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Abstract

I. Subject of the paper: There are perfect and imperfect elastic media. Many of the media
of imperfect elasticity are at least what we call of “differential elasticity,” i.e., they behave
like media of perfect elasticity if they are subject to sufficiently small variations of stress.
Elastic waves are transmitted through media of differential elasticity without perceptible loss
of energy and without leaving changes of state in the medium. In the present paper, a special
class of media of differential elasticity is dealt with, namely the porous media. Such a porous
medium consists of a solid phase with a liquid or gaseous filling of the pores. The solid phase
may be either a connected frame or an unsolidified aggregate of grains. II. On elasticity of
isotropic media: The differential elasticity of an isotropic medium is described by two moduli
of elasticity, which in general depend upon the average strain. Fach other modulus of elasticity
may be calculated from two of them. [See tabula (24).] III. Characteristic quantities of the
porous system: We have to distinguish the following notions relating to the porous system: (a)
the solid matter of which the frame is built (index "), (b) the frame, which is macroscopically
isotropic (index "), (c) the filling of the pores (index 7 ), and (d) the porous system, consisting
of the frame and the filling of the pores (no index). The proportions of the volumina and of the
masses are described by the porosity and by different densities. IV. The stress of the porous
system: It is divided into a hydrostatic pressure p, which reigns in the frame as well as in
the pores, and an additional tensor stress p, which reigns only in the frame. V. Differential
elasticity of the open system: If the system is stressed while the pores are open on the surface,
we obtain the elastic properties of the frame. VI. Differential elasticity of the closed system:
If the pores are closed on the surface or if elastic waves run through the inner parts of a
three-dimensional medium, the filling of the pores cannot circulate in case of small variations
of stress. In that case, the system is called a closed system. The elastic moduli of the closed
system stressed within the limits of differential elasticity may be calculated from the moduli of
the solid material, of the frame, and of the filling of the pores, and from the porosity by the
formulas (57) and (59). This enables us to calculate the velocities of the elastic longitudinal
and transverse waves running through the porous medium [see (60)]. VII. Numerical example:
By the developed theory, the difference between the velocities of longitudinal waves through
dry sandstone and through sandstone saturated with water has been calculated. VIII. Porous
system with anisotropic frame: Generalizing the method of section VI, the elastic moduli of the
closed system can be calculated too in the case of an anisotropic frame. The results are shown
in formulas (90) and (92).

I. Subject of the Paper

(1) There are materials which, within a more or less wide range of applied stress, may be
considered as ideally elastic material, i.e., materials for which a definite proportionality exists
between the state of stress and the associated state of deformation. Examples of such materials
at room temperature include the hard metals, most minerals, and frictionless liquids.

(2) There are other materials whose behavior departs considerably from that of ideally
elastic materials, e.g., such as plastics in which an applied stress causes irreversible deformation.
These materials also include polyphase systems, such as partially lithified porous bodies or loose
aggregates of grains in which the pores or interstices are filled with liquids or gases. With the



application of stress to such systems, irreversible changes of state occur, perhaps because pore
fluids migrate or the packing of grains in the aggregate is altered.

(3) Now it is a fact that even such non-ideally elastic systems behave as ideally elastic
systems when the (changing state of ) stress produces small variations about a given mean state
of deformation; i.e., the deformations that would be produced by such small stress variations
are definitely reversible and proportional to them. Such stress variations occur, e.g.,, when
elastic waves travel through the system. It is of course a well-known fact that when elastic
waves, compressional as well as shear waves, propagate through a very weakly elastic system
(e.g., sand, loam, gravel) the energy losses or permanent changes in the system are negligible,
just as in ideally elastic media.

(4) The present investigation will consider the elastic behavior of porous media under
small stress variations. For a porous medium, understand a polyphase system consisting of
a solid skeleton (framework) that is either a connected, porous solid body or a loose aggregate
of solid grains wherein the pores filled with liquid or gas. Stress variations in such porous
materials play a role, e.g., in the dynamic stress-loading of certain building materials, as well
as in geomechanics, acoustics, and seismics. An understanding of elastic behavior also forms a
necessary foundation for the investigation of the mechanical processes by which the behavior
of the observed media departs from ideally elastic behavior.

II. On Elasticity of Isotropic Media

(5) Let the skeleton (framework) of a porous medium consist of solid material which is
elastic and isotropic. As a whole, let the skeleton (framework) be macroscopically isotropic as
well. Finally, let the liquids and gases filling the pores also be isotropic. Next, the concepts
from the theory of elasticity that we consider necessary concerning the elasticity of isotropic
media will be listed [compare for example to Reference 5|, along with an introduction to the
symbols to be used later.

