SEG 3D Advanced Seismic Modeling Project

Chevron Perspective

CSM, 12 July 2005 Houston(Hess), 8 Sept 2005 Houston(COP), 14 Oct 2005

Given

- (1) the past SEG emphasis on "geometric" (container) imaging of structurally complex models with only weakly represented stratigraphy, and
- (2) the growing need for better amplitude processing and seismic reservoir characterization,

we believe the SEG effort is worthwhile, and we particularly (but not exclusively) support a stratigraphically-flavored earth/seismic modeling exercise.

This will likely require elastic modeling, and certain shortcuts & compromises might be necessary, depending on model details and required accuracy.

Questions: can acoustic simulations provide enough value for stratigraphic objectives? (lose Vs effects on AVA, maintain strat scat, ...). 3D vs 2.5D?

A Recipe for Realistic Stratigraphy Construction SEG 3D Advanced Seismic Modeling Project

Joe Stefani, Chevron

CSM, 12 July 2005 Houston, 8 Sept 2005

Towards Realistic Seismic Earth Models: Evolution of Earth/Strat Models

- 1 Matching key property and correlation characteristics
- 2 Generating flat stratigraphy
- 3 Adding interesting reservoirs in 3D
- 4 Warping/Morphing by hand
- 4 Warping/Morphing by inverse flattening
- 5 Applying *mild* near-surface velocity perturbations
- 6 Masking-in a salt body (for structural problem)

1: Match Key Property and Correlation Characteristics

Want the model to match the Earth in these (necessary but maybe insufficient) characteristics:

spatial correlation of property variations horizontally and vertically

RMS of property fluctuations about local mean

histogram of property fluctuations about local mean

correlation coefficients among Vp,Vs,Dn reflectivities

Background on Spatial Correlation of Property Variations: Statistical Self-Similarity and Power Laws \rightarrow

Illustration of Self-Affinity: Vertical Vp Log at 3 scales

(depth in feet, linear trend removed, power = 1.2: horzfac=2 vertfac= $2^{\beta/2}$ =1.5)

2: Generate Flat Stratigraphy

Seismic Parameters for strat5 Model (VE=3)

Vp

2Vs

4000Den

Reflectivity*Wavelet

3: Add Interesting Reservoirs in 3D

Alternative Slope Valley Analogue Nigeria, Deptuc et al. 2003

Channels with Levies and Downslope-Migrating Loops

Plan view of a vertical average of Vshale: (white=0, red=1)

Direction of flow \rightarrow 10 km

Cellular resolution: dx = dy = 25m, dz = 4m

Cross-Section of Channels with Levies Model

Vshale: (white=0, red=1) Vert Exag = 10:1

5 km

Multi Layer Interpretation

Distributary channel interpretation from 14 time slices thoughout 12.5 interval, merged to show channel stacking & switching pattern

Anastomosing & Constricted Channels without Levies (spaghetti model)

Plan view of a vertical average of Vshale: (white=0, red=1)

10 km

Cellular resolution: dx = dy = 25m, dz = 4m

Cross-Section (near throat) of Spaghetti Model

Vshale: (white=0, red=1) Vert Exag = 20:1

5 km

Stratigraphic Model (Vp)

Strat example 2: Braided channels + overbank meander channel

Seis example 2: Braided channels + overbank meander channel

Transient Fans Shallow Seismic Examples from Nigeria

Strat example 1: Channels of low reflectivity

Seis example 1: Channels of low reflectivity

3D Conceptual Models

Jurassic Tank 3D Volume University of Minnesota, St. Anthony Falls Laboratory courtesy of Prof. Chris Paola

Dip Section

Dip Section

Strike Section

Strike Section

Stratigraphers would call this ~alluvial fan delta, and would scale it vertically according to bar at right, with VE ~ 5:1 4: Warp/Morph by Hand

Reservoir embedded in stratigraphic container for seismic modeling

Example: Voxet sections

Depth slice through reservoir

Realistic stratigraphic earth models provide a good testbed for various stochastic spatial inversion methods used in reservoir modeling and flow prediction.

