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SUMMARY
We present two methods to compute angle-domain common image
gathers (ADCIG) by downward-continuation migration, and we an-
alyze their amplitude response versus reflection angle (AVA). A
straightforward implementation of the two methods leads to contra-
dictory, and thus obviously inaccurate, amplitude responses. The
amplitude problem is related to the fact that downward continua-
tion migration is the adjoint of upward-continuation modeling, but
it is a poor approximation of its inverse. We derive the weight-
ing operators, diagonal in the frequency-wavenumber domain, that
makes migration a good approximation to the inverse of modeling.
After weighting, the ADCIGs computed by the two methods be-
come consistent. Other important factors degrading the accuracy
of AVA in practical situation are the limited sampling and offset
range, and the bandlimited nature of seismic data.

INTRODUCTION

Traditionally, migration velocity analysis and AVO employ offset-
domain common-image gathers, since most of the relevant infor-
mation is not described by the zero-offset images. However, it is
difficult to produce these gathers with wave-equation migration be-
cause the offset dimension of the downward continued data shrinks
with depth. A solution to this problem is to use angle-gathers in-
stead of offset-gathers. angle-domain common image gathers (AD-
CIG) obtained by wave-equation migration are very powerful at
measuring the accuracy of the velocity model. However, a still
unsolved issue for such angle gathers is that of amplitude varia-
tion as a function incidence angle. ADCIGs are also attractive be-
cause they provide more straightforward information for amplitude
analysis, that is, amplitude versus angle (AVA) instead of the more
common amplitude versus offset (AVO) analysis.

Angle-domain common-image gathers are representations of the
seismic images sorted by the incidence angle at the reflection point.
Angle-gathers can be obtained using wave-equation techniques ei-
ther for shot-profile migration, as described by de Bruin et al. (1990),
or for shot-geophone migration, as described by Prucha et al. (1999).
In both cases, angle-gathers are evaluated using slant-stacks on the
downward continued wavefield, prior to imaging. Decomposing
the downward continued wavefield before imaging produces angle-
gathers as a function of offset ray-parameter instead of the true
reflection angle. Angle-domain gathers can also be computed by
slant stacking the image, instead of the downward continued wave-
field. We show that this alternative procedure directly produces
angle gathers as a function of the reflection angle. In both cases the
slant stack transformation can be easily performed by a radial-trace
transform in the frequency-wavenumber domain (Ottolini, 1982).

For AVA analysis it is important that the procedure used for com-
puting ADCIGs preserves the amplitude of the reflections as a func-
tion of angle. It is thus puzzling that straightforward implementa-
tions of both methods for computing ADCIGs produce contradic-
tory amplitudes, and that for neither method the migration is a good
approximation of the corresponding upward-continuation model-
ing. To solve the puzzle we must take into account the weighting
function that is introduced in the migration process by the imaging
step. This weighting is well approximated by a diagonal opera-
tor in the frequency-wavenumber domain. Since the two methods
for computing ADCIGs perform a slant stack at different stages
(before imaging for one and after imaging for the other) the corre-
sponding weighting functions are different. Once the weights are
taken into account, the AVA responses produced by the two meth-
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Figure 1: A scheme of reflection rays in an arbitrary-velocity
medium.

ods are consistent, and migration can be made an approximate in-
verse of modeling. According to the physical model for reflection
data, the weights can be set to make migration a good approxi-
mation of a linearized inversion. We adopt the physical model
proposed by Stolt and Benson (1986), and define the appropriate
weights for both methods used to compute ADCIGs. If needed for
an iterative estimation procedure, modeling and migration can also
be easily made pseudo-unitary, by applying the square root of the
weights during both modeling and migration.

Figure 2: Synthetic example of conversion between the angle and
offset domains in the image space. Left panel: synthetic angle
gather. Middle panel: conversion from angle to offset. Right panel:
conversion back to the angle domain.

TWO METHODS TO COMPUTE ADCIGS

Angle-gathers can be conveniently formed in the frequency do-
main. If we consider that in constant velocity mediat is the trav-
eltime from the source to the reflector and back to the receiver at
the surface, 2h is the offset between the source and the receiver,z
is the depth of the reflection point,α is the geologic dip, andγ is
the reflection angle (Figure 1), we can write

∂t

∂h
=

2cosα sinγ

v
(1)

and

−
∂t

∂z
=

2cosα cosγ

v
. (2)

From Equations (1) and (2) we obtain that

tanγ = −
∂z

∂h
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t ,x

. (3)
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Figure 3: Angle gather created from an ideal offset gather.