(6) Let z1, z2, and x3 be the axes of a fixed rectangular coordinate system in space, and
let ey, ez, and ez be the unit vectors directed along these axes. The state of stress at a point
of the medium is described by the stress vectors py, p2, and ps.

P1 = e1p1 + eapg + esps = the stress vector acting on a surface

element normal to the z; axis.

P2 = €e1ps + eap2 + espy = the stress vector acting on a surface

element normal to the z, axis.

P3 = e1ps + eapg + esps = the stress vector acting on a surface

element normal to the z3 axis.

(7) p1, p2, - - ., pe are the components of the stress tensor P,
P1 Ps Ps
P=1ps p2 pa
Ps Pa P3



P1, p2, and ps are the normal stresses with compression positive and tension negative; py, ps,
and pg are the shearing stresses.

(8) p = &(p1 + p2 + p3) is the mean normal stress.

(9) If, at all points of a medium, there exists a state of stress P [which in general varies
from point to point], then the medium is in a state of distortion ®. It is however by no means
assumsed that the relationship between ® and P will be that of in an ideally elastic body. It
need not even be assumed that ® depends explicitly on P; it may also be that ® is determined
not only from P itself, but also from the entire previous history of the medium. For example,
in a plastic medium, a state of distortion ® can indeed be caused by a stress P, but the state
of distortion remains more or less unaltered when the stress is again returned to zero.

(10) If the stress tensor undergoes a small change AP, i.e., the stress components p; (i =
1,2,...,6) change by small amounts Ap;, then the state of distortion ® becomes a state @4+ Ad.
One can describe the change A® in the neighborhood of a point A in the medium in state @,
e.g., by drawing three small straight lines the distances @y, a3, and a3 out from A, and parallel
to the coordinate axes. These lines, therefore, make right angles with one another. During the
transition to the state of distortion ® + A®, A moves to A, the lines obtain the lengths all, a;,
and a;), and the angles differ from 90° by small amounts. The six quantities:
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Aey = 5 angle(ay,as), Aes = 5" angle(as,ay), Aeg= 5 angle(ay,a;),
are the components of the distortion increment A®.

(11) A medium behaves ideally elastic under small stress variations AP when, for sufficiently
small but otherwise arbitrary Ap;, the following linear relations exist between the components
of AP and A®, whereby the ¢;; represent quantities independent of Ae; and Ap;:

6
Ap; = —ZcijAej 1=1,2,...,6.

J=1

The coefficient matrix ¢;; is symmetric, i.e., ¢;; = ¢;;. The ¢;; are the elastic (stiffness) constants.
The medium in this case should be termed “differentially elastic.” According to the ideas
discussed in paragraphs (2) and (3), the ¢;; generally depend on the state of deformation @,
which is chosen to be the fixed initial state for the variations A®.

(12) If, in a medium, the relationship between ® and P is clearly reversible, then the Ap;
are specified functions of the Ae; after an arbitrary initial state ® has been (definitely) chosen:

Api:fi(A€17A€27"'7A€6) 221,2,,6

A Taylor (series) expansion gives:
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The index ® on the parentheses denotes that the values of the (partial) derivatives inside the
parentheses must be taken with respect to the initial state ®, i.e., for Ae; = Aey = ... =
Aeg = 0. For sufficiently small values of the Ae;, one can limit the

G Dp; in the Taylor (series) expansion to linear terms. Furthermore, setting — (aifé )q) = ¢
J

gives us the equation from paragraph (11) exactly. It is therefore reasonable to apply the
concept of a differentially elastic body to this case as well. In cases where the relation between
® and P is linear, the ¢;; are material constants independent of ®. The medium is then not
only a differentially, but also a fully ideally, elastic medium.

(13) When the differentially elastic medium of (17) is isotropic, then it is permissible to
express the stiffness constants ¢;; in the following manner in terms of two constants A and p:

€11 = C2 = €33 = A+ [,
Ca4 = C55 = Cep = 4,

€12 = €13 = €23 = €21 = €31 = €32 = /\7

where all other ¢;;’s vanish. A and g are the Lamé elastic constants which, according to
paragraph (12), are therefore in general dependent on ®. g is the shear modulus of the medium.

(14) If p is the density of the medium, then w = \/u/p is the propagation velocity of elastic
shear waves (also called transverse waves).

(15) Ap = %(Apl + Apz + Aps) is the mean pressure increment.

(16) If a medium, in the state ®, has a small volume V defined, then it experiences, upon
a transition to the state ® + A®, a volume increment AV and the relationship

Ap = —k7,
holds, where &k = A + %,u. k is the bulk modulus (or incompressibility), and 1/k is the com-
pressibility.

(17) If a specific, reversible relationship exists between V' and p, then, according to (12),
the A-quantities may be replaced by differentials, i.e., k = —Vdp/dV.

