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SUMMARY

We introduce a computationally efficient and robust method to reg-
ularize acquisition geometries of 3-D prestack seismic data before
prestack migration. The proposed method is based on a formula-
tion of the geometry regularization problem as a regularized least-
squares problem. The model space of this least-squares problem
is composed of uniformly sampled common offset-azimuth cubes.
The regularization term fills the acquisition gaps by minimizing in-
consistencies between cubes with similar offset and azimuth. To
preserve the resolution of dipping events in the final image, the
regularization term includes a transformation by Azimuth Move-
out (AMO) of the common offset-azimuth cubes. The method is
computationally efficient because we applied the AMO operator in
the Fourier-domain and we precondition the least-squares problem.
Therefore, no iterative solution is needed and excellent results are
obtained by applying the adjoint operator followed by a diagonal
weighting in the model domain. We tested the method on a 3-D
land data set. Subtle reflectivity features are better preserved after
migration when the proposed method is employed as compared to
more standard geometry regularization methods.

INTRODUCTION

When the seismic data are irregularly sampled, images are often
affected by amplitude artifacts and phase distortions, even if the
imaging algorithm is designed to preserve amplitudes. The applica-
tion of a simple imaging sequence that relies on standard ‘adjoint’
imaging operators can generate misleading amplitude results. In-
verse theory is useful in producing a footprint-free image. There
are two distinct ways of applying inverse theory to the problem:
regularizing the data before migration (Duijndam et al., 2000), or
during migration (Albertin et al., 1999; Bloor et al., 1999; Aude-
bert, 2000; Rousseau et al., 2000; Duquet et al., 1998; Nemeth et
al., 1999). The latter approach exploits the intrinsic physical cor-
relation between seismic traces recorded at different locations, but
it depends on accurate knowledge of the interval velocity. We pro-
pose a method that has the advantages of both approaches. We reg-
ularize the data geometry before migration by using a partial mi-
gration operator — Azimuth Moveout [AMO, Biondi et al. (1998)]
— that exploits the intrinsic correlation between prestack seismic
traces, and depends not on the interval velocity, but on the RMS
velocity, which can be estimated much more robustly from the data.

Ronen (1987) was the first to use a partial migration operator (DMO)
to improve the estimate of a regularized data set. Chemingui and
Biondi (1997; 1999) have previously inverted AMO to create reg-
ularly sampled common offset-azimuth cubes. The main advan-
tage of our method over the previous methods is computational ef-
ficiency due to: a)using a Fourier-domain implementation of AMO
as opposed to a Kirchhoff one; b)preconditioning of the regular-
ization term in the inversion, made possible by the use of AMO in
the regularization term instead of in the modeling one. c)not us-
ing an iterative approach, but instead approximating the solution of
the preconditioned least-squares problem by applying normaliza-
tion weights to the model vector after the application of the adjoint
operator.

Our formulation of the geometry regularization problem as a reg-
ularized least-squares problem is similar to the formulation that
Fomel presented in his Ph.D. thesis (2001). He uses a finite differ-
ence implementation of offset continuation where we use a Fourier
implementation of AMO. These two operators are kinematically
equivalent and their computational efficiency is similar. However,
the methods are different with respect to items b) and c) listed

above. Our method should be more efficient because it explicitly
preconditions the regularization term by inverting it. The inversion
is fast because the regularization matrix is factored into the product
of a block lower-diagonal matrix with a block upper-diagonal ma-
trix, which are easily invertible by recursion. The preconditioning
substantially improves the conditioning of the problem; therefore,
a simple diagonal normalization of the model vector yields a good
and fast solution.

NORMALIZED PARTIAL STACKING AND INVERSE
THEORY

We will use partial stacking to create uniformly sampled common
offset/azimuth cubes that can be migrated with an amplitude-preser-
ving algorithm. 3-D prestack data traces do not share the same
exact midpoint location. Stacking them involves spatial interpola-
tion followed by averaging. Let us define a simple linear operator
linking the recorded traces (at arbitrary midpoint locations) to the
stacked volume (defined on a regular grid). Each data trace is ob-
tained by interpolation (weighted sum of the neighboring stacked
traces):

di = ¥j ajj mj; subject to the constraint ¥; a;; = 1. (1)

