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OUTLINE OF TALK g

e Motivation
o Electromagnetic imaging/detection through
foliage /clutter
o Characterization: If we do see something,
what is 1t?
e History: Acoustic and Elastic T /R
o Chambers and Gautesen (JASA, 2001)
e Summary of the Electromagnetic Analysis for
a Small Dielectric or Conducting Sphere
e Numerical Examples

e Conclusions



TIME-REVERSAL ACOUSTICS PROBLEMS |8

e Liliana Borcea, Chrysoula Tsogka, and George
Papanicolaou (Stanford - Math): acoustic imaging through

random media using statistical stability concepts

e John Sylvester (UW - Math): more precis® acoustic
imaging using angular dependence of the far-field

scattering operator
e Chris Jones, Darrell Jackson, and Dan Rousett (APL

i UWash): super-resolution or super-focusing (for
communications) in waveguides (like the ocean) and also

random media (like the turbulent ocean)



Source Artay Setup g
Consider an array ot short, crossed-dipole elements
lying in the plane z = —z,, where 2, is the distance
between the plane and the scattering sphere (which is
located at the origin). The position of the nth element
of the array is given by 7, = (24, Yn, —2a)-
The standard result for the electric field at point 7

radiated from the nth element is given by

—»z z eikRn A ~ A A
EY = the" " B x [Ra x (dgIfe, +dyIVe,),

T 4megcRy, T

where c 1s the speed of light, £ is the wavenumber, € is

the electrical permittivity, and ﬁn =7 —T,.

The scalar R,, = |ﬁn| is the vector’s magnitude.



Source Arlay Setup (continued)

The horizontal and vertical dipoles in the element

(having lengths dy and dy ) are driven by the

currents I! and I", respectively). The
horizontal dipole is oriented parallel to the x-axis

and the vertical dipole parallel to the y-axis.

There is also a magnetic field radiated from the nth

element, which is given similarly by

; ibeikRn | o A A
qY = ke IR x (dpIHe, + dyIVe,)).

~ 4rmegcRy




Scattered Field

With a sphere of radius a << z, at the origin and a also
much smaller than the wavelength, the scattered field to
leading order is given by

— _k2€ik7‘

E(s) =

— |7 x (m + 7 x p)l.

The induced electric dipole moment is p’ and the induced
magnetic dipole moment is m.  These moments are
generated at the sphere as it a plane wave were incident

at this distance.



Scattered Field (continued)

The moments are related to the incident field evaluated

at the position of the sphere 7 = 0:
W= —mofy x B (=7).
5= poEW) (=7).
The scalar factors are pg = a®(n? — 1)/(7? + 2), where
n? = e+ i4ro/w, and my = —iB™/ks. The sphere
relative permittivity is €, its conductivity is o, the
angular frequency is w, and B}" determines the strength

of the magnetic moment. In general, my and pg are

complex numbers.



Induced Fields at the Arfay g

The scattered field induces voltages on each dipole ele-
ment of the array. The result at the mth element can

be expressed as

VH = —dp[im X (Fm X é3)] - E®) (7)),

X €3)] - r
VY = —dy[fm X (Fm x &y)] - E©) (7).

Combining all these expressions (incident field,
scattered field, and induced voltages) will produce

the full transfer matrix for this problem.



The Scattering Matrix g

Since all three of these steps involve double cross-product
formulas, the resulting final expressions will be rather
tedious unless we can find some way to simplify them.
We found that, by introducing a special type of
projection operator (a 3 X 3 matrix) defined by

A = P - TS — Pl
we could collapse the equations very efficiently, where
S 1s the identity matrix. In these terms, the main

scattering operator can be written as

S = Amm(mOAmn — pOAmm)Ann-



(

The Scattering Matrix (continued) &

Then using the properties of our projection operator,
we find easily that
S = mOAmn — pOAmmAnn-

The result is that we can write the key matrix as

- - AT
KHH iV 3 ik(rm4rn) [ AHEY . .
= =5 S(dﬂe dve )
I,rVH V'V ATegcrmTn AT L y ).
xTTM’L xmn

The superscripts H and V refer to the horizontal and
vertical dipoles in each array element and their

corresponding polarizations.