(18) Let a cylindrical core of the medium be enclosed in a container with rigid sidewalls
(see Figure 1). The axis of the cylinder lies in the zy direction and the length of the cylinder
is a;. An additional pressure Ap; is applied to the ends, reducing the length of the cylinder
to the value a;. From (11), the specific extension is Ae; = (ay — a1)/a; = Aay/ay. [If Apy
is positive, i.e., compression, then Ae; is negative and so —Ae; is the dilatation]. Therefore,
M = —Apy/Ae; = —a1Apy/Aay is an additional elastic constant of the medium.

(19) If there exists a unique, reversible relationship between the total pressure p; in the z;-
direction and the length a; of the cylinder, then according to paragraph (12), M = —a1dp,/da;.

(20) The relation of M to A and g is given from the elasticity equations of (11). Suppose
the cross-section of the cylinder is rectangular with sides parallel to z; and z3. Then, the strain
due to Ap; gives the additional pressure Apy and Aps on the side faces while the rigidity of the
walls is expressed in terms of Aey; = Aes = 0. From (77) and (13), the only three elasticity
equations for this case read:

Apy = —(A 4 2p)Aeq
Apg = Apg = —/\Ael.
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Figure 1:

It follows therefore that M = A+ 2u and one sees that the pressure experiment presented in
Figure 1 yields simultaneously the constants A and M when one measures the quantities Apy,
Apsy, and Aeq.

(21) If this medium is a solid body, then one can carry out the pressure experiment with
free side faces, i.e., with the conditions Ap; = Aps = 0 (see Figure 2). Then, the original
side lengths a5 and a3 of the rectangular cross section increase to magnitudes a; and a;). This
experiment gives rise to two additional elastic constants £ and v. Again, we have
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FE is the modulus of elasticity or Young’s modulus, and v is the Poisson ratio.
(22) If there exists a unique, reversible relation between the total pressure p; upon the end

surfaces of the bar and the elongations a; and a; corresponding to paragraph (12), then

aq da2

and v=-———=
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(23) The use of the elasticity equations (11) similar to the preceding in (20) gives
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With the aid of these equations, I and v can also be defined for cases in which an experiment of
the type in Figure 2 is not directly feasible, as perhaps for an unconsolidated granular material,
a liquid, or a gas.

(24) From any two of the six elastic constants, F, k, M, X, p, or v of a differentially elastic,
isotropic medium, the other four elastic constants may be calculated. All possible cases have
been included in the Table (entries of which have been calculated by Mr. O. Wyler, Assistant
at the Institute for Geophysics).

(25) In paragraph (21), pressure and tension waves having a velocity /F/p propagate
forward in the lengthwise direction of the bar with free side surfaces. Again, if the medium
occupies infinite space, then the velocity of the pressure and tension waves (also called sound

or longitudinal waves) is:
M 1-v E
v = - = —;
p (I+v)(1=2v)Y p

since, in this case, the medium will be strained according to (18). The notation and nomencla-
ture in the literature do not always distinguish sufliciently between the two pressure moduli ~
and M. It is proposed here that E be called “the bar pressure modulus” and M “the volume
pressure modulus.”

(26) Liquids and gases do not transfer shear stresses, so that p = 0. The elastic behavior
will be fixed by a single elastic constant, perhaps M is convenient. From (24 ), it follows that
E:O,k:/\:ﬂ/l,andl/:%.

(27) For an ideal gas, the value of £ may be found by using the equation of state

pV"™ = constant.

For an isothermal change of state, kK = 1; for an adiabatic change of state, Kk = ¢, /¢, where ¢,
and ¢, signify the specific heats for constant pressure and constant volume, respectively. For
air, ¢,/c, = 1.4. From paragraph (17), considering an ideal gas, we obtain k = —Vdp/dV = kp.

III. Characteristic Quantities of the Porous System

(28) The porous system, whose elastic behavior is being investigated in this work, consists
of a porous frame of solid material. The pores should communicate among themselves and
be filled with either liquid or gas. The system is macroscopically homogeneous and isotropic,
i.€., the average mechanical property of a portion of the system, whose dimensions are large
compared to the dimensions of the pore cross sections, are the same everywhere in the system
and independent of direction. It will turn out that the system behaves like the one treated in
Section IT under conditions still more precisely to be prescribed, so that the use of the concepts
and notation of that section is permitted.

(29) The skeleton is porous, but may be continuous solid or an unconsolidated aggregate of
hard grains. Macroscopically, the concepts of Section II may be applied to the skeleton (i.e., to
the system without pore saturant). The pertinent notation will be provided as the bar index ~
over the symbol.

(30) The solid material from which the frame (skeleton) is built shall also be homogeneous
and isotropic. The pertinent quantities will be designated by the caret index " above the
symbols.