2D Slice from 3D Stratigraphic Earth Model

2D Stratigraphic Earth Model

2D Elastic Finite Difference, prestack time migration, stack

4: Warp/Morph by Inverse Flattening

Flattening overview

Jesse Lomask, Antoine Guitton, Sergey Fomel, Jon Claerbout, and Alejandro Valenciano Stanford Exploration Project

Estimate local dip field

Sum the dips

Apply summed dips as time shifts

Measure 2D dip vector & Estimate 3D τ field

General idea:

wavefield = $u(x, y, \tau)$ surface of constant phase : du = 0 $du = \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy + \frac{\partial u}{\partial \tau}d\tau = 0$ for constant y, dip in x direction : $p_x \equiv \frac{d\tau}{dx} = -\frac{\partial u}{\partial x} / \frac{\partial u}{\partial \tau}$ for constant x, dip in y direction : $p_y \equiv \frac{d\tau}{dy} = -\frac{\partial u}{\partial y} / \frac{\partial u}{\partial \tau}$ $r_{\nabla \tau} = r_{p(\tau)} \quad \text{least - squares soln} : \tau \approx (\nabla^{T} \nabla)^{1} \nabla^{T} p$

Downlap picks

Iteration: 0

Downlap picks

Iteration: 10

Inverse flattening begins with flat synthetic strat and warps it according to red τ field

Cumulative Deformation Field (example 1)

Vertically Exaggerated Flat Stochastic Stratigraphy Field (e.g. Vp, Vs or Dn)

Flat Stratigraphy Warped via Inverse Flattening

Cumulative Deformation Field (example 2)

Same Flat Stratigraphy Warped via Inverse Flattening of Example 2

Cartoon of interesting reservoirs conformably interspersed between warped refer layers

EARTH MODELING TASKS

Structure / Stratigraphy Geometric Tasks

- 1: Choose representative Salt body (illumination shadows, multiples, rugosity, invisible base?, variable velocity[Vp fluct ~ 500 ft/s ~ 4%??], multiple bodies)
- 2: Choose several interesting reservoir types and build their realizations (AVO)
- 3: Choose representative seismic for sediment warping template (or do by hand)
- 4: Decide what extra structural features the sediments should have (faults, seafloor structure, shallow anomalies, bright reference horizons, ref. point diffractors...)
- 5: Ensure realistic flow/structure conformity at salt/sediment interface

Vp,Vs,Dn Assignment Task

- 1: Build background sed model with good Vp,Vs,Dn fluctuation-correlations in X,Y,Z
- 2: Ensure valid correlations among the 3 elastic constants.

Small-Scale 3D Mock-Up for SEG Workshop

Inverse Flattening Issues:

To serve as a flattening template, need to choose a large enough 3D seismic volume having the characteristics of interest, such as: regional dip, local dip, unconformities, faults.

Will probably need to manually morph the resulting stratigraphy field to be in geological agreement/conformance with any allochthonous salt (step ups), or to add special faults or unconformities.

5: Apply Mild Near-Surface Velocity Perturbations

Why? Observation/Motivation:

Small lateral velocity gradients (of ~1% δ V/V and below tomographic resolution) create large amplitude fluctuations/striping.

Seismic Parameters for strat5 Model (VE=3)

Walkaway VSP – real data

How important is the overburden regarding amplitude behavior?

REAL DATA IMAGE REMOVED

Factors of 2 to 4 in relative

transmitted amplitudes over offset distances of 500m Anomalous variations of ± **5msec**. in arrival time (implying < **0.5% lateral velocity gradients!!)**

Correlation between anomalous amplitudes and arrival times:

- high amplitudes correlate to time delays

- low amplitudes correlate to time advances

Anomaly strength increases with path length

Near Offset Section (real data)

REAL DATA IMAGE REMOVED

* Processing artifacts (radon filtering, decon)? Acquisition (streamer noise, directivity, etc.)? Earth lateral heterogeneity (Lensing : Vp focus/defocus, Scattering: dVp,dVs,dDn) !!! (yes)

6: Mask-in a Salt Body

Sigsbee 2 Stratigraphic Model

SMAART II

Recipe for Realistic Stratigraphic Earth Model Construction

1: Match elastic property fluctuation statistics (rms and $\delta Vp, \delta Vs, \delta Dn$ correlations) and lateral/vertical spatial correlations (power-law color, e.g. $\delta v \sim 1/k^{0.5}$).

2: Generate flat stratigraphy in a 3D container honoring the above characteristics, and containing several bright reference horizons.

3: Add interesting reservoirs in 3D parallel to the (flat) bedding.

4: Warp/Morph by hand (superseded by inverse flattening).

