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Adaptive subtraction of multiples using the L1-norm

A. Guitton1 and D. J. Verschuur2∗
1Stanford Exploration Project, Mitchell Building, Department of Geophysics, Stanford University, Stanford, CA 94305-2215, USA, and
2Delft University of Technology, Laboratory of Acoustical Imaging and Sound Control, PO Box 5046, 2600 GA Delft, The Netherlands

Received July 2002, revision accepted September 2003

ABSTRACT
A strategy for multiple removal consists of estimating a model of the multiples and
then adaptively subtracting this model from the data by estimating shaping filters. A
possible and efficient way of computing these filters is by minimizing the difference
or misfit between the input data and the filtered multiples in a least-squares sense.
Therefore, the signal is assumed to have minimum energy and to be orthogonal to the
noise. Some problems arise when these conditions are not met. For instance, for strong
primaries with weak multiples, we might fit the multiple model to the signal (primaries)
and not to the noise (multiples). Consequently, when the signal does not exhibit
minimum energy, we propose using the L1-norm, as opposed to the L2-norm, for the
filter estimation step. This choice comes from the well-known fact that the L1-norm
is robust to ‘large’ amplitude differences when measuring data misfit. The L1-norm is
approximated by a hybrid L1/L2-norm minimized with an iteratively reweighted least-
squares (IRLS) method. The hybrid norm is obtained by applying a simple weight
to the data residual. This technique is an excellent approximation to the L1-norm.
We illustrate our method with synthetic and field data where internal multiples are
attenuated. We show that the L1-norm leads to much improved attenuation of the
multiples when the minimum energy assumption is violated. In particular, the multiple
model is fitted to the multiples in the data only, while preserving the primaries.

I N T R O D U C T I O N

A classical approach to attenuating multiples consists of
building a multiple model (see e.g. Verschuur, Berkhout and
Wapenaar 1992; Berkhout and Verschuur 1997), and adap-
tively subtracting this model from the data, which is contam-
inated with multiples, by estimating shaping filters (Dragoset
1995; Liu, Sen and Stoffa 2000; Rickett, Guitton and
Gratwick 2001). The estimation of the shaping filters is usu-
ally carried out in a least-squares sense making these filters
relatively easy to compute. By using the L2-norm, we implic-
itly assume that the resulting signal, after the filter estima-
tion step, is orthogonal to the noise and has minimum energy.
These assumptions might not hold, and other methods, such
as pattern-based approaches (Spitz 1999; Guitton et al. 2001),
have been proposed to avoid these limitations. For instance,
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when a strong primary is surrounded by weaker multiples, the
multiple model will match both the noise (multiples) and the
signal (primaries), such that the difference between the data
and the filtered multiple model is a minimum in a least-squares
sense. Consequently, some primary energy might leak into the
estimated multiples and vice versa. We therefore need to find
a new criterion or norm for the filter estimation step.

We propose estimating the shaping filters with the L1-
norm instead of the L2-norm, thus removing the necessity
for the signal to have minimum energy. This choice is driven
by the simple fact that the L1-norm is robust to ‘outliers’
(Claerbout and Muir 1973) and large amplitude anomalies.
Because the L1-norm is singular where any residual compo-
nent vanishes, we use a hybrid L1/L2-norm that we minimize
with an iteratively reweighted least-squares (IRLS) method.
This method is known to give an excellent approximation of
the L1-norm (Gersztenkorn, Bednar and Lines 1986; Scales
and Gersztenkorn 1987; Bube and Langan 1997; Zhang,
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Chunduru and Jervis 2000). The main property of the hybrid
norm is that it is continuous and differentiable everywhere,
while being robust for large residuals.

In the first section, we illustrate the limitations of the least-
squares criterion using a simple 1D problem. We then in-
troduce our proposed approach, based on the L1-norm, to
improving the multiple attenuation results. In a second syn-
thetic example, we attenuate internal multiples with the L2-
and L1-norms. Finally, we apply shaping filters to a multiple-
contaminated gather from a seismic survey, showing that the
L1-norm leads to substantial attenuation of the multiples.