The weights are independent from time along the seismic traces
so each element d; of the data space (recorded data) d, and each
element m; of the model space m (stacked volume) will represent
a whole trace. In matrix notation, equation (1) becomes

d=Am. (@)

where the abstract vector m is composed of offset/azimuth cubes.
In operator notation, stacking can be represented as the application
of the adjoint operator A’ to the data traces (Claerbout, 1998), and
by accounting for unevenness in the fold through normalization,
which can be expressed by a diagonal operator W,,;:

m=W,A'd (3)

The weights w;” are given by the inverse of the fold, which can be
simply computed by a summation of the elements in each column
of A. Data gaps in the fold can make the weights diverge to infinity.
This can be avoided by setting the weights to zero when the fold is
smaller than €,,:

-1 .
(Zi aij) if 3; ajj > €y
w™ = 4
0 elsewhere.

Fold normalization is effective when the geometry is irregular, but
for sizable data gaps the normalization weights tend to become
large. Instability can be avoided, but gaps are going to be left in
the uniformly sampled data. These gaps are likely to be spread
as “smiles” by migration. They can be filled using inverse theory
before migration, using information from nearby traces.

MODEL REGULARIZATION AND PRECONDITIONING

Data gaps are a challenge for simple fold normalization. They
should be filled using information from traces recorded with ge-
ometry similar to the missing ones. Reflectivity can change in the
earth abruptly across midpoints, but the reflection mechanism en-
sures that it changes gradually with the variation of the reflection
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angle and azimuth. Therefore less resolution is lost if interpolation
is done not with data from neighboring midpoints, but with data
from the same midpoint and with different offsets and azimuths
than the missing ones. In the context of least-squares inversion,
smoothing along offset/azimuth in the model space (e.g. uniformly
sampled offset/azimuth cubes) can be accomplished by introducing
a model regularization term that penalizes variations of the seismic
traces between the cubes. Denoting the roughening operator by Dy,
the least-squares problem can be formulated as

0~d—Am
{ 0~ epD'Dym ,where
i (I—pp)I 0 0 Lo ]
1 —ppl I o 0 )
Ph = 1=0p 0 —ppl 1 0
Y 0 —ppl 1

The coefficient pp must be between 0 and 1. It determines the
range over which we smooth the offset/azimuth cubes. The smaller
the value we set for pp, the narrower the smoothing range is. The
problem is easy to precondition because D;th is easy to invert,
since it is already factored in a lower block-diagonal operator Dy,
and in an upper block-diagonal operator D;], that can be inverted
by recursion. Therefore, denoting the preconditioned model vector
with p = D;Dhm, the preconditioned least-squares problem is

, —1
0 ~ d-A(DDy) p ©
0 =~ eplp

Fold variations can be accounted by introducing a diagonal scaling
factor and by applying the same theory discussed in the previous
section. The weights for the regularized and preconditioned prob-
lem are

diag { [(DhD;l)il A/A+6DI:| 1}

wl=
I diag(1)

)

The solution of the problem obtained by normalizing the precondi-
tioned adjoint is

i = (D;,Dh) “w, (DhD;,) A )

The main drawback of the method described above is that smooth-
ing over offset/azimuth cubes by the inverse of the simple roughen-
ing operator expressed in (5) may result in loss of resolution when
geological dips, which are not flattened by NMO with the same ve-
locity as flat events, are present. However, the method can be gen-
eralized by substitution of the identity matrix in the lower diagonal
of Dy, with AMO (Biondi et al., 1998), which correctly transforms
a common offset-azimuth cube into an equivalent cube with a dif-
ferent offset and azimuth. Since the cubes to be transformed are
uniformly sampled we can use a computationally-efficient Fourier-
domain formulation of AMO. The roughening operator that in-
cludes AMO is Dy, which differs from Dy, only in that the identity
operators in the subdiagonal elements Dy (i 4 1,7) are replaced by
the AMO operators T, il that transform. the offset-azimuth cube

i into the offset-azimuth cube i 4 1. The D, I~)|1 operator can also be
easily inverted by recursion and thus the least-squares problem ob-
tained by substituting Dy, for Dy, in (5) can also be preconditioned
and normalized.

