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Wave Propagator in 3D

The reduced wave equation with radiation condition for

acoustics in a random medium:

∇2G + k2n2(x)G = −δ(x)

lim|x|→∞ |x| · ( ∂G
∂|x| − iknG).

The variable refractive index is n(x) assumed

to be of the form

n(x) = 1 + εµ(x).

When µ vanishes, the solution is well-known to be

G0(x) = eik|x|

4π|x| ,

which is the propagator in 3D homogeneous media.



Wave Propagator in Random Media

J. B. Keller (1961) has shown that for the random case,

the propagator is modified to

〈G(x)〉 = eikn
∗|x|

4π|x| ,

where n∗ is an effective index of refraction,

given explicitly by

(n∗)2 = 1 + ε2
〈

µ2
〉

f(k),

where

f(k) = 1 − 2ik
∫ ∞

0
(e2ikr − 1)N(r)dr

and N(r) is the correlation function

N(r) ≡ N(x − x′) = 〈µ(x)µ(x′)〉 /
〈

µ2
〉

.



Attenuation Coefficient in Random Media

The attenuation coefficient for the random medium is

then given by

α ≡ Im(kn∗) = ε2
〈

µ2
〉

k2
∫ ∞

0
(1 − cos 2kr)N(r)dr.

So one important difference between the propagator for

the homogeneous case, and the one for the random case,

is that amplitude decay is expected due – not only to

spherical divergence – but also to scattering caused

by the fluctuations in wave speed of the medium.



Acoustic Wave Scattering (1)

We assume that the problems of interest are well-approximated

by the inhomogeneous Helmholtz equation:
[

∆ + k2
0n

2(x)
]

u(x) = s(x),

where u(x) is the wave amplitude, s(x) is a localized

source function, k0 = ω/c0 = 2πf/λ,

with f being frequency, λ wavelength, and c0 the

assumed homogeneous background wave speed, while

n(x) is the acoustic index of refraction such that

n(x) = c0

c(x) .

Thus, n2(x) = 1 in the background and a(x) = n2(x) − 1

measures the change in wave speed at the scatterers.



Acoustic Wave Scattering (2)

Pertinent fundamental solutions for this problem

satisfy:
[

∆ + k2
0

]

G0(x, x′) = −δ(x − x′),

and
[

∆ + k2
0n

2(x)
]

G(x, x′) = −δ(x − x′)

for the homogeneous and inhomogeneous media,

respectively.

The solution for the homogeneous medium is well-known in 3D

to be

G0(x, x′) = eik0|x−x
′|

4π|x−x′| .



Acoustic Wave Scattering (3)

The fundamental solution for the inhomogeneous

problem can be written in terms of that for the

homogeneous one in the usual way as:

G(x, x′) = G0(x, x′) + k2
0

∫

a(y)G0(x, y)G(y, x′)d3y.

Note that the right hand side depends also on G.

The regions of nonzero a(x) are assumed to be finite in

number, denoted by N , in compact domains Ωn,

small compared to the wavelength λ. Then, there

will be some position yn (usually) inside each domain,

characterizing the location of each of the N scatterers.



Acoustic Wave Scattering (4)

There is also a constant

qn = k2
0

∫

Ωn

a(y)d3y

that characterizes the strength of the scatterer. Then,

G(x, x′) ' G0(x, x′) +
∑N

n=1 qnG0(x, yn)G(yn, x′).

Furthermore, if the scatterers are sufficiently far apart,

and the scattering strengths qn are not too large, then

G(yn, x′) on the far right can be replaced by G0(yn, x′),

and we finally have

G(x, x′) ' G0(x, x′) +
∑N

n=1 qnG0(x, yn)G0(yn, x′).



No Multiples

The approximation just made is equivalent to assuming

that multiple scattering is negligible. Or, for realistic

applications to seismic data — where multiples clearly

occur, we must assume that the multiples have been

eliminated or that their effects have at least been

minimized in the data before we can proceed to the next

step in the analysis. The technical term for this

approximation is the “first Born approximation,” implying

only one iteration of the original integral equation.



Transfer Matrix (1)

In the absence of clutter (such as known scatterers with

high albedo), we have the elements of the transfer matrix

K in the form

Kl′l(ω) =
∑N

n=1 qnGnl′Gnl =
∑N

n=1 σn
(qn/|qn|)G

nl′Gnl
∑

L

r=1
|Gnr|2

,

where Gnl is a component of the vector of propagators

Gn =









Gn,1

Gn,2

...
Gn,L









.

Main (assumed localized for now) scattering targets are

labelled by n, while array elements are labelled by l.



Transfer Matrix (2)

The full transfer matrix can therefore be written as

K(ω) =
∑N

n=1 qnGnG
T
n ,

for N reflectors. So, when N = 1, the vector G1 is clearly

the unique (within a phase factor and normalization

factor) singular vector of the rank one matrix K(ω).

Thus, we expect these vectors Gn associated with

particular scattering points 1 ≤ n ≤ N to play a very

important role in the analysis, and in particular to be

reasonable approximations in many cases of the singular

vectors of the transfer matrix.