(31) The pores should be filled with a frictionless liquid or a frictionless gas. The quantities
related to the pore saturant will carry the tilde index ~.

(32) And so in the discussion of the mechanics of porous systems to follow, the distinct
concepts become:

Notation for Index
Concept above a Symbol

a) solid material
b) skeleton = solid + pores
)

c) pore saturant
d) system = skeleton + saturant no index

(33) Let V be the volume of a piece cut out of the system, whose dimensions are large
compared to the pore cross sections. Then:

V = volume of the solid matter contained in V.

V = volume of the communicating pores contained in V.
4 . -

n = Vo porosity and V =V + V.

(34) For the mass of the system:

m mass of everything contained in V' (bulk mass),

m = mass of the solid matter contained in V  (solid mass),
m = mass of the fluid saturant contained in V  (fluid mass),
m = m-+ m.

(35) Similarly, for the densities:

p = ‘E/ = bulk density of the system,
p = 7 = density of the solid matter,
. _m . .

p = 7 = density of the fluid saturant,
_ . m .

P=v= density of the skeleton.

(36) p=(1—-n)p and p = p+ np (In petrography and soil mechanics, gp is the “bulk
weight,” gp is the “specific weight of the skeleton,” wherein g is the acceleration of gravity.)

(37) Cut out from the system a prism with basal area F' and height &, therefore having
a volume V = F - h. F and h should be large compared to the cross section of the pores.
A plane parallel to the base of the prism at a distance z from it intersects the prism with a
cross-sectional area F. Then, F(m) is the portion of the cross section F that is comprised of
solid matter and F(z) = F — F(z) is the fluid portion of the area. The mean value of F(z) is
also nF’

1 ho_ 7
—/ F(x)dx:—:ﬂ:nF.
h Jo



We take the variation of F'(z) about the mean value to be negligibly small, so we have F'(z) = nF’
and therefore F'= (1 — n)F.



IV. The Stress in the Porous System

(38) Consider a point A in the interior of the given system and the environment of A, whose
dimensions will be large relative to those of a typical pore cross section, but still small enough
that we can assume a uniform hydrostatic pressure p in the fluid occupying the connected pores.

(39) A plane passing through A cuts a surface F' from the specified environment. N is
the direction perpendicular to the plane and ey a unit vector in this direction. As in (37),
F will be the area occupied by the solid matter on F and F that of the fluid. Forces will be
transferred from one side of the plane to the other; their resultant will be P . The resultant of
the forces that act across F, and thus across the solid matter, will be Py. The resultant of the
forces that act across F, and thus across the pore saturant, is obviously Fpey, so the equation
Py = f’N + FﬁeN is valid.

(40) For the following study, it is advantageous to divide Py into two parts. One part is
due to the hydrostatic pressure p. This is the force Fpey that acts on the fluid surface F', or
the total hydrostatic force Fpey acting on the entire surface F. Therefore, the decomposition
of the force on the solid gives the expression

(F — F)pey = Fpey
or, breaking Py into its two component parts,
f)N = FﬁeN + f)N.

(41) Py = Py + Fpey is the corresponding representation of P .

(42) Now set Py /F = py and Py/F = py, so also py = py + pen. The general expression
of the stresses py and pey for all possible directions N always takes the form of a tensor,
so that the general expression for py also forms a tensor P with components pi, pa, ..., Ds
[with notation corresponding to (7)]. Thus, the complete pressure tensor of the skeleton is now
known.

V. Differential Elasticity of the Open System

(43) Let a portion of volume V' be removed from the system. The dimensions of V' will be
large relative to the pore sizes. The stress state in V' will be homogeneous. It is given in terms
of the hydrostatic stress j of the pore saturant and in terms of the residual stress tensor P of
the frame. It will be assumed that for this stress state, the frame will be differentially elastic.
We can establish this while we change the stress state by Aj and AP, during which the pore
saturant must have the opportunity to deform independently from the skeleton. The pores must
therefore be open externally (hence, the terminology “open system”) and the stress variations
carried out so slowly that we will not be obliged to consider the friction of the saturating fluid
circulating in the pores nor its sluggish resistance. In this manner, we keep the elastic property
of the skeleton.