P R I N C I P L E S O F L 1- N O R M A N D L 2- N O R M
S U B T R A C T I O N

In this section, we demonstrate with a 1D example that the
attenuation of multiples with least-squares adaptive filtering
is not effective when strong primaries are located in the neigh-
bourhood. This simple example leads to a better understand-
ing of the behaviour of our adaptive scheme in more compli-
cated cases.

Shaping filters and the L2-norm

In Fig. 1, a simple 1D problem is considered. Figure 1(a) shows
four events corresponding to one primary (on the left) and
three multiples (on the right). Note that the primary has a
larger amplitude than the multiples. Figure 1(b) shows a mul-

Figure 1 (a) The data with one primary at
0.06 s and three multiples at 0.14 s, 0.2 s
and 0.32 s. (b) The multiple model that we
want to adaptively subtract from (a).

tiple model that corresponds exactly to the real multiples. For
L2-norm subtraction the goal is to estimate a shaping filter f
that minimizes the objective function,

e2(f) = ‖d − Mf‖2
2, (1)

where M is the matrix representing the convolution with the
time series for the multiple model (Fig. 1b) and d is the time
series for the data (Fig. 1a).

If we estimate the filter f with enough degrees of freedom
(enough coefficients) to minimize (1), we obtain the estimated
primaries, i.e. d − Mf (Fig. 2a), and the estimated multiples,
i.e. Mf (Fig. 2b). The estimated primary signal does not re-
semble the primary in Fig. 1(a). In Fig. 3, the corresponding
shaping filter is shown. Note that this filter is not a unit spike at
lag = 0 as expected. The problem stems from the least-squares
criterion which yields an estimated signal that, by definition,
has minimum energy. In this 1D case, the total energy in the
estimated signal (Fig. 2a) is e2 = 2.4, which is less than the
total energy of the primary alone (e2 = 4). This is the funda-
mental problem if we use the L2-norm to estimate the shaping
filter. In the next section, we show that it is better to use the
L1-norm if the multiples and the primaries are not orthogonal
in the L2-norm sense.

Shaping filters and the L1-norm

The strong primary in Fig. 1 can be seen as an outlier
that receives much attention during the L2 filter estimation.
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Figure 2 (a) The signal estimated with the
L2-norm. (b) The noise estimated with the
L2-norm.

Figure 3 Shaping filter estimated for the 1D
problem with the L2-norm. One lag is equiv-
alent to one time sample (0.004 s). This filter
is not a single spike at lag = 0. The maxi-
mum value of the filter is one at zero lag and
the minimum value is −0.2 at lags −5 and
+9.

Consequently, some of the signal we want to preserve leaks
into the noise. Because the L1-norm is robust to outliers, we
propose using it to estimate the filter coefficients. This in-
sensitivity to a large amount of ‘noise’ has a statistical inter-
pretation: robust measures are related to long-tailed density
functions in the same way that L2 is related to the short-tailed
Gaussian density function (Tarantola 1987). In this section,

we show that the L1-norm solves the problem referred to in
the preceding section.

Our goal now is to estimate a shaping filter f that minimizes
the objective function,

e1(f) = |d − Mf|1. (2)
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Figure 4 (a) The signal estimated with the
L1-norm. (b) The noise estimated with the
L1-norm.

Figure 5 Shaping filter estimated for the 1D
problem with the L1-norm. One lag is equiv-
alent to one time sample (0.004 s). This filter
is a single spike at lag = 0 with amplitude
value 1.0.

The function in (2) is singular where any residual compo-
nent vanishes, implying that the derivative of e1(f) is not
continuous everywhere. Unfortunately, most of our optimiza-
tion techniques, e.g. conjugate-gradient or Newton methods,
assume that the first derivative of the objective function is con-
tinuous in order to find its minimum. Therefore, specific tech-
niques have been developed either to minimize or to approx-
imate the L1-norm. For instance, various approaches based

on linear programming have been used with success (see e.g.
Barrodale and Roberts 1980). Other robust measures, such
as the Huber norm (Huber 1973), can also be considered
with an appropriate minimization scheme (Guitton and Symes
1999).