4: Warp/Morph by inverse flattening (uses an existing seismic image volume as a warping template; positive: little to no manual editing; negative: same).

5: Apply *mild* near-surface velocity perturbations (sub cable-length, and below the tomographic resolution threshold). Mask in bright diffractors and basal flat layer.

6: Mask-in a salt body (for structural "add on").

Then Shoot seismic – flow the reservoirs "in vitro" – repeat seismic. Notes and Opinions On Acoustic & Elastic Structure & Stratigraphy Earth Modeling & Seismic Modeling Requirements & Tradeoffs

SEG 3D Advanced Seismic Modeling Project

Joe Stefani, Chevron

CSM, 12 July 2005

Some notes on seismic requirements

Minimum length in X, Y of fully imaged geology <u>Elastic</u> Stratigraphic model: 5000 m (1 OCS block) <u>Acoustic</u> Structural model: 10,000 m (want to follow events under salt)

Reasonable radial imaging aperture Mild stratigraphic structure: 3000 m Complex salt structure: 9000 m

Streamer length ~ 6000 m to 8000 m

Total model size in X, Y, ZStratigraphic model~ 15 km X 11 km; 4 km depthStructural model~ 30 km X 22 km; 8 km depth

Frequency bandwidth: Strat ~ 80 Hz, Struc ~ 50 Hz

Cell size: Strat ~ 4m, Struc ~ 8 m

Nnodes ~ 4000 X 3000 X 1000 = 12 billion nodes for either model

Total runtime memory: Strat ~ 400+ Gb; Struc ~ 200 Gb (< 100 node cluster _{4Gb/node}) (double all frequencies, halve all cell sizes: 1000 node cluster) (64-bit clusters welcome!!!)
Some opinions on earth/seismic tradeoffs

A foregone conclusion: A **3D complex**-<u>structural</u> earth model will be built and shot with a purely **acoustic** (Vp,Dn) **finite-difference** simulator.

The more interesting issues revolve around the **<u>stratigraphic</u>** earth model: In light of the economic need to allocate scarce resources for this more difficult problem, a technical discussion of geophysical trade-offs is necessary.

At the coarsest level, seismologists are concerned with **Reflection** and/or **Transmission**. E.g., imaging is mostly about transmitting waves through an overburden correctly (kinematically, perhaps dynamically); and AVO/inversion is mostly about getting the reflectivity right.

Main question: given the economics of seismic modeling, should a stratigraphic model satisfy high fidelity transmission or high fidelity reflection (assuming it cannot do both)?

Stratigraphic transmission effects: short interbed multiples & mode conversions, mild velocity heterogeneity focusing/defocusing, amplitude accuracy over a wide range of angles (0-90), shale anisotropy, ...

Stratigraphic reflection effects: AVA from δ (Vp,Vs,Dn,anis), finer layering, ...

What about 3D vs 2.5D? 2.5D is economical and can include all the R & T effects above, but its biggest shortcoming is the sacrifice of realistic 3D facies *shapes* (e.g. no meandering channels).

Stratigraphic earth/seismic tradeoffs Blue good Red bad

2-way Time extrap

1-way Z extrap

TRANSMISSIONShort interbed multiplesShort mode conversionsShort mode conversionsVel Lens focusing/defocusingWide angle amp accuracy (acoust)Shale anisotropyREFLECTIONAVA (missing Vs, missing anis)Fine layering (dX ~ 8m)More kind to transmission	TRANSMISSIONShort interbed multiplesShort mode conversionsVel Lens focusing/defocusingWide/narrow angle amp accuracyShale anisotropyREFLECTIONAVAFine layering (dX ~ 4m)			
void	TRANSMISSIONShort interbed multiplesShort mode conversionsVel Lens focusing/defocusingWide/narrow angle amp accuracyShale anisotropyREFLECTIONAVAFine layering (dX ~ 4m)			
Acoustic	Elastic			

More-Focused Notes and Opinions on Earth Model & *Acoustic* Seismic Algorithm Issues

SEG 3D Advanced Seismic Modeling Project

Joe Stefani, Chevron

Houston, 8 Sept 2005

Model & Algorithmic Issues

Density: Variable vs Constant in the model?

Spatial Operator: X(space) vs K(spectral) ?

+

+

Temporal Operator: O(2) vs O(4) vs Hybrid ?

÷

Dispersion Limits: % group velocity error ?

