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SUMMARY

We introduce a new wave-equation method of MigrationVelocityAnal-
ysis. The method is based on the linear relation that can be established
between a perturbation in the migrated image and the generating per-
turbation in the slowness function. Our method iteratively updates the
slowness function to account for improvements in the focusing quality
of the migrated image. As a wave-equation method, our MVA is robust
and generatessmooth slowness functions without model regularization.
We also show that our method has the potential to exploit the power of
residual prestack migration.

INTRODUCTION

Seismic imaging is a two-step process: velocity estimation and migra-
tion. As the velocity function becomes more complex, the two steps
become more and more dependent on each other. In complex depth
imaging problems, velocity estimation and migration are applied itera-
tively in a loop. To assure that this iterative imaging process converges
to a satisfactory model, it is crucial that the migration and the velocity
estimation are consistent with each other.

Kirchhoff migration often fails in complex areas, such as sub-salt,
because the wavefield is severely distorted by lateral velocity varia-
tions and thus complex multipathing occurs. As the shortcomings of
Kirchhoff migration have become apparent (O’Brien and Etgen, 1998),
there has been a renewal of interest in wave-equation migration and
the development of computationally efficient 3-D prestack depth mi-
gration methods based on the wave equation (Biondi and Palacharla,
1996; Biondi, 1997; Mosher et al. , 1997). However, there has been
no corresponding progress in the development of Migration Velocity
Analysis (MVA) methods that can be used in conjunction with wave-
equation migration. We present a method that aims at filling this gap
and that, at least in principle, can be used in conjunction with any
downward-continuation migration method. In particular, we have been
applying our new methodology to downward continuation based on the
Double Square Root equation in 2-D (Yilmaz, 1979; Claerbout, 1985;
Popovici, 1996) and on common-azimuth continuation in 3-D (Biondi
and Palacharla, 1996).

As for migration, wave-equation MVA is intrinsically more robust than
ray-based MVA because it avoids the well-known problems that rays
encounter when the velocity model is complex and has sharp bound-
aries. The transmission component of finite-frequency wave propaga-
tion is mostly sensitive to the smooth variations in the velocity model.
Consequently, wave-equation MVA produces smooth velocity updates
and is thus stable. In most cases, no smoothing constraints are needed
to assure stability in the inversion. On the contrary, ray-based methods
require strong smoothing constraints to avoid quick divergence.

Our method is closer to conventional MVA than other wave-equation
methods that have been proposed to estimate the background velocity
model (Noble et al. , 1991; Bunks et al. , 1995; Fogues et al. , 1998) be-
cause it tries to maximize the quality of the migrated image instead of
trying to match the recorded data. In this respect, our method is related
to Differential Semblance Optimization (Symes and Carazzone, 1991)
and Multiple Migration Fitting (Chavent and Jacewitz, 1995). How-
ever, with respect to these two methods, our method has the advantage
of exploiting the power of residual prestack migration to speed up the
convergence.

ESTIMATION ALGORITHM

We estimate velocity by iteratively migrating the prestack data and
looping over the following steps:

1. Downward continuation with current velocity

2. Extraction of Common-Image Gathers from prestack wave-
field (Prucha et al. , 1999)

3. Residual prestack migration of Common-Image Gathers

4. Estimation of image perturbation from residual prestack mi-
gration results

5. Estimation of velocity perturbation from image perturbations

The core technical element of the method is the estimation of velocity
perturbations from image perturbations. The next section presents the
linear theory that enables us to achieve this goal.

LINEAR THEORY

In migration by downward continuation (Figure 1), data measured at
the surface (D) is recursively pushed down in depth to generate the
complete wavefield (U ). Downward continuation requires us to make
an assumption of the slowness field (S). Once the wavefield is known,
we can apply the imaging condition which gives us the wavefield at
time zero, or in the other words, the image or reflectivity map at the
moment the reflectors explode (R).

In the presence of the background wavefield (U ), a perturbation in
slowness ( S) will generate a scattered wavefield ( W ), which can,
by the same method as the background field, be downward continued
( U ) and imaged ( R) (Figure 1).

We can now take the perturbation in image ( R) and apply the adjoint
operation. This will lead to an adjoint perturbation in wavefield ( U ),
an adjoint scattered field ( W ), and eventually to an adjoint pertur-
bation in slowness ( S ) (Figure 1). Considering a first order Born
relation between the perturbation in slowness and the scattered wave-
field, we can establish a direct linear relation between the perturbation
in image ( R) and the perturbation in slowness ( S). It follows that
if we can obtain a better focused image, we can iteratively invert for
the perturbation in slowness that generates the better focusing. This is
the foundation of our wave-equation MVA method.

In the following sections we will briefly present the mathematical re-
lations on which our method is based.

Background field: Forward operator
Migration by downward continuation, in post-stack or pre-stack, is
done in two steps: the first step is to downward continue the data
(D) measured at the surface, and the second is to apply the imaging
condition, that is to extract the wavefield at time t 0, or the image
(R), at the moment the reflectors explode (Claerbout, 1985).

1. Downward continuation

The first step of migration consists of downward continuation
of the wavefield measured at the surface (a.k.a. the data),
which is done by the recursive application of the equation:

uz 1
0 T zuz

0 (1)

initialized by the wavefield at the surface:

u1
0 f d (2)

where:
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Figure 1: Processing chart.

uz
0 is the wavefield u0 at depth z.

u1
0 is the wavefield u0 at the surface.