Alternatively, our implementation is based on the minimiza-
tion of a hybrid L1/L2-norm with an iteratively reweighted
least-squares (IRLS) method (Gersztenkorn et al. 1986; Scales
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Figure 6 (a) A synthetic shot gather containing many internal multiples. (b) The internal multiple model, which exactly matches the internal
multiples in (a).

Figure 7 Histograms of the input data (Fig. 6a) and of the noise
(Fig. 6b). The multiples have a much weaker amplitude distribution
and the L1-norm should be used.

and Gersztenkorn 1988; Scales et al. 1988; Bube and Langan
1997). This technique is known to give a good approxima-
tion of the L1-norm. In this case, the objective function we

minimize becomes

e1(f) = ‖W(d − Mf)‖2
2, (3)

with

W = diag

(
1(

1 + r2
i /ε2

)1/4

)
, (4)

where ri = d − Mfi is the residual for one component of the
data space, and ε is a constant chosen a priori. The significance
of ε and how it is chosen is described later. With this particular
choice of W, minimizing e1 is equivalent to minimizing

Q(f) =
N∑

i=1

q(ri ) =
N∑

i=1

(√
1 + (ri/ε)2 − 1

)
, (5)

where N is the number of data points (see Bube and Langan
1997). For any given residual ri, we have

q(ri ) ≈
{

1
2 (ri/ε)2, for |ri |/ε small,

|ri |/ε, for |ri |/ε large.
(6)
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Figure 8 (a) The estimated primaries with the L2-norm. (b) The estimated internal multiples with the L2-norm. Ideally, (b) should look like
Fig. 6(b), but in this case it does not.

Hence, we obtain L1 treatment of large residuals and L2 treat-
ment of small residuals with a smooth transition between the
two norms. This transition is defined by ε. Note that the
objective function in (3) is non-linear because the weight-
ing matrix W is a function of the residual for every data
point. Therefore, we use a non-linear technique to minimize
(3), i.e. IRLS. This method solves the non-linear problem
with piecewise linear steps. For each linear step, W is kept
constant.

We now describe the implementation of IRLS in more de-
tail. We update the weighting operator W every five iterations.
Within each linear step a conjugate-gradient (CG) solver is
used, which makes the minimization of the hybrid norm very
fast. The CG solver is reset for each new weighting function,
so that the first iteration of each new least-squares problem is
a steepest-descent step. In addition, the last solution f of the
previous linear problem is used as an initial guess f0 for the
next five iterations. Note that the total cost per iteration of
the L1 method is equal to the cost of the L2 method because
both use a CG solver. Finally, because we solve a non-linear

problem with IRLS, the L1-norm requires twice as many iter-
ations as the L2-norm. This cost increment is quite reasonable
and makes the L1-norm affordable.

One important parameter in the definition of the weighting
function W is ε. In (6), this parameter controls the transi-
tion between the L1-norm and the L2-norm (Bube and Langan
1997). Bube and Langan (1997) proposed computing ε as a
function of the standard deviation of the residual d − Mf.
They proposed that if the standard deviation of the residual
varies for different points, then there should be one ε per resid-
ual component ri. Although mathematically supported, in our
opinion this is not very practical. Therefore, we calculate one
ε only as follows:

ε = max|d|
100

. (7)

This choice has been proved efficient by a few authors (see
e.g. Darche 1989; Nichols 1994). Note that a comparison
of our choice of ε with that proposed by Bube and Langan
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Figure 9 (a) The estimated primaries with the L1-norm. (b) The estimated internal multiples with the L1-norm. Apart from some edge effects,
(b) closely resembles Fig. 6(b). The adaptive subtraction was very successful.

(1997) could be interesting, but goes beyond the scope of this
paper.

From now on, we refer to our hybrid L1/L2-norm, min-
imized with the IRLS method, as the L1-norm. In the next
section, we show that our implementation leads to the desired
result for the filter estimation problem.

