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SUMMARY

Driven by economic constraints, 3D surveys typically have sparse and
irregular geometry that results in spatial aliasing. In this paper we
present a new approach for imaging irregularly sampled 3D prestack
data. The strategy is to regularize the coverage of 3D surveys and
reduce the size of 3D prestack data by partial stacking. After regular-
ization, 3D data become handy for prestack migration using any wave
extrapolation methods including finite-differencing and wave-number
domain techniques.
Posing partial stacking as an optimization process, we develop a new
dealiasing technique named “inversion to common offset” (ICO) that
solves for regularly-sampled models from irregularly sampled multi-
fold 3D data. The matrix that relates the data to the reflectivity model
is the azimuth-moveout operator (AMO). The technique can be viewed
as a generalization of the inversion to zero offset (IZO) discussed by
Ronen (1985). The main advantage of ICO, is that the modeling opera-
tor, AMO, is not restricted to a particular azimuth or offset. The model,
in general, simulates a regular common-azimuth common-offset ex-
periment. AMO is also very compact and consequently cheaper to
apply than other wave-equation processes such as prestack depth mi-
gration. Since ICO is applied to normal-moveout corrected data, the
iterative solution is less sensitive to the velocity field in comparison to
least-squares migration.
We present the results of applying ICO to a field 3D land survey to
regularize the geometry of the data and reduce the costs of its prestack
imaging. The images obtained by prestack migration after regulariza-
tion are superior to those obtained by migrating the irregularly sampled
data. Furthermore, ICOprovidesa promisingapproach for reducing the
costs of 3D acquisition by collecting data with sparse offset sampling.

INVERSION TO COMMON OFFSET

The offset dimension adds important aspects to reflection seismology.
Mainly, it provides robust analysis of the velocity of seismic waves
and enables enhancement of signal-to-noise ratio by stacking. We use
the offset and azimuth dimensions to pose partial staking with AMO
(Biondi et al. , 1998) as an optimization process to regularize the cov-
erage of 3D surveys. We define processing as the inverse of modeling
irregularlysampleddata from a regularly sampled model (Ronen, 1994;
Chemingui and Biondi, 1997). The inverse of AMO-staking is AMO
mapping from a regularly sampled common-azimuth and common-
offset cube into an irregularly sampled data with a range of offsets
and azimuths. The mapping represents a linear transformation based
on integral formulation of AMO. The representation of the integral as
discrete summation reduces to a matrix-vector multiplication. The re-
lation between data and model is then given by the linear system of
equations:

d � Lm� (1)

where the vectord represents the irregular input data,m represents a
regularly sampled model andL is the AMO operator. In generalL can
be any full or partial modeling operator.

Equation (1) represents a forward modeling relation, where the goal of
processing is to perform the inverse of these calculations, i.e., to find
models from the data. Mathematically, this is equivalent to estimating
the inverse ofL by solving the set of equations in (1). One way to solve
such a system is to look for a solution that minimizes the average error
in the set of equations. This minimizationcan be done in a least-squares
sense where the norm

�
Lm � d

�
2 is minimized. The choice ofm that

makes this error a minimum gives the least-squares solution

m ��� LT L ��� 1LT d � (2)

PRACTICAL IMPLEMENTATION OF ICO

The inversion of 3D multichannel seismic data using wave-equation
techniques is generally a cost prohibitive solution. The main reason
for the high cost is the size of the prestack data and the time-variability
of wave equation processes. The breakthrough with ICO is that the
modeling operator, AMO, is very compact and the cost of applying it
is negligeable compared to prestack migration. We present some im-
plementation techniques and concepts from inverse theory that enable
cost effective implementation of ICO on 3D data.

Log-stretch Fourier transformation
Bolondi et. al. (1984) described a logarithmic stretching of the time
axis that can convert a non-Fourier transform implementation to a
Fourier transform combined with a phase shift. The log-stretch trans-
form makes AMO a time-invariant operator, which means it only de-
pends on the difference between the input and output time. A trans-
formation of the log-stretched data to the Fourier domain is then a
convenient way to process the data in the	
� X space. Furthermore,
since each frequency inversion is completely independent, one needs to
solve many small systems instead of solving one huge system of equa-
tions. In practice, several frequency bands from a useful bandwidth of
the data are processed in parallel.