One may inquire whether this property is not easy to preserve with empty pores. For this
reason, it is worthwhile noting that then p = 0 and in general the elasticity of the solid material
and therefore also of the skeleton may depend on p. One must even account for the possibility
that the elasticity of the skeleton may depend not only upon the pore pressure p, but also upon
the character of the pore fluid saturant. For example, it can happen that the elastic properties
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of the skeleton are different according to whether the pores are filled with air or with water
under the same pressure p. It is conceivable, for example, that the elasticity of the skeleton
will change through accumulation of hygroscopic water on the pore walls. This hygroscopic
water distinguishes itsell from normal pore water through its larger density, higher pressure,
and smaller mobility [for a comparison, see the paper by F. Zunker in Blanck (1930), pp. 66—
89]. Additionally, it is here noted that the porosity in this work is determined by means of
the volume V, which is occupied by pore water of normal pressure; on the other hand, the
hygroscopic water is included in the frame material. As long as the volume of the hygroscopic
water is negligibly small compared to the volume of the solid material, one is permitted to
assume that the material composing the skeleton, is nevertheless isotropic and homogeneous.
On the other hand, one is not permitted to make use of this theory without further study for
cases in which the pore size is so small, or rather the solid phase is so fine-grained, that the
previously neglected effects must be reconsidered.

Consideration must also be given to capillary phenomena. In capillaries, p can be negative
(in tension). Furthermore, the liquid and gas will be separated by a meniscus when the pores
are partly filled with liquid and partly with gas, or in the case of liquid-filled pores on the surface
of the system bordering on the gas-filled external space. The strain of the frame induced by
these meniscii is also to be considered in P [one thinks about the pressure dilatation, see Haefeli
(1938), section III, Figures 7 and 8]. Besides this, the hydrostatic pressure pin the pores at both
sides may have different meniscus values. The volume V considered in the preceding section is
therefore not permitted to contain meniscii in the interior which divide the pore volume into
non-negligible different partial volumes in which the stress p possesses different values.

(44) When the solid matter, the skeleton, and the pore-fluid saturant are assumed to be
differentially elastic, the general stress variations Ap and AP can be separated, and the effect
of each partial stress treated independently. The effect of a general stress variation will then
be found through superposition; that is, simple addition.

(45) k is the bulk modulus of the solid matter [see (16), (17), and (32)]. Let a stress
variation Ap # 0, AP = 0 be considered. From (40) to (42), this signifies that the skeleton
will be exposed on all sides to the additional hydrostatic pressure Ap. Consequently, the frame
shrinks the same fraction at all points, retaining a form similar to its original geometric form.
Because of this, we have the self-similarity condition AV/V = AV/V. On the other hand,
AV /V = —Ap/k. Therefore,

AV Ap

Vv B
(46) A further result of the self-similarity is the constancy of the porosity, that is, for Ap # 0
and AP = 0, then An = 0.
(47) The variation of the mean normal stress, Ap = %(Aﬁl + Apy + Aps), is due to AP.
(48) The variation in stress Ap =0, AP # 0, and Ap = 0 gives a deformation of the frame
without a volume change, that is, AV = 0. Such a deformation may be described by a constant
i, the shear modulus of the skeleton. Further, it is easy to make the obvious hypothesis for
this stress variation that An = 0.
(49) Finally, consider a stress variation Ap = 0, Ap # 0. The bulk modulus &k of the
skeleton can be determined by measuring AV, namely
AP
k —_— _" A—V‘
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Figure 3:

(50) In order to determine the porosity variation An, which corresponds to the stress
variation of (49), an integration theorem from elasticity theory is used [see Love (1907), p. 207,
theorem 3]. This theorem, with notation adjusted to that of our present case, has the following
content: a homogeneous, isotropic, differentially elastic body of arbitrary shape, of volume 1%
and possessing the bulk modulus ]2:, will be compressed between two parallel planes separated
by distance a by the impressed force AH; (see Figure 3). The volume decrease (when decrease
is reckoned as negative) is then

IN——L

3k

(51) In the case under consideration, the volume V is the solid part of the skeleton of our
porous system. Remove from this system a cube of volume V [see the beginning of (43)] with
edges of length a and with those edges parallel to the coordinate axes. A variation in stress
(49) causes the three opposing pairs of surfaces of the cube to be compressed by the resulting
pressure forces AH; = a?Ap;, i = 1,2,3. Applying the theorem (50) three times and summing
the small volume changes gives:

12



Recalling (47) and also that a® = V, it follows that

AV = v 2P
2

(52) From (33), V = (1 — n)V. When the A-quantities are small, one can handle them to
a satisfactory approximation as differentials, so that AV = (1 — n)AV — VAn, thus AV /V =
(1 —n)AV/V — An. By using (51) and (49), it therefore follows:

1 1-—n
A - ~ — = Ai.
K (k F ) P

V1. Differential Elasticity of the Closed System

(53) As in section V, the differentially elastic behavior of a volume V' of the system will
be studied, while it is under the influence of initial stresses p and P, and experiencing the
additional stresses Ap, AP. In contrast to the discussion of section V, the external channels of
the pore saturant from V will be sealed and flow from outside to the interior of V prevented.

(54) When V is an isolated part of the system in the load test to be undertaken, the pores
on the surface must be closed (hence the name “closed system”).

