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MEANING OF EFFECTIVE STRESS (1)

The main idea of effective stress is to determine how

strong the influence of fluid pressure is at counteracting

the forces acting on the outside of a medium containing

the fluid. Good commonplace examples are balloons

or tire inner tubes, where air inside the balloon

or tube is necessarily at higher pressure than on the

outside – so the balloon or tire will inflate.



MEANING OF EFFECTIVE STRESS (2)

Fluid trapped inside a rock acts much like this. When

the rock is squeezed, the pressure of the trapped interior

fluid increases. If the fluid pressure is independently

increased (like pumping up a tire), then the internal

fluid pressure is counteracting the force of the external

pressure to some extent. But the question is how

effective is pressure really at counteracting the external

forcing.



MEANING OF EFFECTIVE STRESS (3)

If the external confining pressure is pc and internal

fluid pressure is pf , then the effective pressure is

some pressure value having the general form

peff = pc − Cpf ,

where C is called an “effective stress coefficient.”

Typically 0 ≤ C ≤ 1, but not always. Each physical

property can have its own effective stress coefficient,

and in some cases (permeability, fluid content) 1 < C.



POROELASTIC COMPLIANCE MATRIX M

The compliance form of the poroelasticity matrix is:

M =









S11 S12 S13 −β1

S12 S22 S23 −β2

S13 S23 S33 −β3

−β1 −β2 −β3 γ









where Sij are the drained compliances (no fluid present,

for example), the off-diagonal terms are given by

βi =
∑

j Sij − 1/Kg
R, for i, j = 1, 2, 3, and

γ =
∑

i βi/BKd
R. B is Skempton’s second

coefficient, and is the only term in the 4 × 4

compliance matrix that includes fluid effects.



ORTHOTROPIC POROELASTICTY

M







σ11
σ22
σ33

−pf






=







e11
e22
e33

−ζ







where ζ is the increment of fluid content, pf is fluid

pressure, and M was defined previously. The stresses

σ11, etc., and the strains e11 etc., have their

usual meanings, but for the porous solid matrix.

Drained bulk modulus 1/Kd
R =

∑

ij Sij. Grain (or

mineral) bulk modulus 1/Kg
R =

∑

ij Sg
ij , where

Sg
ij are the compliances of nonporous grains or minerals.



MEASUREMENT REDUCTIONS (1)

Matrix M has 10 independent coefficients: six drained

compliances, three off-diagonal poroelastic-coupling

compliances, and one purely fluid-fluid coefficient.

We can reduce this burden by our choices of measure-

ment schemes.

This leads to the concept that I call “telescoping.”



MEASUREMENT REDUCTIONS (2)

Telescoping concept:

We can reduce the size of the problem from 4×4 to 2×2

in two steps.

Step 1: Setting σ11 = σ22 = σ33 = −pc,

which is uniform confining stress (negative of confining

pressure).

Step 2: Summing e = e11 + e22 + e33,

which is total strain.



MEASUREMENT REDUCTIONS (3)

Setting σ11 = σ22 = σ33 = −pc

allows us to write the 4 × 2 matrix:

M1 =









S11 + S12 + S13 −β1

S12 + S22 + S23 −β2

S13 + S23 + S33 −β3

−β1 − β2 − β3 γ









.

Summing e = e11 + e22 + e33,

allows us to write the 2 × 2 matrix:

M2 =

(

1/Kd
R −α/Kd

R

−α/Kd
R γ

)

.



MEASUREMENT REDUCTIONS (4)

Finally, we have the general statement (true for

orthotropy, isotropy, and all possibilities in between:
(

1/Kd
R −α/Kd

R

−α/Kd
R γ

)

(

−pc

−pf

)

=
( e
−ζ

)

.

This formula implies two effective stress statements.

One for volume is:

e = −(1/Kd
R)(pc − αpf ).

Another for fluid content is:

ζ = −(α/Kd
R)(pc − pf/B).