Floating Point Operation Count: most crucial factor, dependent on all of the above

Model & Algorithmic Issues

Density: Variable vs Constant \rightarrow two 1st-order PDEs vs one 2nd-order PDE.

$$V_{i}^{\mathbf{x}} = -\frac{1}{\rho} \frac{\partial P}{\partial x_{i}} \qquad P_{i}^{\mathbf{x}} = -K \frac{\partial V_{i}}{\partial x_{i}} \qquad \text{VS.} \qquad P_{i}^{\mathbf{x}} = v^{2} \nabla^{2} P$$

Variable density allows richer AVO behavior compared to constant density:

$$R(\theta) = \frac{1}{2} \left(\frac{\Delta V_p}{V_p} + \frac{\Delta \rho}{\rho} \right) - 2 \frac{\Delta (\rho V_s^2)}{\rho V_p^2} \sin^2 \theta + \frac{1}{2} \frac{\Delta V_p}{V_p} \tan^2 \theta$$

Space: Convolve in X vs spectral multiply in K \rightarrow spectral has better spatial characteristics, but number of FFTs increases ~ 4X for two 1st-order PDEs vs one 2nd-order PDE. When is spatial convolution more efficient than spectral?

Time: 2^{nd} vs 4^{th} order in time \rightarrow 4^{th} order has better stability & dispersion characteristics, with only a very modest increase in flops, *provided* velocity is treated as locally constant.

$$P^{t+1} - 2P^{t} + P^{t-1} = -(kv\Delta t)^{2} \left[1 - \frac{1}{12} (kv\Delta t)^{2} \right]^{2}$$
$$P^{t+1} - 2P^{t} + P^{t-1} = -(kv\Delta t)^{2} P^{t}$$

Dispersion = D(VarDen, SpaceOp, TimeOrder) →
dependencies:up to 12,000 m of 1-way propagation path,
avg wavelength ~ 120 m → 100 wavelens
want < half-wavelength dispersion error →
0.5% group velocity dispersion error

FlopCount = F(VarDen, SpaceOp, TimeOrder) ← depends on all of the above dependencies: medium strong strong

Algorithm Implementation Issues (spectral in space; need to estimate flops/cell/dt for each box) Time Order							
	O(2)	O(4)	Hybrid Const parms in 4 th order term				
Constant ρ $p = v^2 \nabla^2 P$	$P^{t+1} - 2P^{t} + P^{t-1} = (v\Delta t)^2 \nabla^2 P^{t}$ 3 variables 2 FFTs	$P^{t+1} - 2P^{t} + P^{t-1} = (v\Delta t)^{2} \nabla^{2} P^{t}$ $+ \frac{1}{12} \Delta t^{4} v^{2} \nabla^{2} (v^{2} \nabla^{2} P^{t})$ 3 variables 4 FFTs	$P^{t+1} - 2P^{t} + P^{t-1} = (v\Delta t)^{2} \nabla^{2} P^{t}$ $+ \frac{1}{12} (v\Delta t)^{4} \nabla^{4} P^{t}$ 3 variables 3 FFTs				
Variable ρ $\mathbf{P} = -K \frac{\partial V_i}{\partial x_i}$ $\mathbf{P}_i^{\mathbf{a}} = -\frac{1}{\rho} \frac{\partial P}{\partial x_i}$	$P^{t+1} - P^{t} = -K\Delta t \frac{\partial V_{i}^{t+\frac{1}{2}}}{\partial x_{i}}$ $V_{i}^{t+\frac{1}{2}} - V_{i}^{t-\frac{1}{2}} = -\frac{\Delta t}{\rho} \frac{\partial P^{t}}{\partial x_{i}}$	$P^{t+1} - P^{t} = -K\Delta t \frac{\partial V_{i}^{t+\frac{1}{2}}}{\partial x_{i}}$ $-\frac{1}{24}K\Delta t^{3}\frac{\partial}{\partial x_{i}}\left[\frac{1}{\rho}\frac{\partial}{\partial x_{i}}\left(K\frac{\partial V_{j}^{t+\frac{1}{2}}}{\partial x_{j}}\right)\right]$ $V_{i}^{t+\frac{1}{2}} - V_{i}^{t-\frac{1}{2}} = -\frac{\Delta t}{\rho}\frac{\partial P^{t}}{\partial x_{i}}$ $-\frac{1}{24}\frac{\Delta t^{3}}{\rho}\frac{\partial}{\partial x_{i}}\left[K\frac{\partial}{\partial x_{j}}\left(\frac{1}{\rho}\frac{\partial P^{t}}{\partial x_{j}}\right)\right]$	$P^{t+1} - P^{t} = -K\Delta t \frac{\partial V_{i}^{t+\frac{1}{2}}}{\partial x_{i}}$ $-\frac{1}{24}Kv^{2}\Delta t^{3} \frac{\partial^{3} V_{j}^{t+\frac{1}{2}}}{\partial x_{i}\partial x_{i}\partial x_{j}}$ $V_{i}^{t+\frac{1}{2}} - V_{i}^{t-\frac{1}{2}} = -\frac{\Delta t}{\rho} \frac{\partial P^{t}}{\partial x_{i}}$ $-\frac{1}{24} \frac{v^{2}\Delta t^{3}}{\rho} \frac{\partial^{3} P^{t}}{\partial x_{i}\partial x_{j}\partial x_{j}}$				
	6 variables 8 FFTs	6 variables 24 FFTs	6 variables 12 FFTs				