(55) One can imagine that V' is a constituent of a very much larger portion Vj of the system,
with V lying in the interior so far from the surface of Vj that the load variations Ap and AP
produce no perceptible flow through the surface of V. The minimum distance that V must be
removed from the surface of Vy in order to fulfill these conditions depends on the rate of the
load variation. For sudden changes in the load, the distance does not need to be as large as
for slow variations. An example of a situation corresponding to (55) is that of elastic waves
propagating through the interior of V4.

(56) The closed system V is differentially elastic for sufficiently small load variations and
we may assume that there are no flows of pore fluid that could influence the elastic processes.
Since the system is assumed to be microscopically isotropic, the theory of section II can be
applied. Following (32) d), the notation of that section will be adapted. The elastic behavior
of the system will be described in terms of two elastic constants. Here the two constants k£ and
¢ will be chosen. As the circumstances demand, others may be calculated from the table of
(24). Let us once more be reminded, using section II as a starting point, that the deformation
change A® will be brought about by a load variation Ap, AP, where a deformation state ® will
be assumed, caused by the action of a stress state , P (= initial stress), and that the elastic
constants depend on ® and therefore on p and P.

(57) Corresponding to (48), the stress variation Ap = 0, AP # 0, Ap = 0 is considered.
This gives a deformation change without a change in the volume V. It is therefore obvious
to take an additional hypothesis that, for such a stress variation, whether the system is open
or closed, the deformation change is independent of the choice of g or p; that is, we can take
b=

(58) In order to determine k, expose this volume on all surfaces to an additional hydrostatic
pressure Ap. According to (40) through (42), Ap will be composed of two parts. Ap is the
portion of Ap acting on all the surface elements of V, that also determines the additional
hydrostatic pressure in the pores. Ap is the remainder of Ap, that acts only upon the elements
of the surface defined as the solid. Then:
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a) Ap = Ap + Ap. The desired bulk modulus of the closed system is defined by the next
equation:

b) AV /V = —Ap/k.

c) AV /V = —Ap/k describes the compressibility of the pore fluid saturant.

d) AV/)V = —Aﬁ/if — Ap/k determines the compressibility of the frame caused by both
constituents of Apin a), according to results of (45) and (49).

e) AV)V = —(1- n)Aﬁ/]Ac - Aﬁ/fc describes the compressibility of the solid materials from
(45) and (51) using also V = (1 —n)V.

f) V = nV (definition of porosity).

g) AV = AV + AV since the system is closed and pore fluid saturant can neither enter nor
exit.

(59) From the seven equations (58) a)-g), six quantities, V, AV, AV, AV, Ap, and Ap
will be eliminated. The quantity V then also drops out and we obtain for the compressional
modulus of the closed system

k’:/;:(lf—l_Q), where Q:M
kE+@Q n(k — k)

(60) Using (57) and (59), the elastic constants p and k of the closed system are expressed
in terms of the porosity and in terms of the elastic constants of the solid materials, the skeleton,
and the pore fluid saturant. From (36 ), the density of the system is p = p+ np and from (24 ),
M = k+4p/3 is its volume compressibility modulus. Finally, from (14 ) and (25), the velocities
v and w of longitudinal and transverse waves propagating through the system are given by

M
v=14/— and w:,/ﬁ.
P P

61) In the special case where the bulk modulus k of the saturating fluid is negligibly small
becomes k = k.
62)If n = 0, then also k = k.
B 63) If the pore fluid saturant has the same compressiblity as the solid matter, then k& =
k=k.

(64) If the compressibility of the solid matter is negligible with respect to that of the pore
fluid saturant, then we may set &k = occ. (59) then yields k = k + k/n.

=kl

(
(59)
(
(

VII. Numerical Example

(65) As experience has shown, the propagation velocity of elastic waves through a given
rock is dependent on its water content. It is possible, as noted in (43), that this dependence
can come partly from the fact that the nature of the pore-fluid saturant influences the elastic
behavior of the frame. To establish such an influence, it is necessary to know the dependence
existing between the propagation velocity and the density and elastic behavior of the pore-fluid
saturant. This dependence is calculable from our analysis. A numerical example of such a
calculation will be given.

(66) Concerning a sandstone under normal pressure and temperature, the following quanti-
ties are given by Grubenmann et al. (1915), p. 118, rock sample #1200 (numerical data without
specified units signifies units of the cgs system):
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Apparent porosity 13.3 %
True porosity 17.1%
Bulk density of dry rocks 2.23 g/cm?.

Further, from Réthlisberger (1949):

Longitudinal wave velocity in dry rocks 2.3 km/s
Shear wave velocity in dry rocks 1.3 km/s

(67) As in (32) d), the quantities related to the entire system will be denoted without
an index over the symbols. In the example under consideration, there are two cases to be
distinguished, namely the dry rock (skeleton plus air as pore saturant) and the water saturated
rock (skeleton plus water as the pore fluid). The quantities referring to the dry rock will be
denoted with the subscript ¢ [“4,” since “trocken” is the German word for “dry” — eds.] and
the quantities for the water saturated rock will remain without subscripts.