Results from a simple 1D example

For the simple 1D example under consideration, the filter co-
efficients are now estimated with the L1-norm using the IRLS
method. In Fig. 4, we show the result of the adaptive subtrac-
tion when the L1-norm is used to estimate the shaping filter
(equation (3) with small ε). The estimated signal in Fig. 4(a)
resembles the true signal very well, as does the estimated noise.
It is easy to check that the energy (in an L1 sense) in Fig. 4(a)
(e1 = 2) is less than the energy (in an L1 sense) in Fig. 2(a)
(e1 = 3.2). Figure 5 shows the shaping filter associated with
the L1-norm. This filter is a unit spike at lag = 0. This simple

1D example demonstrates that the L1-norm should be utilized
each time the estimated noise and the desired primaries are
not orthogonal in the L2 sense. In the following section, we
show another synthetic example where internal multiples are
attenuated.

2 D D ATA E X A M P L E : AT T E N U AT I O N
O F I N T E R N A L M U LT I P L E S

In this section we illustrate the efficiency of the L1-norm when
internal multiples are attenuated in 2D.

The synthetic data

Figure 6(a) shows a synthetic shot gather for a 1D medium.
This gather is corrupted with internal multiples only.
Figure 6(b) shows the internal multiple model. In order to
focus on the multiple subtraction only, and not on the predic-
tion, this internal multiple model is exact and could be directly
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Figure 10 (a) The difference between the exact multiples (Fig. 6b) and the subtracted multiples with the L2-norm. (b) The difference between
the exact multiples (Fig. 6b) and the subtracted multiples with the L1-norm. The L1-norm gives a more accurate multiple attenuation result.

subtracted from the data in Fig. 6(a). Note that the amplitude
of the internal multiples is significantly less than the amplitude
of the primaries, making the L2-norm unsuitable for estimat-
ing the shaping filters. Figure 7 shows the histograms of both
the data and the internal multiples. The density function of
the noise is much narrower than that of the data, indicating
that the L1-norm should be used.

Adaptive filtering with non-stationary helical filters

To handle the inherent non-stationarity of seismic data, we es-
timate a bank of non-stationary filters using helical boundary
conditions (Mersereau and Dudgeon 1974; Claerbout 1998).
This approach has been successfully used by Rickett et al.
(2001) to attenuate surface-related multiples. As described
above (equations (2)–(7)), we use IRLS to approximate the
L1-norm and a standard conjugate-gradient solver with the
L2-norm. The filter coefficients vary smoothly across the out-
put space, thanks to preconditioning of the problem (Crawley

2000; Rickett et al. 2001). In the following results, the non-
stationary filters are 1D. We estimate the same number of
coefficients per filter with the L2- and L1-norms.

Adaptive subtraction results

Figure 8(a) shows the estimated primaries when the L2-norm
is used to compute the shaping filters. Figure 8(b) shows the
estimated internal multiples. As expected, because of the non-
orthogonality of the signal (primaries) and the noise (multi-
ples) in the L2 sense, the adaptive subtraction fails and we
retrieve the behaviour explained in the preceding section with
the 1D example: due to predicted internal multiples being
close to relatively strong primaries, part of the energy of these
multiples is matched with the primaries, resulting in a non-
optimum subtraction, so that the subtraction result has less
energy in the L2 sense than the desired output. Next, in Fig. 9,
we see the beneficial effects of the L1-norm. Figure 9(a) shows
the estimated primaries and Fig. 9(b) shows the estimated
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Figure 11 (a) Stack of land data contaminated with multiples. (b) The predicted multiples computed with the data-driven modelling approach.
The subtraction is performed post-stack.

multiples. The noise subtracted matches the internal multi-
ple model in Fig. 6(b) very well, as anticipated. As a final
comparison, Fig. 10 shows the difference between the inter-
nal multiple model (Fig. 6b) and the subtracted multiples with
the two norms. The L1-norm (Fig. 10b) matches the multiple
model much better than the L2-norm (Fig. 10a).

