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Coherent noise attenuation using inverse problems
and prediction-error filters
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Introduction

In seismic, we can express many of the processing steps as lin-
ear operators. These operators perform a mapping of one do-
main, usually a model of the earth parameterized in terms of
velocity, reflectivity, into another domain, usually seismic
data sorted into CMP or shot gathers. This mapping is called
modelling because it models the seismic data. Usually we de-
sire the opposite of modelling, i.e. given some data, we want
to retrieve the model. In many cases the adjoint of the model-
ling operator is used to estimate the model. For some opera-
tors, like the Fourier transform, the adjoint is the exact
inverse; for others, the vast majority, the adjoint is not the
true inverse but rather an approximation of the inverse.

Nowadays, amplitude-preserving processing is a manda-
tory task for true-amplitude migration, AVO analysis or 4D
interpretation; extracting the modelling part with approxi-
mate inverses is then risky. Inversion theory provides us with
methods to compute a ‘good’ inverse that will honour the seis-
mic data. Pioneering work by Tarantola (1987) has shown
the usefulness of inversion for earthquake location and tom-
ography. Since then inversion has been at the heart of many
seismic processing breakthroughs, such as least-squares mi-
gration (Nemeth 1996), high-resolution radon transforms
(Thorson & Claerbout 1985; Sacchi & Ulrych 1995) or pro-
jection filtering (Soubaras 1994; Abma & Claerbout 1995). A
very popular method of inversion is the least-squares ap-
proach, which can be related to a Bayesian estimation of the
model parameters.

It is well understood that the inversion in a least-squares
sense is very sensitive to the noise level present in the data. By
noise, I mean abnormally large or small data components, or
outliers which are better described by long-tailed probability
density functions (PDFs) as opposed to short-tailed Gaussian
PDFs, and coherent noise that the seismic operator is unable
to model. The noise will spoil any analysis based on the result
of the inversion and affect the amplitude recovery of the input
data. From a more statistical point of view, if the residual,
which measures the quality of the data fitting, is corrupted by
outliers or coherent noise in the data, it will not have inde-
pendent and identically distributed (IID) components. A more
‘geophysical way’ of saying this is that the residual will not
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have a white spectrum.

In this paper I show how the residual can be whitened
when coherent noise is present in the data. Outliers and noise-
burst problems are not addressed here. They can be win-
nowed out by applying, iteratively, a locally re-weighted
regression (Wang, White & Pratt 2000). In the first section I
review some basics of inverse theory. Then in the following
section I introduce two inversion methods that yield white
residuals. The first method proposes approximating the noise
covariance operators with prediction—error filters (PEFs). The
second method handles the coherent noise by introducing a
noise modelling operator within the inversion. These methods
are tested with field data.

A short review of inverse problems

In this section I review some basic notions on inversion. The
least-squares criterion comes directly from the hypothesis that
the PDF of each observable type of data and each model pa-
rameter is Gaussian. These assumptions lead to the general
discrete inverse problem (Tarantola 1987). Finding m is then
equivalent to minimizing the quadratic function (or cost/ob-
jective function),

fim) = (Hm - d)"C;*(Hm - d) + p(m - m

T -1
Cm (m - mprior)’

(1)

prior)

where the index T represents the (Hermitian) transpose, m is a
mapping of the data (the unknown of the inverse problem), H
is a seismic operator, d is the seismic data, C, and C_ are the
data and model covariance operators, respectively, m . is a
model given a priori, and p is a trade-off parameter (Wang &
Pratt 1997) between the amount of data fitting (Hm — d) and

model perturbation (m —m_. ). Thus we can write eqn (1) in

prior)
the following intuitive form:

flm) = (data residual)? + p(model pertubation)®.  (2)