(68) The capacity of the rocks to take on water up to full saturation is measured by the
apparent porosity, which is n = 0.133. Included in the true porosity, n,, = 0.171, are the pores
inaccessible to water, that are accounted for within the solid material in this theory. If V is
the total volume of a rock sample, V the volume of the pores accessible to water, and V' the
volume of the pores inaccessible to water, then

v
n = ‘—/,
V4V
Ny = —‘}—/ ,  [“w,” since “wahr” is German for “true” — eds.],
‘7, Ny — 1 W « » G 10
ng = — = =0.044 [“f, since “fest” is German for “solid” — eds.]
V_V 1-n

with the latter expression being the porosity of the solid material.

(69) ps = 0.0013 is the density of air. From (36), the density of the rock with air-filled
pores is py = 2.23 = p + np;. We see that p, ~ p = 2.23.

(70) From (36), p = p/(1 — n) = 2.57 is the density of the solid matter.

(71) The density p and the porosity ny of the solid matter, as well as its mineral composition,
justifies taking the elastic constants of the solid to be the values for granite. Thus, we take
k = 25 x 10 [for elastic constants of rocks, see Birch et al. (1942) or Niggli (1948)].

(72) From static experiments on sandstones with open pores, it is well known that the bulk
modulus & of the frame lies between 10'° and 10''. On the other hand, the bulk modulus of
dry air at atmospheric pressure, from (27), has the order of magnitude 10°. The dry sandstone
corresponds to (61) above; that is the elasticity of a dry sandstone (frame plus air) may be
assumed to be the same as the elasticity of the frame. The elastic constants are to be determined

from the known velocities:

b\|>\\

v =2.3x%x10° =

15



and

w=13x10° =,/ E.
p

Therefore, it follows that M = 11.8 x 10'°, 7 = 3.77 x 1019, and, from (24 ),
k=M —4ji/3 = 6.8 x 10'°.

(73) The propagation velocity of longitudinal waves in water is 1.435 km/s and the density
of water is 5 = 1. From (25) and (26), it follows that k = M = p#? = 2.06 x 101°,

(74) All quantities that are needed to calculate k for water-saturated sandstone from (59)
are now known. We obtain:

Q=123x10"° and k=128x10".

From (57)and (72), p = it = 3.77x 10'% from (36) and (69), p = p+np = 2.36; and finally the
propagation velocity of longitudinal waves in water-saturated sandstones is v = \/(k + 41/3)/p.
We obtain v = 2.75 km/s, compared to v; = 2.3 km/s for dry sandstone, assuming the elasticity
of the skeleton is the same in both cases.

VIII. Porous System with Anisotropic Frame

(75) In sections III-VII, the frame has been assumed microscopically isotropic in the
manner of (28). In that case, the differential frame elasticity is described in terms of the two
constants k and fi, introduced in (48) and (49).

In contrast to the preceding sections, the frame will now be considered anisotropic, while the
solid material and the pore saturant will be assumed isotropic. For the anisotropic skeleton, the
variation AP of the residual stress tensor and the components of the distortion Ae; introduced

in (10) are related by a system of equations corresponding to (11):
6
Aﬁi:—zéijA€j7 1=1,2,...,6,
=1

where the matrix of the coefficients ¢;; again satisfies the symmetry conditions ¢;; = ¢;;.
(76 ) When the determinant of the coefficient matrix ¢;; is assumed different from zero, the
following solution of the system gives for the Ae;:

6
Ae; = =Y 7iApj,
=1

with 35 = 7ji.
(77) It remains to introduce the following auxillary quantities:

5125225321

8425525620.
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(78) As in section VI, the differential elasticity of a closed system will be considered.
Corresponding to (40), (41), and (42), the components Ap; of the change in the stress tensor
are given as follows:

Ap; = Ap; + €, Ap, 1=1,2,...,6.