T z s0 is the downward continuation operator at
depth z.

d is the data, i.e. the wavefield at the surface.

f is a frequency dependent scale factor for the data.

2. Imaging

The second step of the migration by downward continuation is
imaging. In the explodingreflector concept, the image is found
by selecting the wavefield at time t 0, or equivalently, by
summing over the frequencies ( ):

rz
0

N

1

uz
0 (3)

where:

rz
0 is the image (reflectivity) corresponding to a given

depth level (z).

Perturbation field: Forward Operator
If we perturb the velocity model we introduce a perturbation in the
wavefield. In other words, the perturbation in slowness has generated
a secondary scattered wavefield.

1. Scattering and Downward Continuation

If we consider the perturbation in wavefield at the surface, we
can recursively downward continue it, adding at every depth
step the scattered wavefield:

uz 1 T z uz z 1 (4)

where

uz is the perturbation in the wavefield generated
by the perturbation in velocity, and downward contin-
ued from the surface.

z 1 represents the scattered wavefield caused at
depth level z 1 by the perturbation in velocity from
the depth level z.

The first order Born approximation of the scattered wavefield
can be written as:

z 1 T zGzuz
0 sz (5)

where:

Gz s0 is the scattering operator at depth z.

sz is the perturbation in slowness at depth z.

uz
0 is the background wavefield at depth z.

If we introduce the equation (5) in (4) we obtain that:

uz 1 T z uz Gzuz
0 sz (6)

2. Imaging

As for the background image, the perturbation in image ( rz ),
caused by the perturbation in slowness, is obtained by a sum-
mation over all the frequencies ( ):

rz
N

1

uz (7)

The equations (6) and (7) establish a linear relation between the per-
turbation in slowness ( sz ) and the perturbation in image ( rz ). We
can use this linear relation in an iterative algorithm to invert for the
perturbation in slowness from the perturbation in image.

Perturbation field: Adjoint Operator
In the adjoint operation, we begin by upward propagating the pertur-
bation in wavefield at depth:

uz T z uz 1 rz (8)

where

T z is the upward continuation operator at depth z.

We can then obtain the perturbation in slowness from the perturbation
in wavefield by applying the adjoint of the scattering operator:

sz uz
0 Gz T z uz 1 uz (9)

The equations (6) and (7) for the forward operator, and the equations
(8) and (9) for the adjoint operator, express the linear relation estab-
lished between the perturbation in slowness ( S) and the perturbation
in image ( R).
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Figure 2: Original image.

Figure 3: Better focused image after residual migration.

EXAMPLE

In the first part of our example we will concentrate on improving the
focusing of the image. To achieve an enhanced focusing, we used
Stolt residual migration in the prestack domain (Stolt, 1996; Sava,
1999). Another alternative to obtain a better focusing would be to
use velocity continuation (Fomel, 1997). The dataset is part of a gas-
hydrate study, and was recorded at the Blake Outer Ridge, offshore
Florida and Georgia (Ecker, 1998).

Figure (2) shows the image obtained with a starting velocity model,
while Figure (3) shows an image obtained by applying residual migra-
tion to the original. The second image is clearly better focused than
the original, and therefore appears more energetic.

We can take the difference between the two images, (2) and (3), to be
the perturbation in image ( R), and use it to invert for the slowness
model that generates the better focus.

For the second part of our example, we have constructed a model in-
spired by the sections in Figures (2) and (3). The goal is to convert the
differences in focusing between the two images (perturbation in image)
into a better slowness model (i.e. to find the perturbation in slowness).

Figure (4) represents the background slowness model (S). We will use
this model to generate the background wavefield (U ), and the back-
ground image (R) from the synthetic data at the surface (D).

Figure (5) contains the perturbation in slowness ( S). We will use
this model to generate the scattered wavefield ( W ), the perturbation
wavefield ( U ), and the perturbation in image ( R). We will start the
inversion by assuming zero perturbation in slowness.

Figure (6) represents the perturbation in slowness obtained at the first
iteration. For now, only a small perturbation in slowness is obtained,
though it is not totally concentrated at the right location. Part of the
energy of the section is spread, for example at about midpoint 2 2
2 4km and at depth 1 3 1 4km. This artifact is the result of the still
imperfect definition of the slowness anomaly, and possibly it is also
due to the proximity of the edge.

By the 20th iteration (Figure 7), the perturbation in slowness is much
better shaped, and the artifact at depth is much weaker. Also, the
absolute magnitude of the anomaly is getting very close to the correct
value: smax 0 088s/km for the original, and smax 0 084s/km for
the inversion at iteration 20.

CONCLUSION

We have presented a recursive wave-equation MigrationVelocityAnal-
ysis method operating in the image domain. Our method is based on
the linearization of the downward continuation operator that relates
perturbations in slowness to perturbations in image. The fundamental
idea is to improve the quality of the slowness function by optimizing
the focusing of the migrated image.

The iterative method is very stable and accurate when applied to a
synthetic dataset. It also converges to the solution without the need
for any regularization of the slowness model. We are currently in the
process of applying the method to the real seismic dataset used as an
example in this expanded abstract.
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Figure 4: Background slowness (S).

Figure 5: Perturbation in slowness ( S).

Figure 6: Recovered perturbation at iteration 1.

Figure 7: Recovered perturbation at iteration 20.


