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BRIEF HISTORY OF POROELASTICITY

1941 – Biot (quasi-statics, theory and analysis)

1944 – Frenkel (electroseismics and waves)

1951 – Gassmann (undrained behavior, theory)

1954 – Skempton (undrained behavior, experiments in soil)

1956 – Biot (waves, Lagrangian app., prediction of the slow wave)

1957 – Biot and Willis (coefficients from experiment)

1962 – Biot (reformulation of wave theory, Hamiltonian app.)

1976 – Rice and Cleary (quasi-statics, numerical methods)

1980 – Plona (slow wave first observed!)

1980 – Berryman, Brown, Johnson (eff. mass, tortuosity, liquid He)

1980 – Drumheller and Bedford (mixture theory)

1981 – Burridge and Keller (homogenization theory)



OUTLINE

• Biot’s Poroelasticity Theory Is Correct!

◦ Laboratory data

◦ Finite element approach to modeling

• Four Methods for Up-Scaling

◦ Effective medium theories

◦ Mixture theory

◦ Homogenization theory

◦ Volume averaging methods

• New Model: “Random Polycrystals of Laminates”

• Conclusions



Biot’s (1962) Strain Energy Functional

2E = He2 − 2Ceζ + Mζ2 − 4µI2

where H, C, M , and µ are poroelastic constants,

e = ∇ · ~u = frame dilatation,

ζ = −∇ · ~w = increment of fluid content,

φ = porosity,

~u = solid frame displacement,

~uf = pore fluid displacement,

~w = φ(~uf − ~u) = relative displacement, and

I2 = exey + eyez + ezex − 1
4 (γ2

x + . . .) = a strain invariant.



Biot’s Equations of Dynamic Poroelasticity

ω2ρ~u + (H − µ)∇e + µ∇2~u = −ω2ρf ~w + C∇ζ,

ω2q(ω)~w − M∇ζ = −ω2ρf~u − C∇e,

where

ω = 2πf = angular frequency,

ρ = φρf + (1 − φ)ρm = the average density,

q(ω) = ρf [τ/φ + iF (ξ)η/κω], and

pf = −M∇ · ~w − C∇ · ~u = fluid pressure.



Some Relations Among Poroelastic Constants

H = Ku + 4
3µ,

Ku = Kd/(1 − αB),

Ku = Kd + α2M ,

M = BKu/α,

C = αM = BKu,

where

α = 1 − K/Km = the effective stress coefficient, and

Ku is undrained or Gassmann bulk modulus of system,

Kd is drained modulus, B is Skempton’s coefficient.



Dispersion Relations

• For shear wave:

k2
s = ω2(ρ − ρ2

f/q)/µ

• For fast and slow compressional waves:

k2
± = 1

2

[

b + f ∓ [(b − f)2 + 4cd]1/2
]

b = ω2(ρM − ρfC)/∆, c = ω2(ρfM − qC)/∆

d = ω2(ρfH − ρC)/∆, f = ω2(qH − ρfC)/∆

where

∆ = HM − C2.



SOME UP-SCALING RESULTS

via effective medium theory or homogenization methods

• Electrical Conductivity (scale invariant)

J = σE → 〈J〉 = σ∗ 〈E〉
• Navier-Stokes equation → Darcy’s equation

definitely not scale invariant!

• Linear elasticity + Navier-Stokes equations →
Biot’s equations of poroelasticity

• Heterogeneous Biot → ????

Possibly to a double-porosity model in a variety of

circumstances, but there are some other choices as well.



First Method: Effective Medium Theory

Effective medium theory is designed to produce

estimates of coefficients in the equations of motion.

Various good alternatives are available:

◦ Average T-matrix (Mori-Tanaka, Kuster-Toksöz)

◦ Self-consistent (SC or CPA)

◦ Differential effective medium (DEM)

◦ Also, rigorous bounding methods are known.



Eshelby and Poroelasticity

Eshelby’s main result in elasticity states that

for ellipsoidal inclusions:

ε
(i)
pq = Tpqrsε

∗
rs

relating inclusion strain to strain at the boundary.

Generalizing to poroelasticity (and similar results hold

for thermoelasticity):

ε
(i)
pq − epq(pf ) = Tpqrs [ε∗rs − ers(pf )]

where

epq =
(

α(h)
−α(i)

K(h)−K(i)

)

pf

3 δpq.



Example: Coherent Potential Approximation

If C(i) is the stiffness tensor of an inclusion,

C(h) is stiffness of a host, and C∗ is stiffness

of the effective medium, then within the

coherent potential approximation (CPA) we have

∑

v(i)(C(i) − C∗
CPA)T ∗i = 0.

Similarly, for the Biot-Willis parameter:

∑

v(i)(1 − P ∗i)
α(i)

−α∗
CPA

K(i)−K∗
CPA

= 0.



Second Method: Mixture Theory

Mixture theory is designed to keep careful

track of the energy in the system. So this

approach includes:

◦ Hamiltonian and Lagrangian methods

◦ Biot’s original method

◦ Drumheller and Bedford’s method

This method is especially powerful for nonlinear

problems, but also provides a good method to derive

Biot’s linear equations.



Third Method: Homogenization Theory

Homogenization theory is probably the newest

of the methods, being first developed in the

1970s. Other methods can be traced back to earlier

periods of history. Periodic boundary conditions

are normally used to implement the method.