Iterative solution for the pseudo-inverse
For each frequency component (or bandwidth) the systems of linear
equations to be solved is still very large and one has to resort to iterative
methods. This solves a huge set of simultaneous equations without
the need to write down the matrix of coefficients. We use an iterative
schemebasedon theconjugategradient solver. Thealgorithmgenerates
a sequence of approximate solutions whose computations each involve
the application of the adjoint followed by the forward operator. Both
operations areAMO transformations and their computation is therefore
reasonably cheap.

Diagonal weighting preconditioning
The convergence rate of the conjugate gradient algorithm depends on
the condition number of the matrix to be inverted. For ill-conditioned
matrices a preconditioner is often necessary. The design of a good
preconditioner depends directly on the structure of the matrix. In the
inversion relation (1), the number of equations is the number of traces
in the input data and the number of unknowns is the number of output
traces or bins. SinceL is a Kirchhoff matrix, each row ofL corresponds
to a summation surface and each column corresponds to an impulse re-
sponse. Due to irregular sampling, the rows and columns ofL are badly
scaled. To balance the coefficients of the matrix we apply a diagonal
transformation to normalize its rows and columns. This involves pre-
or post-multiplying the operatorL by a diagonal matrix whose entries
are the inverse of the sum of the rows or columns ofL. The sum is
always positive since Kirchhoff operators are associated with matrices
that contain no negative elements. The diagonal weighting is essen-
tially a calibration by a flat event, which is the operator’s response to
an input vector with all components equal to one.

Row-scaling preconditioning
Row scaling is equivalent to pre-multiplying the matrixL and the data
vectord by a diagonal matrixR � 1 and solving the system:

R � 1d � R � 1Lm (3)

Since each row corresponds to a summation surface (impulse response
of LT ), R � 1 is normalization of the data by the coverage beforeAMO.

Column-scaling preconditioning
This approach is based on a post-multiplication of the matrixL by a
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diagonal matrixC� 1. The preconditioning operator introduces a new
modelx given by

x � Cm (4)

By the preconditioning transformation, we have recast the original in-
version relation (1) into

d � LC� 1x � (5)

After solving forx we easily computem � C � 1x.

Given that each column ofL corresponds to an output bin,C� 1 is
normalization of the model by the coverage after AMO.

Row and column scaling
Proper balancingof the matrixL can be achieved by scaling in both data
space and model space. However, applying either diagonal transfor-
mation ensures common magnitude of the elements ofL. The diagonal
operatorsR � 1 andC� 1 have physical units inverse toL. Therefore
applying both of them results into an ill-conditioned system where the
matrixL has the inverse of its original units. The solution is to scale the
matrixL by thesquare root of R � 1 andC� 1 and solve the transformed
system:

R � 1� 2d � R � 1� 2LC� 1� 2x � (6)

As Figure 1 shows, the diagonal transformation has proved to be a suit-
ablepreconditionerfor the linear system. The columnscalingimproved
the convergence of the iterative solution and resulted into better con-
vergence than the row scaling. The best convergence was achieved by
properly scaling both the data space and model space. A good solution
was obtained after 5 to 8 iterations of conjugate gradient solver.

Figure 1: Convergence of ICO for one frequency inversion using dif-
ferent preconditioners.

Regularization of the inversion

In order tocomputestable solutions to ill-conditioned systems it is often
necessary to apply regularization methods. One way to achieve such
objective is to augment the problem with a second regression that adds
assumptions about the model. We now seek a solution to the system of
regressions:

0 � rd
� L m � d (7)

0 � rm
�  P m (8)

To impose a smoothness constraint on the solution, we choseP to be
the Laplacian operator, which represents spatial differentiation in the
midpoint-space. Setting the penalty operator,P , to be the identity
matrix reduces to the standard Tikhonov regularization. The parameter
 controls the smoothness of the solution and is function of the smallest
resolved singular value ofL.

APPLICATION TO 3D REAL DATA

This section presents the results of applying ICO to a 3D land survey
recorded in the Shorncliff region of Canada. The dominant geology of
the area is flat. One of the objective targets is quite shallow (approxi-
mately .71 seconds) and consists of a fluvial deposit system marked by
a buried meandering channel. Previous studies of the dataset focused
on post-stack processing techniques i.e, DMO processing and inver-
sion to zero offset (Ronen and Goodway, 1998). In our application, we
address the problems related to prestack depth imaging and the effects
of irregular sampling on the image quality.

