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Abstract

Current state-of-the-art subsurface imaging techniques have based upon two-way wave

propagation solutions. At the beginning of the 2000s, reverse-time migration consti-

tuted the “main character” of the imaging toolbox: the ultimate solution for geolog-

ically complex areas. Nowadays it represents the main “engine” working under the

hood of the most acclaimed and researched imaging techniques, such as linearized

waveform inversion (a.k.a. least-squares migration) for the estimation of the sub-

surface reflectivity, migration velocity analysis for the estimation of the subsurface

background component, and full-waveform inversion for the estimation of both com-

ponents as a single model parameter set. The latter is arguably the most ambitious

attempt to obtain a complete and accurate picture of the subsurface. Unfortunately,

it is vulnerable to cycle-skipping, which drives the optimization process to conver-

gence into local minima. Strategies to attack this problem include better acquisition,

data processing, and di↵erent implementations of the full-waveform inversion algo-

rithm. In this thesis, I explore a di↵erent and certainly less ambitious approach,

which consists of the joint inversion of the subsurface reflectivity and the subsur-

face background component as di↵erent parameter sets. During the early stages of

my research, I posed the problem as a linear optimization problem. However, this

approach does not have the expected properties. Maintaining the migration image

nonlinear with respect to the background model corrected the problem. I test this

new optimization problem scheme in synthetic 2D data and a 3D ocean-bottom node

dataset from the Gulf of Mexico.
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Preface

The electronic version of this report1 makes the included programs and applications

available to the reader. The markings [ER], [CR], and [NR] are promises by the

author about the reproducibility of each figure result. Reproducibility is a way of

organizing computational research that allows both the author and the reader of a

publication to verify the reported results. Reproducibility facilitates the transfer of

knowledge within SEP and between SEP and its sponsors.

ER denotes Easily Reproducible and are the results of processing described in

the paper. The author claims that you can reproduce such a figure from the

programs, parameters, and makefiles included in the electronic document. The

data must either be included in the electronic distribution, be easily available

to all researchers (e.g., SEG-EAGE data sets), or be available in the SEP data

library2. We assume you have a UNIX workstation with Fortran, Fortran90,

C, C++, X-Windows system and the software downloadable from our website

(SEP makerules, SEPlib, and the SEP latex package), or other free software

such as SU. Before the publication of the electronic document, someone other

than the author tests the author’s claim by destroying and rebuilding all ER

figures. Some ER figures may not be reproducible by outsiders because they

depend on data sets that are too large to distribute, or data that we do not

have permission to redistribute but are in the SEP data library.

1http://sepwww.stanford.edu/private/docs/sep179
2http://sepwww.stanford.edu/public/docs/sepdatalib/toc html
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CR denotes Conditional Reproducibility. The author certifies that the commands

are in place to reproduce the figure if certain resources are available. The pri-

mary reasons for the CR designation is that the processing requires 20 minutes

or more, MPI or CUDA based code, or commercial packages such as Matlab or

Mathematica.

NR denotes Non-Reproducible figures. SEP discourages authors from flagging

their figures as NR except for figures that are used solely for motivation, compar-

ison, or illustration of the theory, such as: artist drawings, scannings, or figures

taken from SEP reports not by the authors or from non-SEP publications.

Our testing is currently limited to LINUX 2.6 (using the Intel compiler), but the code

should be portable to other architectures. Reader’s suggestions are welcome. More

information on reproducing SEP’s electronic documents is available online3.

3http://sepwww.stanford.edu/research/redoc/
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Chapter 1

Introduction

Until recently, worldwide crescent demand for hydrocarbons imposed oil & gas geo-

scientists the task of continuous improvements in exploration techniques. Nowadays,

strategies have diversified and pointed toward more e�cient recovery and less environ-

mental impact by better drilling planning. Of particular importance is to have robust

algorithms for accurately imaging the subsurface. We typically evaluate the robust-

ness of imaging algorithms according to their ability to obtain 1) reliable subsurface

velocity/density models, and 2) accurate estimation of the subsurface reflectivity.

We achieve the first objective when the estimated velocity and density models ac-

curately position subsurface reflectivity contrasts during the imaging process. Early

estimations of velocity make use of ray tracing tomography (still the workhorse of the

industry), which resorts to the wave equation’s high-frequency approximation. As

such, wavepaths are represented as rays (Figure 1.1). However, such a representation

frequently fails in the presence of sharp velocity contrasts, often leaving vast “shadows

zones”, i.e., areas of poor or null ray coverage. Better results can be obtained using

wave-equation based velocity estimation methods, such as wave-equation migration

velocity analysis (WEMVA) (Biondi and Sava, 1999; Biondi, 2006) and full-waveform

inversion (FWI) (Tarantola, 1984a; Virieux and Operto, 2009), which perform the

1
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optimization in the image domain and the data domain, respectively. These methods

exploit the band-limited character of the wavepaths that makes them sensitive to

broader areas. They constitute the well-known “banana-doughnut” sensitivity ker-

nels (Tromp and Tape, 2005) that reduce the occurrence of shadow zones, even in the

presence of complex geology, as illustrated in Figure 1.1.