Development is designed to determine rigorously

the form of the equations in some fixed

frequency regime. So it may not determine how

the equations change as frequency is varied widely.



Fourth Method: Volume Averaging

Volume averaging was apparently first developed

in the 1960s for application to Darcy flow.

There are similarities to homogenization theory,

but does not require periodic boundary conditions.

Uses rigorous identities concerning volume

integration in 3D to smooth the equations of interest.

Not restricted to a fixed frequency domain,

but requires supplementary information to obtain

estimates of the coefficients.



Random Polycrystals of Laminates (1)

• Assume building blocks (crystalline grains) composed of layers

◦ Use Backus averaging scheme to compute effective properties

of these grains

◦ Use Hashin-Shtrikman bounds based on layer properties to

estimate behavior using only volume fraction and layer property

information



Random Polycrystals of Laminates (2)

• Assume also that the grains are equi-axed: when all grains are

considered, the axis of anisotropic grain symmetry due to the

layering has no preferred direction

◦ Use bounds based on these “anisotropic crystals” to estimate

overall behavior of the resulting random polycrystal

◦ Use self-consistent method to provide one type of direct

estimate of the overall behavior



Random Polycrystals of Laminates (3)

• For poroelasticity, we also have two kinds of exact results:

◦ If layers are poroelastic (Gassmann – i.e., microhomogeneous)

materials, then with just two types of layers exact results are

available for Biot-Willis parameter and Skempton’s coefficient.

◦ If, in addition, the permeability of these two types of layers

are very different, then double-porosity modeling can also be

pursued and this also gives exact results for two components.

◦ The exact results do not predict the drained constants, but the

random polycrystals of laminates model gives very close bounds.



Uniaxial Shear Energy per Unit Volume

and the Product Formula

For an applied uniaxial shear strain applied along thesymmetry axis

i.e., (e11, e22, e33) = (1, 1,−2)/
√

6

Gv
eff ≡ (c11 + c33 − 2c13 − c66)/3

For an applied uniaxial shear stress applied along thesymmetry axis

i.e., (σ11, σ22, σ33) = (1, 1,−2)/
√

6

Gr
eff ≡ KReussG

v
eff/KV oigt.

The latter expression is the product formula, relating the

shear energies per unit volume to Voigt and Reuss bounds on K.



SPIN-OFFS OF THIS WORK

ELASTIC CONSTANT BOUNDS FOR POLYCRYSTALS

Important for:

hexagonal, trigonal, tetragonal, and cubic symmetries

Hashin-Shtrikman bounds also lead to self-consistent estimates.



BOUNDS ON K FOR POLYCRYSTALS

Hashin-Shtrikman-type bounds for elastic constants of isotropic

random polycrystals are known, given first by Peselnick and

Meister (1965), later improved by Watt and Peselnick (1980).

The bounds for the bulk modulus can be expressed in terms of

these uniaxial shear energies per unit volume as

K±

PM = KV
Gr

eff +ζ±
Gv

eff
+ζ±

where

ζ± = G±

6

(

9K±+8G±

K±+2G±

)

.

Parameters G±, K± were defined by Watt and Peselnick.



BOUNDS ON G FOR POLYCRYSTALS

The bounds on shear modulus can be expressed similarly as

5
G±

P M
+ζ±

= 1−X±

Gv
eff

+ζ±+Y±
+ 2

c44+ζ±
+ 2

c66+ζ±

where X± and Y± are additional parameters depending on

G± and K±.

Note that in both cases when ζ− → 0 the bounds go to the

Reuss average (lower bound), and when ζ+ → ∞ the

bounds go to the Voigt average (upper bound). For example,

K−

PM → KV Gr
eff/Gv

eff ≡ KR

from the product formulas.



DOUBLE-POROSITY APPLICATIONS





e
−ζ(1)

−ζ(2)



 =





a11 a12 a13

a12 a22 a23

a13 a23 a33









−pc

−p
(1)
f

−p
(2)
f



,

where

a11 = 1
K∗

d

,

a22 = v(1)α(1)

K(1)

(

1
B(1) − α(1)(1−Q1)

1−K(1)/K(2)

)

,

a12 = − v(1)Q1

K(1) α(1),

a23 = α(1)α(2)K1)K(2)

[K(2)−K(1)]2

[

v(1)

K(1) + v(2)

K(2) − 1
K∗

d

]

,



DOUBLE-POROSITY APPLICATIONS (2)

and where

v(1)Q1 =
1−K(2)/K∗

d

1−K(2)/K(1) .

The remaining coefficients can be found using phase-interchange

symmetry.



Other Methods: Were Any Left Out?

• There are other methods I have not talked about

today, including:

◦ Double-porosity up-scaling

◦ Numerical methods

◦ Hybrid methods — using two or more methods

simultaneously: for example, mixture theory

supplemented with effective medium theory was

a very powerful combination in 1980.

◦ More work to do on all the methods, including the

random polycrystals of laminates model.



CONCLUSIONS

I take a very democractic viewpoint concerning

all these methods. I have never seen an up-scaling

method I did not like. (Well, almost never!)

All these up-scaling methods have some advantages

and some disadvantages.

I have stressed the advantages today.
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