The covariance matrix C, combines experimental errors and
modelling uncertainties. Modelling uncertainties describe the
difference between what the operator can predict and what is
contained in the data. Thus the covariance matrix C, is often
called the noise covariance matrix (Sacchi & Ulrych 1995).
Often we assume that (i) the variances of the model and of the
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noise are uniform, (ii) the covariance matrices are diagonal,
i.e. the model and data components are uncorrelated, and (iii)
no prior model is known in advance. Given these approxima-
tions the objective function becomes

fim) = (Hm — d)"(Hm - d) + €mm, (3)

where € = po,_%/0,? is a function of the trade-off parameter p
and of the noise and model variances. The model perturba-
tion (squared) reduces to a damping of the cost function. This
damping is used to compensate for numerical instabilities
when the parameters m are poorly constrained. Following eqn
(2) we now have

flm) = (data residual)? + €*(damping)? (4)

The prior assumptions leading to eqn (3) are too strong
when we are dealing with seismic data because the variance of
the noise/model may be not uniform and the components of
the noise/model may not independent. For simplicity I rewrite
the objective function in eqn (3) in terms of ‘fitting goals’ for
m,

0=Hm-d (5)

0=em, (6)

and estimate m accordingly in a least-squares sense. The first
equality stresses the need for Hm to fit the input data d. The
second equality is often called the regularization or ‘model
styling’ term. When the assumptions leading to eqn (4) are re-
spected, the convergence towards m is easy to achieve. In par-
ticular the components of the residual r = Hm — d are IID.
This IID property implies that no coherent information re-
mains in the residual and that each variable of the residual has
similar intensity (or power). Coherent noise in the data vio-
lates the assumptions of both the uniform distribution and the
need for independent noise components. The next section
shows how IID residual components can be derived in prac-
tice with coherent noise-infested seismic data.

Proposed solutions to attenuate coherent
noise

Any data set d may be regarded as the sum of signal s and
noise n as follows:

d=s+n. (7)

I assume that the coherent noise n consists of the inconsistent
part (or modelling uncertainties part) of the data d for any
given operator H. Described below are two techniques de-
signed to handle the coherent noise effects during the inver-
sion.

A filtering method

Equation (1) introduces two matrices that, in general, are not
calculated: the noise covariance matrix C, and the model
covariance matrix C_. When calculated, these matrices are
usually approximated with diagonal operators. In this section
I describe a method that computes non-diagonal covariance
matrices using prediction error filters.

I concentrate my efforts on the noise covariance matrix
only, the computation of the model covariance matrix being
beyond the scope of this paper. When coherent noise is
present in the data, residual variables are no longer IID and
the covariance matrices should not be approximated with di-
agonal operators. The coherent noise will add colour to the
spectrum of the residual. The goal of the covariance matrices
is then to absorb this spectrum. Now, as Claerbout and Fomel
assert:

‘Clearly, the noise spectrum is the same as the data
covariance only if we accept the theoretician’s defini-
tion that E(d) = Fm. There is no ambiguity and no argu-
ment if we drop the word “variance” and use the word
‘spectrum’.

(See  http://sepwww.stanford.edu/sep/prof/index.html,
Geophysical Estimation by Examples, Class Notes).

This statement is the basis of the first filtering method. It
says that the experimental residuals (squared) should be
weighted inversely by their multivariate spectrum for optimal
convergence. Because a prediction—error filter (PEF) whitens
data from which it was estimated (Jain 1989), it approximates
the inverse power spectrum. Thus a PEF (squared) with the
inverse spectrum of the coherent noise accomplishes the role
of the inverse covariance matrix C,? in eqn (1). The fitting
goals in eqn (5) become, omitting the regularization term,

0=A (Hm-d), (8)

where A _is a PEF that whitens the coherent noise. The cost
function becomes

flm) = (Hm - d)"A A _(Hm - d). (9)

Comparing eqns (1) and (9), we see that we are approximat-
ing the noise covariance matrix as follows:

ATA =C/1. (10)

Thanks to the helical boundary conditions (Claerbout 1998),
this PEF may be computed in more than one dimension, e.g.
in 2D or 3D.