ELASTIC LAYER AVERAGING

USING BACKUS OR SCHOENBERG-MUIR

SCHEMES

(

ET

EN

)

=

(

STT STN

SNT SNN

)(

ΠT

ΠN

)

,

where

ET =

(

e11
e22
e12

)

and EN =

(

e33
e32
e31

)

and

ΠT =

(

σ11
σ22
σ12

)

and ΠN =

(

σ33
σ32
σ31

)

.



LAYER COMPLIANCE REARRANGEMENTS

STT =

(

s11 s12
s21 s22

s66

)

,

SNN =

(

s33
s44

s55

)

,

and

SNT =

( s31 s32

0
0

)

= ST
TN .



DISTINGUISH FAST AND SLOW VARIABLES

(

ET

< EN >

)

=

(

S∗

TT S∗

TN

S∗

NT S∗

NN

)(

< ΠT >

ΠN

)

,

where EN and ΠT are the fast variables (changing across

boundaries), and therefore need to be averaged.

The matrix coefficients are:

S∗

TT =< S−1
TT >−1,

S∗

TN = (S∗

NT )T = S∗

TT < S−1
TTSTN >, and

S∗

NN =< SNN > − < SNTS−1
TT STN > +S∗

NT (S∗

TT )−1S∗

TN .



POROELASTIC LAYER AVERAGING

FOR DRAINED SYSTEMS: USING SCHEMES

LIKE BACKUS OR SCHOENBERG-MUIR





ET

−ζ

EN



 =





STT −g12 STN

−gT
12 γ −gT

3

SNT −g3 SNN









ΠT

−pf

ΠN



,

where

gT
12 = (β1, β2, 0) and gT

3 = (β3, 0, 0).

Then, drained conditions (pf = 0) give the same

equations as the elastic case, but for porous media.



POROELASTIC LAYER AVERAGING

FOR UNDRAINED SYSTEMS: USING SCHEMES

LIKE BACKUS OR SCHOENBERG-MUIR

However, undrained conditions (ζ = 0) result in the

undrained version of the original elastic equation (I am

not showing this work here!), which is:

(

ET

EN

)

=

(

Su
TT Su

TN

Su
NT Su

NN

)(

ΠT

ΠN

)

.

So the analysis is the same as before, but now using

the undrained constants in the appropriate (locally undrained)

layers.



GASSMANN’S EQUATIONS (1)

Ku
R = Kd

R + α2

(α−φ)/Kg

R
+φ/Kf

=
Kd

R
1−αB ,

where Ku
R is the undrained bulk modulus. Kd

R is the

drained bulk modulus; Kg
R is the mineral (or solid)

modulus; Kf is the pore fluid bulk modulus; φ is

the porosity; α = 1 − Kd
R/Kg

R is (volume) effective

stress coefficient; B is Skempton’s second coefficient.



GASSMANN’S EQUATIONS (2)

Rearranging into compliance form, we have

1
Kd

R

−
1

Ku
R

= α
Kd

R

×

[

1 +
φKd

R
αKf

(

1 −
Kf

Kφ

)

]

−1

= α
Kd

R

B,

which shows explicitly how Skempton’s B coefficient is

related to all the other constants.



GASSMANN’S ORTHOTROPIC EQUATIONS (3)

Compliance correction for undrained fluid inclusions:

∆fSij = −γ−1



















β2
1 β1β2 β1β3

β1β2 β2
2 β2β3

β1β3 β2β3 β2
3

0
0

0



















The fluid effects (through Kf or B) appear only in the

overall factor γ = α/BKd
R. The coefficients βi,

i = 1, 2, 3, satisfy a sumrule of the form

β1 + β2 + β3 = 1/Kd
R − 1/Kg

R ≡ α/Kd
R.



CONCLUSIONS

• Effective stress coefficients are very well understood

for homogeneous (one solid material) porous media,

whether isotropic or anisotropic.

• Effective stress coefficients for heterogeneous materials

(rocks in particular) are not so well understood yet.

• Effective stress of scale invariant properties are also

better understood than those for non-scale-invariant

properties, including fluid permeability.
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