IMAGING OF A 3-D LAND DATA SET

We tested the geometry regularization methods presented in the
previous section on a land data set shot with a cross-swath geom-
etry fairly narrow-azimuth for land data. The processing sequence
comprised the following steps: a) NMO, b) geometry regulariza-
tion, c) inverse NMO, d) 3-D prestack common-azimuth wave-
equation migration, with the imaging step designed to preserve rel-
ative amplitudes, as discussed by Sava and Biondi (2001).

We evaluated the relative performances of three different regular-
ization methods: a) normalization by partial stack fold [equation (3)];
we will simply call this method normalization. b) normalization of
the regularized and preconditioned solution without AMO [equa-
tion (8)]; we will simply call this method regularization, c) normal-
ization of the regularized and preconditioned solution with AMO
[equation (8) with Dy, = Dy]; we will call this method AMO regu-
larization. Our first tests produced common offset-azimuth cubes
at zero azimuth (i.e. the data azimuth was ignored) because of the
fairly limited azimuthal range at far offsets. However, we have in-
dications that taking into account the data azimuth for the far-offset
traces may be beneficial. To avoid offset aliasing in the downward
continuation at the reservoir level (3.2 km), the offset axis was re-
sampled at 65m by simple interpolation before migration. Finer
sampling would be necessary to migrate shallower events without
aliasing the higher frequencies.

Geometry regularization results

Figure 1 compares the results of geometry regularization of the
three methods discussed above for one line. Figure la shows the
normalization results, Figure 1b shows the regularization results,
and Figure 1c shows the AMO regularization results. Comparing
the in-line sections at one offset (3.38 km) shows the advantages of
both regularization and AMO regularization over simple normal-
ization. The amplitudes after normalization are still fairly uneven,
and thus likely to produce artifacts during migration. The ampli-
tudes are better balanced in the data obtained using regularization.
The steeply dipping reflection from the fold at the reservoir level
is better preserved in the AMO regularization results than in the
simple regularization results. The reason is quite apparent when
examining the data as a function of offset for one particular mid-
point location. The dipping event is smiling upward after NMO,
and thus it is attenuated by simple smoothing over offset.

Figure 2 shows a detail of the same line. As for Figure 1, Figure 2a
shows the results for normalization, Figure 2b shows the results for
regularization, and Figure 2c¢ shows the results for AMO regular-
ization. An acquisition gap is clearly visible in the middle of the
constant-offset (2.275 km) section in panel (a). Simple normaliza-
tion cannot fill the gap. On the contrary, the gap is filled in the
regularized results, that exploit the information from the neighbor-
ing offsets. The gap in the dipping event is better filled by the AMO
regularization because the information from neighboring offsets is
moved to the missing data consistently with their kinematics. The
differences in behavior between the two regularization methods are
apparent in the time slices in the figure. The AMO regularization
shows better what is actually a curved event, while the curvature is
lost by the simple regularization scheme.

Amplitude-preserving migration results

‘We migrated the data after geometry regularization using common-
azimuth migration and produced different prestack migrated im-
ages with the common image gathers depending on the in-line off-
set ray parameter. Figure 3 shows depth slices from the migration
of the normalization and AMO regularization results. Meandering
channels are visible. The slices on the left are taken for a narrow
reflection angle, the slices on the right are taken for a wide reflec-
tion angle. The images obtained using normalization are noisier
and show more clearly the oblique acquisition footprints. In the
narrow angle image, the noise is so overwhelming that no chan-
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Figure 1: A prestack line after geometry regularization with: a) normalization, b) regularization, c) AMO regularization.
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Figure 2: A detail of the prestack line shown in Figure 1. Notice the data gap in the middle of the common-offset (2.275 km) section, and
how it has been interpolated differently by regularization (panel b) and AMO regularization (panel c).
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Figure 3: Depth slices, at a depth of 1.91 km, obtained by migration after geometry regularization with: normalization (top) and AMO
regularization (bottom). Narrow reflection angle (left), and wide reflection angle (right).

nels are visible. Differences are noticeable in the imaging of both
channels, where indicated by the arrows.

CONCLUSIONS

The proposed method for regularizing the geometry of 3-D prestack
data set performed well in a real-data test. The regularization meth-
ods fill the acquisition gaps by using the information from neigh-
boring offsets/azimuths and provide a better input to migration than
the simple normalization by the partial stack fold. The inclusion of
the AMO operator in the regularization assures better preservation
of the steeply dipping event, thus yielding higher-resolution images
than when the AMO operator is not applied.
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