P O S T- S TA C K L A N D D ATA M U LT I P L E
R E M O VA L E X A M P L E

In this section, we attenuate surface-related multiples in the
post-stack domain, using shaping filters that we estimate
with the L2- and L1-norms. These filters are non-stationary.
Figure 11(a) shows the data, which is contaminated with mul-
tiples. Figure 11(b) shows the multiple model computed using
the data-driven modelling approach (Kelamis and Verschuur
2000). Note that for this gather, the amplitude differences
between the primaries and the multiples are not very great.
Our goal is to illustrate the use of the L1-norm in a more
general case when surface-related multiples are present in the

data. We specifically focus on the event at 1.6 s in Fig. 11(a).
This is a primary event that we want to preserve during the
subtraction.

Adaptive subtraction results

The amplitude of the primary at 1.6 s is well preserved with
the L1-norm in Fig. 12(a). However, the amplitude of this pri-
mary is attenuated with the L2-norm as shown in Fig. 12(b).
Figure 13 shows a comparison between the subtracted multi-
ples with the L1- (Fig. 13a) and the L2-norm (Fig. 13b). We
conclude that the L2-norm tends to subtract too much energy.

This last example proves that the estimation of shaping fil-
ters can always be carried out with the L1-norm. An advantage
of our inversion scheme and the objective function in (3) is that
only one parameter (ε) controls the L1–L2 behaviour. Thus we
can decide to switch from one norm to another very easily.
Figure 14 shows a histogram of the input data and of the es-
timated noise with the L1- and L2-norms. The theory predicts
that the distribution of the L2 result should be Gaussian and
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Figure 12 (a) The estimated primaries with the L1-norm adaptive subtraction. (b) The estimated primaries with the L2-norm subtraction. The
primary at 1.6 s is very attenuated with the L2-norm. The L1 technique preserves its amplitude better.

that the distribution of the L1 result should be exponential.
Figure 14 corroborates this. Of course, we cannot discover
directly whether the estimated multiples obtained with the
L1-norm are more similar to the actual multiples than those
obtained with the L2-norm. Our judgment is based only on
qualitative considerations for a few known primary reflectors
that we want to preserve.

Some efficiency considerations

As described above, the hybrid L1–L2 algorithm can be used
to carry out both an L2-norm subtraction (by choosing the
parameter ε to be large) or a robust L1-norm subtraction (by
choosing ε to be small). In the algorithm used, the filters are
allowed to change continuously along the time and space axes,
and the data within a certain window around the output point
will influence each filter. As stated before, the IRLS method
used becomes more efficient in the case of L2-norm subtraction
(twice as fast) but is still 5–10 times slower than a conventional

linear least-squares algorithm using the Levinson scheme (see
e.g. Robinson and Treitel 1980). However, the latter algorithm
cannot handle smoothly varying, non-stationary filters, but
requires an implementation with stationary filters in overlap-
ping time-offset windows (as used by Verschuur and Berkhout
1997). It can lead to transition problems in the window over-
lap zones, resulting in non-optimum multiple suppression.

C O N C L U S I O N S

When a model of the multiples is adaptively subtracted from
the data in a least-squares sense, we implicitly assume that the
signal (primaries) has minimum energy and is orthogonal to
the noise (multiples). This paper demonstrates that the min-
imum energy assumption might not hold and that another
norm, the L1-norm, should be used instead. The L1-norm
is approximated with a hybrid L1/L2-norm, which is mini-
mized using an iteratively reweighted least-squares method.
This method involves solving a non-linear problem with a
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Figure 13 (a) The estimated multiples with the L1-norm subtraction. (b) The estimated multiples with the L2-norm subtraction. The L2-norm
tends to over-fit some multiples, which leads to some leaking of primaries in the estimated noise.

Figure 14 Histograms of the input data and of the estimated noise
with the L1- and L2-norms. As predicted by the theory, the density
function with the L1-norm is much narrower than that with the L2-
norm.

series of linear steps. Both L1- and L2-norms are minimized
with a conjugate-gradient solver but the L1-norm requires
twice as many iterations as the L2-norm to achieve conver-
gence. We demonstrated with 1D and 2D data examples that

our proposed scheme with the L1-norm gives greatly improved
multiple attenuation results when the desired primary signal
does not exhibit minimum energy: the multiples are well sup-
pressed and the primaries are preserved.
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