we know that 2-D deconvolution in thes(t) plane com-
presses the information in both shot and the time dimensibinis
is a a better way of compressing than information 1-D decloavo
tion.

For the 2-D deconvolution, we can state the following imggion-
dition:

rx2=3.5. U(X,Z,, ks )D* (X,2,0, ks)
Kkxs

. : ) ®
— D(X,Z,0,Kxs )D*(X,Z,0,Kxs ) +£4(X, 2)

wherer (x,2) is the zero lag of the 2-D deconvolution computed as
the sum over temporal frequencay)(and shot position frequency
(kxs). U(X,z,w,kxs) and D(X,z,w,kxs) are the two dimensional
Fourier transforms of the receiver and source wavefieldsees
tively. Notice thate(x,z) is variable but constant irx¢,t) plane
and is calculated as

£2(X,2) = A < D(X, 2,0,y )D* (X, Z,0, Kyg ) >

9)
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Figure 2: Source and receiver wavefields to match in the time s
position dimensions.

where<> means the mean.

We have change a 1-D deconvolution in time and stacking in the
shot position direction by a 2-D deconvolution in the,f) plane.
The 2-D deconvolution imaging condition gives a better hetsmn
image as we show with the following example.

RESULTS WITH SYNTHETIC DATA

To test the previous idea we build a constant velocity motifve
dipping layers pinching-out to the right of the model. Thepgle
est reflector has the steepest angte6@°) and the shallower has
zero dip. Figure 3 shows a comparison of three different intag
conditions. Figure 3(a) is the image obtained with the @ossla-
tion imaging condition, Figure 3(b) is the image obtainethwhe
1-D deconvolution imaging condition (time dimension) and-F
ure 3(c) is the image obtained with the 2-D deconvolutionging
condition in the %s,t) dimensions. Figure 4 shows a close-up of
Figure 3 in the pinch-out region. Notice the better resolutf the
2-D deconvolution image.

The better resolution of the 2-D deconvolution image is @oor
rated comparing Figure 5 and Figure 6. They show the result of
1-D deconvolution and 2-D deconvolution for differenvalues at

a fixed x position (1.96 Km). Notice that wherdecreases the 1-D
deconvolution result presents low frequency noise. In #seof 2-

D deconvolution when decreases the random noise contaminates
the image.

After this comparison we can see that the 2-D deconvolutitag-
ing condition in the s, t) dimensions gives a better resolution than
the other imaging conditions. The image, in this case, hagmo



2-D deconvolution imaging condition
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Figure 3: Comparison of 3 different imaging conditionsitaage

obtained with the crosscorrelation imaging condition;ifigge ob-
tained with the 1-D deconvolution imaging condition (timendn-

sion) and (c) image obtained with the 2-D deconvolution imgg
condition in the Xs,t) dimensions.
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Figure 4: Zoom of Figure 3 in the pinch-out region. (a) image o
tained with the crosscorrelation imaging condition, (bage ob-
tained with the 1-D deconvolution imaging condition (timenen-
sion) and (c) image obtained with the 2-D deconvolution imgg
condition in the Xs,t) dimensions.



2-D deconvolution imaging condition
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Figure 5: Effect of lambda value on 1-D deconvolution. Froot-b
tom to top: crosscorrelatiors, = 0.5, A = 0.05, A = 0.005 and
A =0.0005
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Figure 6: Effect of lambda value on 2-D deconvolution. Fraot-b
tom to top: crosscorrelatiors, = 0.5, A = 0.05, A = 0.005 and
A =0.0005

random noise but this is a manifestation of the well knowndra
off effect between signal to noise ratio and resolution.

CONCLUSIONS

Implementing the shot-profile migration imaging conditama 2-

D deconvolution in thexs,t) plane leads to a better image resolu-
tion. This implementation has the advantage of not stackirtge
shot position dimension thus increasing resolution.
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