The Scattering Matrix (concluded)

Then the final result is

VH _[(HH I(HV IH
vV - KVH VY v



The Coupling Matrix

The 2 X 2 matrix /,,, can be written as

eik('f’m —|—7’n)
N,

ik3q

ATegCrmTn

I(mn —

where the elements of ffmn were given betfore, and
g = +/|mo|? + [po]?2. Note that K, = KL by

reciprocity. Note also that all combinations of

polarization coupling are represented in I\,,,.



Data and SVD g

Our array has /N crossed-dipole elements lying in a plane.

Let V' be the vector of received voltages and I the
vector of transmitted currents (both of length 2N). Then,

V=TI,

where
V=WV, . v vt
[=8 1y, 184 1)L,

and 1 is the transfer matrix.



Transter Matrix [

The response or transfer matrix for this problem is

( K Ky - KlN\

Koy Koo -+ Koy
T =

\Kvi Kyo - Ix/

The matrices I{,,, are 2 X2 matrices connecting horizon-
tal and vertical dipole sources to horizontal and vertical
dipole receivers in all four possible combinations:

- H H ~HV

K2~ Ko

I {m n —
KL KL



Singular Value Decomposition (SVD)

We could compose the full time-reversal operator for

this problem, which is T*7T'. This matrix is Square

and Hermitian. Eigenvectors and eigenvalues can be

found in a straightforward way. But this is actually
somewhat more difficult (unwieldy) than performing

the singular value decomposition on the matrix 7’

itself. In this ¢ase,
Td = Ad*,
where the singular values A are real,

non-negative, and also the square roots of the

eigenvalues for the corresponding eigenvectors of T*7T'.



Normalizing the Equations g

We can simplity the problem somewhat more by

normalizing the equations, and eliminating various

common factors. Letting z; = e i for j=1,...,N,
we define ¢1, ..., ooy by
1
¢ = %(%21,@,21, s QaIN_1ZN, Q2NEN )
and
dmeqgc

Then, the SVD reduces to
T =",



Normalizing the Equations (continued)

where now

( I’fll [(12 SR I’fl N \
A Koy Koy -+ Iy
T —

\ Kyi1 Kyo -+ Kpyy )

By factoring out the complex exponential from the
original singular vectors ®, the part of the phase

responsible for focusing the transmitted field on the
Sphere 1S eliminated.

&



Normalizing the Equations (concluded) &

This result is common to all eigenvectors of the

TRO in the presence of a single scatterer.

The remaining vector ¢ represents the (signed)
amplitude distribution over the array, which may
have a pattern of nulls depending on the nature of

the scattering from the sphere.



Deconstructing the Transter Matrix g

The transfer matrix can now be easily (!) deconstructed

into 1ts two main components, 1" = Tp + Tm.
These are terms for the dielectric and conducting
contributions to the scattering:

Tp =& (9191T + gzggT + 9393?)
Ton = €™ (9191 + 9592 + 969t )-
The vectors g;, for j =1,...,6 are known explicitly
from the analysis. The singular vectors for a matrix ot
this form can be expressed as linear combinations

of the same vectors:

6
¢ = Zj:l V395



The Reduced SVD g

These results reduce the SVD for the 2N x 2N matrix

T to an SVD instead of a 6 X 6 matrix
. This reduction is obviously substantial if

N is much greater than 3. The matrix elements of
G are given by G, = g}r - gy
and the SVD takes the form:
—etp E?:l Gy = Ay for j =1,2,3
etfm Z?:l Gy = Av; for j =4,5,6.
This reduction follows from the fact that there are

only a small number of terms used in the partial wave

expansion for the scattered field.



The Reduced SVD (continued) g

In particular, the field is generated by an electric dipole
moment and a magnetic dipole moment, each of which
can be oriented in three mutually orthogonal directions.
Thus, for small ka, there are at most six eigenvectors
associated with any small scattering object such as a

conducting sphere.



CONCLUSIONS [

e Six significant modes can be associated with a
small spherical scatterer: three for the dielectric
interaction are always present, and another three
for the conductive interaction if the scatterer
is highly conductive/metallic.

e Characterization using detected presence or absence

of metallic/conductive properties should be

relatively straightforward with this approach.
e The two modes corresponding to endfire dipoles can

normally only be seen in the relatively near field.