Singular Value Decomposition of K

The singular-vectors for K(ω) are approximately

given by the time-reversed propagator vectors G∗
il, since

∑L
l=1 Kl′l(ω)G∗

nl =
∑N

n′=1 qn′Gn′l′
∑L

l=1 Gn′lG
∗
nl ' σn

qn

|qn|Gnl′ .

The real singular-value (square root of the eigenvalue of

K∗K) is

σn = |qn|
∑L

r=1 |Gnr|
2,

and where, for simplicity, we assumed that the localized and

relatively small scatterers are well-separated so that

GT
n′G∗

n =
∑L

l=1 Gn′lG
∗
nl '

(

∑L
l=1 |Gn′l|

2
)

δnn′ .

This statement is exactly right only for a single scatterer.



Lanczos Version of SVD for K

Another way to understand the singular value

decomposition for this problem is to consider

the eigenvalue problem for the Hermitian matrix

associated with K obtained by completing

the square (Lanczos, 1961):
(

K
K∗

) (

(qn/|qn|)Gn

G∗
n

)

= σn

(

(qn/|qn|)Gn

G∗
n

)

.

When the scattering coefficient is real, this form of the

singular-vector (and also eigenvector) is symmetric

in Gn and G∗
n.



MUSIC: Theme & Variations (1)

MUSIC is a method for determining whether or not

each vector in a set of vectors is fully or only

partially in the range of an operator.

MUSIC stands for MUltiple SIgnal Classification.

If T = KK∗ is the operator of interest,

Vi is a known eigenvector of T , and

Hr is a vector from the test set

(i.e., a vector of Green’s function propagators

from test point r to all the members of the array).



MUSIC: Theme & Variations (2)

Next, we consider the “noise space” operator

n = I −
∑N

i=1 V ∗
i V T

i = I −R,

where R is the resolution operator (projecting

onto the range space of the operators T and K).

We want to determine whether the test vector Hr

is orthogonal to the noise space (and therefore in

the reflector set). To do this we simply consider

HT
r nH∗

r ' 0.

Think of this as a “fitting goal” for a reflection point

in the model space. Also, define the square of the direction cosine

cos2(Vi, Hr) = |V T
i · H∗

r |
2/|Hr|

2.



MUSIC: Theme & Variations (3)

Assuming that r is a parameter or vector ranging over

locations in space, then there are several related

functionals we can plot in order to “image” the

MUSIC classification of vector character, including:

cosec2(Ṽ , Hr) = 1

1−
∑

N

i=1
cos2(Vi,Hr)

and

cotan2(Ṽ , Hr) =

∑

N

i=1
cos2(Vi,Hr)

1−
∑

N

i=1
cos2(Vi,Hr)

,

where Ṽ is the set of vectors V1, . . . , VN .



MUSIC: Theme & Variations (4)

Another variation on the MUSIC classification scheme

is to consider a subset of the eigenvectors, and plot

the incomplete versions of the previous choices

cosec2(V̂ , Hr) = 1

1−
∑

N′

i=1
cos2(Vi,Hr)

and

cotan2(V̂ , Hr) =

∑

N
′

i=1
cos2(Vi,Hr)

1−
∑

N′

i=1
cos2(Vi,Hr)

,

where V̂ is the set of vectors V1, . . . , VN ′ , and

N ′ ≤ N .



MUSIC: Theme & Variations (5)

In particular, this scheme could be used for just

a few eigenvectors at a time. Viewing eigenvectors

as measurements, we see that using fewer eigenvectors

will produce poorer resolution as less information is

available to constrain the images.

Key point: It is not even necessary to know the eigenvectors.

It is sufficient to know any set of orthogonal vectors

in the range of the operator. What is important is to

have information about the resolution operator R,

so the noise space operator can be determined by

n = I −R.



MUSIC: Theme & Variations (6)

In prior work here at SEP some of us have shown that

it is possible to compute estimates of the resolution

operators from a set of vectors coming from an iterative

(Krylov subspace) scheme. If the orthonormal vectors

coming from such as scheme (CG, LSQR, etc.) are θi,

then

R =
∑

i θ∗i θT
i ,

and, for example, the cosecant version of MUSIC is

cosec2(θ̃, Hr) = 1

1−
∑

N

i=1
cos2(θi,Hr)

.

This alternative is very advantageous for large data sets,

as for example will always be present in 3D surveys.



Frequency Domain Caveat

The method just described will work pretty well

for homogeneous media with a just a few scatterers.

In heterogeneous media like the earth, we expect that

this approach will need some serious modifications

along the lines of work published earlier by the

Stanford group, including Borcea, Papanicolaou, and Tsogka.

The problem is that everything I have presented here is

valid in the frequency domain. But the methods work

better for random media (like the earth) after transforming

back to the time domain. But that is another seminar.



Conclusions

• Methods of analyzing time-reversal data are

progressing rapidly. Two types of analysis are the

main ones being considered at the moment: (1) SVD

and (2) signal processing schemes much like those

used in reflection seismology.

• Locating a single target can be done quite easily

using either time-domain or frequency-domain methods.

• Locating multiple targets is most easily accomplished

in the time-domain, and especially so in a

weakly random propagating medium.