A prediction-subtraction method

Instead of removing the noise by filtering, we can remove it by
prediction-subtraction. If an operator is unable to model all
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the information embedded in the data, then the residual is not
IID. The second formulation I propose treats the coherent
noise as a component of the data. Now, if we can model the
coherent noise with another operator, as we do for the signal,
then the residual components become IID. Thus I simply add
a coherent noise modelling operator to the fitting goal
(Nemeth 1996) in eqn (5) with € = 0 as follows:

0=Hm_+Bm,_ -d, (11)
where H is the signal modelling operator, m_is the model for
the signal, B is an operator that models the coherent noise
present in the data d, and m_is the model for the noise. Thus
ideally, each operator H and B models a different part of the
data space. The relationships between the noise/signal and m /
m_are then

n=Bm and (12)
s=Hm, (13)

The cost function is
fim,m )= (Hm +Bm_-d)"(Hm +Bm_ -d). (14)

Now, for the noise operator B, I propose using the inverse of
the PEF A_ that whitens the coherent noise. To explain this

choice, Fig. 1b shows the whitening properties of the PEF if
we convolve the PEF back with the input data. Consequently
if we deconvolve a spike with the same PEF (Fig. 1c), we
model the data. Interestingly, if we assume that seismic data
are mainly made up of a superposition of plane waves, the
PEF can then whiten quite complex noise patterns. Thus the
new cost function is as follows:

fim,m )= (Hm_ +A "m_ -d)"(Hm_+A 'm -d). (15)
For more details on the minimization of the cost function in
eqn (15), the reader is referred to Nemeth et al. (2000). So far,
I have not said anything about the PEF. In the next section I
give guidelines for the PEF estimation.

How to estimate the PEF A_

For the two proposed methods a PEF needs to be estimated in
order to attenuate the coherent noise effects in the residual. In
the simplest cases we might be able to derive a noise model
from which we can estimate the PEF directly.
Now, if a noise model is not known in advance, I propose
the following algorithm:
1 Minimize the cost function in eqn (3).
2 Estimate a PEF A from the residual when only coherent
noise remains in the residual.
3 Restart the inverse problem (m = 0) and minimize the cost
function in either eqn (9) or eqn (15).
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Figure 1 Some basic properties of the

prediction—error filters (PEF). (a) A PEF is

estimated from a data set. (b) The estimated >

PEF is convolved with the input data leading to

a white residual. (c) A spike is deconvolved

with the estimated PEF leading to a pattern

close to the input data in (a).
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E T this gather. (c) A noise model obtained by low-
- i passing the data and adding random zero-
mean Gaussian noise. (d) The amplitude
1 i spectrum of the noise model. The noise model
- @ - is used to estimate the PEF A, .

4 Re-estimate the PEF A from the residual (Hm - d).
5 Go to step (3).
6 Stop when the residual has a white spectrum.

This nonlinear process tries to refine the PEF estimation in
order to obtain the best possible coherent noise attenuation. It
is also based on the assumption that the coherent noise will
remain in the residual. In the next section, I show results of
coherent noise attenuation on a CMP gather contaminated
with a low-velocity-low-frequency event.

Coherent noise attenuation results

In this section I show some results from testing the two pro-
posed strategies. The main operator H is the hyperbola
superposition operator, the adjoint HT being the hyperbolic
radon transform (Thorson & Claerbout 1985).

The model space m is called the velocity space or velocity
spectrum. The input domain of the data d is the CMP do-
main. The process of computing the model m is called velocity
inversion.

Figures 2a and b show the input data and their corre-
sponding amplitude spectrum. The signal is made up of a se-
ries of hyperbolae, probably all multiples. The goal is to
attenuate the low-velocity—low-frequency noise that creates
the main peak at 10 Hz in the frequency panel. Firstly, we es-
timate a noise model by low-passing the data (Fig. 2¢c,d). This
model resembles the noise well enough for us to estimate a
PEF directly from it (Brown & Clapp 2000). Then the inver-
sion starts and should give residuals with IID components.