The survey was designed with the aim of obtaining a high fold coverage
for a good quality final stack. The image from the over-sampled survey
can then be used to assess the quality of images obtained by simulating
more economic acquisition geometries. We therefore decimated the
original dataset to create a sparse geometry that results into aliasing
problems. The shot lines from the over-sampled survey were spaced
at 140 meters, whereas in the decimated experiment they alternate be-
tween 280 and 420m for an average spacing of 350m. We also extracted
every fifth receiver line to simulate a cross-spread geometry with 350m
line-spacing. The 3D subset used in the simulations consisted of 11300
traces whose source-receiver azimuth is between� 60o and 60o with
an absolute-offset range from 400 to 1000 meters. Figure 2a shows
the fold distribution for the subset binned at the survey nominal CMP
spacing of 35 m. The variations in coverage between different bins vary
substantially from 0 to a maximum of 7. Figure 2b represents a fold
chart for the same offset and azimuth range from the original survey.
The densely-sampled subset contains 148,000 traces, and therefore, is
13 times larger than the decimated survey.

Data regularization
To equalize the coverage of the irregularly sampled subset, we ap-
plied three different regularization methods: conventional binning after
NMO, partial stacking by calibrated AMO, and inversion to common
offset (ICO). The model is a common offset section sampled at 17.5 m
spacing, with zero effective azimuth and 700 m constant offset. The
results are compared in Figure 3. As expected, NMO-stacking nicely
preserved the continuity of flat events. Due to the low fold of the
decimated subset and the fast varying coverage between CMP bins,
the signal to noise ratio is not homogeneous across the section. With
normalized AMO (one iteration of ICO, calibrated by a flat-event re-
sponse), amplitudes are not balanced and aliasing noise dominates the
seismic sections. The result of regularized ICO with row and column
scaling, after 7 iterations, is substantially better than calibrated AMO.
Amplitudes along the flat reflectors are well equalized and aliasing
noise is mostly eliminated.

Migration after regularization
The next step after regularizing the coverage of the 3D subset is to
apply 3D migration to the partial stack. Although at this stage any
wave-extrapolation technique can be applied to the regularly sampled
subset, we chose Kirchhoff migration for consistency in comparing the
results of imaging before and after regularization.

Figure 4 compares the results of migrating the 3D subset using differ-
ent imaging flows. The Figure represents a particular depth slice (910
m) where differences are most noticeable between the results. The mi-
gration of the oversampled survey indicates a complex morphology of
a meandering river system marked by ramification of the major chan-
nel. The output of migrating the irregularly sampled subset is very
noisy and distorted by strong artifacts that make the interpretation of
the channels difficult. The result of migrating the NMO-stack showed
a surprisingly bad resolution at the observed depth. In contrast, migra-
tion after regularization with ICO unveiled much of the details in the
image and resolved the different branches of the channel. Given the
dominantly flat geology of the survey, it was expected that migration
after NMO would still provide a good image. That was indeed the case
for many depth sections especially at the floor of the river channel. A
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Figure 2: Fold distribution of the 3D subset: (a) decimated survey; (b) over-sampled survey

Figure 3: In-line sections at 1 km obtained by: a) NMO-Stack of over-sampled subset, b) NMO-Stack of decimated subset, c) CalibratedAMO-Stack,
d) ICO partial stack.
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Figure 4: Depth slices at 910 m obtained by different imaging flows a) Migration of over-sampled subset, b) Migration of decimated subset, c)
Migration after binning, d) Migration after regularization with ICO.

plausible explanation for this phenomenon is that the morphology of
the river system becomes more complex towards the top of the depo-
sition sequence. This results into diffractions from the edges of levees
and from possible barrier islands. While these diffractions were nicely
preserved by ICO, they were destroyed during stacking by NMO.

CONCLUSIONS

We presented a new approach for imaging irregularly sampled 3D
prestack data. The method poses partial stacking with AMO as an
optimization process to reduce the size of prestack data and regularize
its coverage before migration. The new inversion, named ICO is ap-
plied to normal-moveout corrected data. It enables prestack analysis
of the reflectivity function since the output models are partial stacks at
non-zero offset. The partial stacks can be migrated separately and, ei-
ther stacked together to form the final image, or, individually analyzed
for amplitude and velocity variations.

We present a cost effective implementation of ICO in the Log-stretch
Fourier domain with proper preconditioning and regularization of the
inversion for iterative solvers. Results of applying ICO to a land 3D
survey showed that regularizing the coverage before imaging helps
preserve the amplitude information and the high frequency components
of the reflectivity function. Furthermore, ICO provides a promising
approach for reducing the costs of 3D acquisition.
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