(79) The closed system behaves microscopically as a homogeneous, anisotropic medium,
corresponding to (76 ), which can be expressed using the system of equations:

6
Aei:—Z*/ijApj, 1=1,2,...,6.
7=1

In the following, the elastic constants v;; of the closed system will be calculated from the elastic
constants 7;; of the skeleton, i.e., of the open system, from the bulk moduli k and % of the solid

material and of the pore fluid, and from the porosity n.
(80) The elimination of V' and AV from equations (58) ¢), f), and g) gives

1 (AV ~ m?f) Ap

n\V VT TR
as the expression determining the compressibility of the pore saturant.
(81) The compression of the solid matter is described, in agreement with (58) e), by
AV Ap 1

= —(1—-n)— — — (Ap1 + Apy + Ap3).
% ( )k 3k( P1 P2 PS)

(82) From (78), the variation of Ap; is composed of two terms added together. The term
e;Ap corresponds to a deformation of the skeleton calculated from (45), and the other term
corresponds to (76). The superposition of these two deformations gives:

A ~ 6
Aeiz—(iig—g—z;ﬁj.&ﬁi, 1=1,2,...,6.

i=1

(83) Now the following notation is introduced:

Si = Y+ Vi + Yizs = Y + Y2 + V3,

a=8 -5 i=1,2,...8,
3k
1 (1 1)
— =nl|l=—-=
o ko k
(84) From (82) follows:
AV Ap S
Aey + Aey + Aeg = v :_fg —z; iAD;
]:
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(85) The elimination of both quantities AV /V and AV /V from (80), (81), and (84 ) gives,
using the notation of (83):

6
Ap=a«a E a; Ap;.
i=1
(86) Substitute the value of Ap; given in (78) into (79), then set the expressions (79) and
(82) for Ae; equal to one another and arrange the result in terms of stresses, obtaining:

6 6
i & ) h .
o (E T 3_k) =Y (Gij— ) Apj,  i=1,2,...,6.

h=1 j=1
(87) The elimination of Ap from (85) and (86) gives the following equation:

6

6 6
= _ _ _ .
«a (Z ERYih — 3_k) > aiAp; =Y (3 — i) Ap; =0, i=1,2,...,6.
=1

h=1 j=1

(88) The Ap; are linearly independent quantities, and so the coeflicients of each Ap; must
vanish, giving:

= i,j=1,2,...,6.
3k /

Yij +aa; (i + Y2 + 7is) = 75 + oq;

(89) For the index 7 in (88) with j varying from 1 through 6, we obtain six linear equations

for the six unknowns, y;1, 7s2, - - ., 7i6- The three equations for 5 = 1,2, 3 contain only the three

unknowns 7;1, ¥i2, and ;3 and may therefore be separately determined. The determinant of
the coefficients for this system of three equations is:

1+ aay aaq aaq
D = det oas 14+ aay oas =14+ a(ar + az + a3).

adas adas 1+ aas

(90) We have to calculate the three unknowns 71, 7i2 and 7;3, so we can insert the value
of their sum into (88). Then from (88), we always obtain, for j = 4,5,6, one equation that
contains only one of the unknowns, 74, 7;5, or ;6. The final expression for calculation of the
7i; has the same form for each, namely

%’jzﬁz’j—%ai% ,j=1,2,...,6.
The goal, declared in (79), to calculate the elastic constants ;; for a closed system is thereby
attained. As expected, the matrix of these elastic coeflicients is symmetric, i.e., 7;; = 7;;.
(91) Naturally we must be able to rederive the results for the isotropic skeleton treated in
section VI as given in (57) and (59) from the more general results (90). The desired derivation
is short: A = k — %ﬂ and g is the elastic constant of the frame. The matrix of the coefficients

¢;; then follows from (13). Finally, the ;; are to be calculated from (76 ). One obtains:
Y11 = Y22 = Y33 = 7;\*+ L
=022 =0 = Sy
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~

Y44 = Y55 = Y66 =

Y12 = Y13 = Y23 = Y21 = Y31 = Y32 = —

All other 7;; = 0.

1 1
+‘l<k k)

With the quantity @ introduced in (59), we get

11
= .
0(5+1)

In accordance with (57), it follows that p = fi is the shear modulus of the closed system. The
bulk modulus & of the closed system can be obtained from the equation 1/3k = y11 4+ 712 + 713,
resulting in (59).

(92) Assuming the determinant of the coeflicient matrix ;; in (79) to be different from
zero, we can solve the system for the Ap;;, which gives a system of equations of the form (171).
Using well-known operations on determinants, the coefficients ¢;; may be expressed in terms of

the 7;;. Here according to (90) these are functions of 7;;, so the ¢;; are also. Corresponding to
(75) and (76), the 7;; themselves may be expressed in terms of the ¢;;, so that finally the ¢;;

72] — n}/” —

will be obtained as functions of the ¢;; (and naturally also of quantities, l%, k, and n). Without
showing the steps of the calculation, we are led to the general expression for the ¢;; (I owe to
Mr. Oswald Wyler, a graduate mathematician at the Electrotechnische Hochschule, a hint that
leads to the simple form of the following results):

bib;, ,7=1,2,...,6.

B «
Cij = Cij + D=

(93) The meanings of the new symbols introduced in (92) are as follows:

e ittt gy
3%

«

D* =14+ —(by + by + ba).
3k(1 2 3)
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