For this simple case, one might be tempted to bandpass the

data to attenuate the noise. Nonetheless, as shown in Fig. 3, it
is very likely that the noise spectrum partially overlaps the sig-
nal spectrum. Thus a simple bandpass filter would attenuate
the noise but would also affect the signal, something which
we want to avoid. In the next section, the noise attenuation
results for both the filtering and the prediction-subtraction
techniques are shown.

Likehy sigmal spectram
[— Mmm

Frequescy

Figure 3 Solid line: average amplitude spectrum of the 2D gather in
Fig. 2. Green line: possible signal spectrum. Red line: possible noise
spectrum. A simple bandpass filter cannot properly separate the
noise from the signal because their corresponding spectra overlap.
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Figure 4 Filtering the coherent noise in real

data. (a) An estimated model space m after

inversion; it displays the velocity spectrum of

the data. (b) Reconstructed data HM. (c) The o
weighted residual (r = A (HM — d)) after
inversion, the residual components should be
IID. (d) The difference between the input data "
in Fig. 2a and the reconstructed data in Fig. 4b;

this panel displays the coherent noise filtered

by the method. (e}
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Figure 5 Subtracting the coherent noise in real
data. (a) An estimated model space m. (b) The
reconstructed data from the model space, e.g.
HM. (¢) The residual after inversion, i.e. r = "
HM_+ A "M, - d; it should have IID compo-
nents. (d) The estimated coherent noise An‘1r”ﬁn
after inversion.
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Filtering method results tude anomalies near offset 0.8 km and time 2.8 s. The remod-
elled data in Fig. 4b are free of coherent noise, and the veloc-
ity panel in Fig.4a shows quite clearly a well-focused
corridor. The coherent noise filtered out during the inversion
is shown in Fig. 4d. As anticipated, I was able to perform a

The result of the inversion is displayed in Fig. 4. The residual
(Fig. 4c) is not perfectly white, but the coherent noise has been
mostly filtered out. Because the noise model does not incorpo-
rate them, the remaining artefacts in the residual are ampli-
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Figure 6 A comparison between the average amplitude spectrum of
(1) the input data (solid line) (2) the residual after inversion with the
filtering method (dotted line) and (3) the residual after inversion with
the prediction method (dashed line). The spectra of the residuals is
not perfectly white due to some noise not being accounted for in
the noise model (amplitude anomalies near offset 0.8 km and time
2.8's). None the less, the spectra are fairly flat proving that the
residual components are nearly IID.

velocity inversion along with coherent noise filtering. The re-
sidual has IID components thanks to the addition of the PEF
in the cost function in eqn (9).

Subtraction method results

The coherent noise attenuation resembles that obtained with
the filtering approach. Figure 5 shows the result of the inver-
sion: Fig. 5a shows the model space (velocity spectrum);
Fig. 5b shows the reconstructed data from Fig. 5a,d shows the
estimated noise model after inversion; Fig. Sc shows the re-
sidual. The noise model is composed mainly of the coherent
noise I am trying to attenuate. However, the residual shows
linear events scattered throughout the panel with very low en-
ergy. Again, this method proves efficient since the coherent
noise has been correctly predicted by the PEF and subtracted
during the inversion.

Discussion

The need for IID residuals components led me to design two
different inversion schemes. Figures 6 and 7 illustrate the
properties of these methods further. Figure 7 shows that the
two proposed inversion methods increase the convergence
and Fig. 6 shows that the amplitude spectrum of the residual
after inversion is almost flat for both methods. Therefore, our
goal of getting IID residual components is achieved. I also
demonstrated that the noise covariance matrix can be ap-
proximated with prediction—error filters.

For more complicated patterns than the one shown in the

preceding results, a single PEF might not be enough to model/
filter the coherent noise. In that case a bank of non-stationary
filters can be estimated (Crawley et al. 1999) to allow for the
variability of the undesirable events.

In the prediction-subtraction method, the coherent noise
attenuation can be improved by adding a model or data space
regularization term to the objective function. These
regularizations also have the property of limiting the leakage
effects when the noise and signal modelling operators predict
similar components of the data.
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