Equation (3) is derived in constant velocity media, but it remains
perfectly valid in a differential sense in any arbitrary velocity media
if we considerh to be the effective offset at the reflector depth and
not the surface offset (Figure 1).

In the frequency-wavenumber domain, formula (3) takes the trivial
form

tanγ = −
kh

kz
. (4)

This equation indicates that angle-gathers can be conveniently for-
med with the help of frequency-domain migration algorithms (Stolt,
1978). Furthermore, wave-equation migration is ideally suited to
compute angle-gathers using such a method, since the migration
output is precisely described by the offset at the reflector depth,
which is a model parameter, and not by the surface offset, which is
a data parameter (Biondi, 1999).

We can recognize that Equation (1) describes nothing else but the
ray parameter of the propagating wave at the incidence with the
reflector. Using the definition

ph =
∂t

∂h
(5)

it follows that we can write a relation similar to (4) to evaluate the
offset ray parameter in the Fourier-domain:

ph =
kh

ω
. (6)

Both Equations (4) and (6) can be used to compute image gathers
through radial trace transforms in the Fourier domain. The major
difference is that Equation (4) operates in the space of the migrated
image, while Equation (6) operates in the data space.

The two methods are also different in three other ways:

1. Firstly, the image-space method is completely decoupled
from migration, therefore conversion to reflection angle
can be thought of as a post-processing after migration. Such
post processing is interesting because it allows conversion
from the angle domain back to the offset domain without
re-migration (Figure 2), which is, of course, not true for the
data-space method, where the transformation is a function
of the data frequency.

2. Secondly, from Equation (1), it follows that offset ray pa-
rameter (ph) is also a function of the structural dip (α),
which is not true for the reflection angle (γ ) estimated in
the image space. The angles we obtain using (4) are ge-
ometrical measures, completely independent on the struc-
tural dip. For AVA purposes, it is also very convenient to
have the amplitudes as a function of angle and not offset or
offset ray parameter.

3. Thirdly, both methods require accurate knowledge of the
imaging velocity, either explicitly, in the case ofph, or
implicitly, in the case ofγ . The difference is that, inac-
curacies in the velocity model at depths lower than that of
the image point do not influence the accuracy of the an-
gle gathers in the case of the data space method, but they
can influence the quality of the gathers for the image space
method.

AMPLITUDE VS. ANGLE

Figure 2 shows a synthetic example of conversion from the angle
domain to offset domain and back. The original model is character-
ized by a polarity reversal at zero incidence angle. After conversion
to offset and back to angle, the image gather displays the same po-
larity reversal within numerical precision. The obvious question
that remains to be addressed is how reliable is the amplitude vs.
angle estimate for images obtained using wave-equation migration.

Figure 3 shows a simple synthetic model on which we can observe
the transformations that occur at different stages. If we take an
ideal offset gather and convert it to the angle domain, we obtain the
image depicted in Figure 3. For reference, the left panel contains
the representation of the gather in the frequency domain. As ex-
pected, the amplitude response of the angle-gather is flat for a wide
range of angles, after which it strongly decays.

The explanation for the amplitude decay at large angles arises af-
ter a simple analysis of the operations we perform in the Fourier
domain. Equation (4) indicates that the conversion from offset
to angle is a radial trace transform (RTT) on the depth and off-
set wavenumberskz andkh. The offset gathers have limited spatial
sampling, therefore they also have finite spatial bandwidth. The
offset gather is transformed to the Fourier domain, and after RTT
we obtain the left panel of Figure 3. The limits on the spatial band-
width also limit the angle range on which we can reliably compute
the RTT (Figure 8). This is limitation is given by the acquisition
and processing parameters, and there is not much we can do to alle-
viate the situation. We can, however, have a measure of the angular
range on which the amplitude values are reliable.

Figures 4 and 6 show the angle gathers computed from an image
obtained by modeling the original synthetic image (Figure 3), and
migrating the resulted data. Not surprisingly, since we have used
the same velocity for both modeling and migration, the angle gath-
ers are perfectly flat. However, the amplitude response is far from
what we expect: both angle gathers, regardless of the method used
to compute them, do not show constant amplitudes, not even for the
inner angles. The explanation is that we applied a succession of the
forward (modeling) and adjoint (migration) of a linear but not uni-
tary operatorL . To makeL unitary we need to take into account
the weights introduced by the imaging step during migration. In
the frequency-wavenumber domain, these weights are well approx-
imated by a diagonal operator and they are computed by evaluating
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Figure 4: Angle gather computed in the image space. The amplitudes are distorted by the non-unitary nature of the migration operator.