FD Cost Spreadsheet

Bold indicates those parameters:

1) having a greater-than-linear impact on total runtime, and

2) that are probably subject to more disagreement.

For whatever method is used, the Operation count / spacetime point (ops/cell/dt) is crucial

Acoustic Finite Difference Problem Size Estimator (blue=user entry)

Earth Model Parame	eters	Acquis & Proc Para	meters	Algorithmic Par	ameters	Machine Param	eters	
Length (full model)	40000	Max Freq	50	PseudoSpect?	yes	Gflop/sec-cpu	1.50	
Width (full model)	30000	Max Offset	8000	O(Xspace)4,6?	6	\$ per cpu-hour	0.10	
Height	10000	Desired drec	25	FDpts/minwavel	2.0			
Vmin	1500	Nstreamers	10	O(T) 2,4,Hyb?	Hyb			
Vmax	4500	xline/iline binsize	2	Ops/cell/dt (de	80			
Water Depth	1000	Max Rec Time	11					
Variable Density	yes	Mig-Apert Radius	8000					
-	-			Dom VKdt (~ 2/	0.192			
				2nd Order T		4th Order T (!! A	ssuming locally c	onstant vel & den)
				VPhase Disp% a	0.15	VPhase Disp% a	-0.0002	
				VGroup Disp%	0.47	VGroup Disp%	-0.0010	
Max allowed dx	15.00	Ncells (millions)	3,596	inline dShot	50	dShot unaliased	7.73	
dx (=dy=dz)	15	active nx*ny*nz*nt	7.7E+12	xline dShot	250	alias angle in cm	. 8	
dRec	25	Total Model Mem (53.58			alias angle in cm	17	
nx earth model	2670	Active Mem (Gb)	11.43	Nshot iline	800	-		
ny earth model	2010			Nshot xline	120			
nz earth model	670			Total Nshots	96000			
nxactive	1070	Gflop/shot	5.7E+05	Total Gflop	5.5E+10			
nyactive	1070	1Shot cpu-hour	105.8	Total cpu-hour	10,160,373			
Sugg Tmax	10.04			·		#clstrs,6mos	Cost Sensitivities	
dT(msec)	0.0011			x000 cpu-days	424	2.3	d\$/d(km)	101,600
nt	10000	1Shot \$Cost	10.58	Total \$Cost	1,016,000		d\$/d(Hz)	121,920

Realistic Wish List?

Variable density, allowing richer AVO behavior \rightarrow two 1st-order PDEs

Spectral operator in Kx Ky Kz \rightarrow better spatial characteristics, but number of FFTs increases with time order and variable density. May require spatial convolution?

Hybrid temporal 4th order operator \rightarrow has better stability & dispersion characteristics, with only a very modest increase in flops, *provided* velocity is treated as locally constant (local velocity gradients ignored). Conjecture(???): AVO reflectivity response only very mildly affected by this operator assumption, but large-scale waveform dispersion is minimized.

Dispersion = D(VarDen, SpectralK, Hybrid temporal) \rightarrow stable with negligible dispersion

FlopCount = F(VarDen, SpectralK, Hybrid temporal) \rightarrow 6X as many FFTs as compared to constant density, 2nd-order time (spatial convolution?)