Figure 5: Angle gather computed in the image space. The weighting factors restore correct amplitudes.

Figure 6: Angle gather computed in the data space. The amplitudes are distorted by the non-unitary nature of the migration operator.

Figure 7: Angle gather computed in the data space. The weighting factors restore correct amplitudes.
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the Jacobian of the transformation from the temporal frequencyω

to the vertical wavenumberkz, that isdω/dkz.

The Jacobian is different for the two methods of computing AD-
CIGs because the imaging is performed at constant offset ray pa-
rameterph in the first case, and at constant offset wavenumberkh
in the other case. In one case the weighting functionWp is equal to

W−1
p =

dkz

dω

∣∣∣∣
ph=const

=

kzs

[
ωs2

−
(km+phω)ph

4

]
+kzr

[
ωs2

+
(km−phω)ph

4

]
kzskzr

(7)

and in the other caseWh is equal to

W−1
h =

dkz

dω

∣∣∣∣
kh=const

=
ωs2 (kzs+kzr)

kzskzr
, (8)

wheres is the local slowness andkzs andkzr are respectively the
vertical wavenumber for the source component and the receiver
component, andkm is the midpoint wavenumber. As discussed
above, in case of variable velocity media, these quantities are eval-
uated at the reflector location. For both ADCIG methods we have
thatWL

′

≈ L−1. Figures 5 and 7 show the restored amplitudes for
the case of our simple synthetic example.

“True amplitude” migration weights can be easily derived from
equations (7) and (8) by spliting the weighting factor of modeling.
If we adopt the definitions introduced by Stolt and Benson (1986),
we can multiplyWp andWh by 4kzskzr/(i ωs2). For example,Wh
becomes

Ŵh
−1

=
4

i
(kzs+kzr) . (9)

For exemplification, Figure 9 shows an image gather obtained for
a real dataset. The left panel is the gather computed without the
compensation factor, while the right panel shows the gather after
amplitude compensation. The amplitude weighting attenuates most
of the energy at high incidence angles, and enhances the amplitude
of the reflections at lower incidence angles.

CONCLUSIONS

This paper demonstrates that angle-domain common image gathers
generated by wave-equation migration can be used for AVA analy-
sis. Angle gathers can be computed both in the data space and in
the image space. The two most important factors on the accuracy
of the amplitude response are the finite sampling of the offset axis
and the non-unitary nature of the migration operator. While limited
sampling cannot be easily repaired, the migration algorithm can be
modified to incorporate correction factors.

ACKNOWLEDGEMENTS

We thank the sponsors of the Stanford Exploration Project (SEP)
for supporting the research presented in this paper. This research
was also partially funded by the ACTI project # 4731U0015-3Q.

REFERENCES

Biondi, B. L., 1999, 3-D Seismic Imaging: Stanford Exploration
Project.

de Bruin, C. G. M., Wapenaar, C. P. A., and Berkhout, A. J., 1990,
Angle-dependent reflectivity by means of prestack migration:
Geophysics,55, no. 9, 1223–1234.

Ottolini, R., 1982, Migration of reflection seismic data in angle-
midpoint coordinates: Ph.D. thesis, Stanford University.

Prucha, M., Biondi, B., and Symes, W., 1999, Angle-domain
common-image gathers by wave-equation migration: 69th Ann.
Internat. Meeting, Soc. Expl. Geophys., Expanded Abstracts,
824–827.

Stolt, R. H., and Benson, A., 1986, Seismic migration - theory and
practice: Geophysical Press, London - Amsterdam.

Stolt, R. H., 1978, Migration by Fourier transform: Geophysics,
43, no. 1, 23–48.

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

distorted am
plitudes

region of

γmax

region of
correct amplitudes

kz

kh

Figure 8: The finite spatial bandwidth limits the range of the angles
for which we can reliably reconstruct the reflection amplitudes.

Figure 9: Real data example. The bottom panels are image gathers
computed in the data space with (right) and without (left) amplitude
compensation. The top panels show the amplitude variation with
offset ray parameter for an event at about 1.75 km depth.