(a)

Figure 1.1: Wavepaths vs. rays. Rays operate under the high-frequency approxima-
tion of the wave equation, whereas wavepaths are band-limited entities. Notice how
the area of influence of the wavepaths (known as “banana-doughnut” sensitivity ker-
nels, because of their shape in 3D) is significantly larger than that of the rays, which
often leave shadow zones in complex areas such as underneath salt bodies. Modified
from Biondi (2006). [NR]

Regarding the second objective, and assuming that we fulfilled the first one, we say

that the reflectivity amplitude is accurate when it truly represents lithology and fluid
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content heterogeneity in the subsurface (e.g. Ha and Marfurt, 2017). If we achieve this

objective, we can rely on amplitude variation to perform qualitative and quantitative

estimation of reservoir properties.

After estimating the velocity and density subsurface models (most of the time, we

regard the latter as constant, for convenience), we can confidently image the sub-

surface seismic events by employing conventional imaging methods such as Kirchho↵

migration and wave-equation migration. Seismic migration is kinematically correct.

However, it does not generally recover amplitude information that serves the purpose

of interpreting the rocks and fluids contrasts. In the case of Kirchho↵ migration,

seismic amplitudes can be corrected using weighting coe�cients derived from approx-

imate solutions to the transport equation (Schleicher et al., 2007). For wave-equation

migration, such as reverse-time migration (RTM), we can balance the amplitudes to

some extent by utilizing the deconvolution imaging condition (Valenciano and Biondi,

2003).

None of these conventional imaging methods addresses illumination problems. Like-

wise, they often have less than optimal seismic resolution because of the inherently

blurring e↵ect of seismic migration (Yu et al., 2006). These tasks can be achieved by

means of least-squares migration (LSM) (Nemeth and Schuster, 1999), also known as

linearized waveform inversion (LWI) (Tarantola, 1984b). LWI can be implemented in

data space (e.g. Nemeth and Schuster, 1999; Duquet et al., 2000; Dai and Schuster,

2013; Wong et al., 2015; Fletcher et al., 2016), i.e., inverting for a reflectivity model,

r, from which data are synthesized by using the Born modeling operator, L. The

reflectivity model is iteratively updated until the misfit between the corresponding

synthetic data, d(b) = L(b)r, and the recorded field data, dobs, becomes small in the

least-squares sense.

We typically pose LWI in data domain as follows,

�(r) =
1

2
kL(b)r� dobsk22, (1.1)
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where � is the misfit function, and b is the background component of the subsurface

model, either velocity or slowness or slowness squared.

LWI can also be implemented in model space (e.g. Valenciano et al., 2006; Valenciano,

2008; Valenciano and Biondi, 2009; Fletcher et al., 2016). We invert for a reflectivity

model that matches the migration image, I, by means of the action of the Gauss-

Newton Hessian of FWI, H, as follows:

�(r) =
1

2
kH(b)r� I(b)k22, (1.2)

where H = LTL, and LT represents the adjoint of the Born modeling operator, a.k.a.

the RTM operator. The advantage of implementing LWI in model space in comparison

with the implementation in data space is that, once we estimated the Hessian, the

inversion consists of matrix-like multiplications. However, the main drawback is that

the Gauss-Newton Hessian needs to be pre-computed and stored. We often resort to

a↵ordable approximations such as point-spread functions (PSF) (Valenciano, 2008;

Fletcher et al., 2016) for the Hessian estimation.

1.1 Setting the problem

Reflectivity estimation using LWI relies upon the availability of an accurate subsurface

background model. Otherwise, the image will not be well focused and the inversion

can exhibit slow convergence. There have been e↵orts to nullify this limitation, such as

extending the domain in subsurface o↵set (e.g. Yang et al., 2018). However, remaining

errors in the velocity model still make seismic reflections defocus. In this dissertation,

I analyze the inaccuracy in the background model from a di↵erent point of view. In

some cases, the background model can be accurate enough for seismic events to

become reasonably well positioned after LWI. However, the accumulation of small

inaccuracies in the background model can distort the reflectivity amplitude in some
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areas. This situation can be critical when we need such a reflectivity to estimate

reservoir properties.

Figure 1.2 portrays a hypothetical (though entirely plausible) situation in reservoir

characterization works. In some geologic environments, it makes sense to inter-

pret amplitude anomalies to map and delimit reservoir facies, under the assump-

tion that their constituent rocks exhibit amplitude contrast with respect to rocks of

non-reservoir facies. If seismic amplitudes become altered because of various small

inaccuracies in the background model, the seismic interpreter may not detect prospect

opportunities. Moreover, in some cases, he or she can end up proposing drilling tar-

gets based on false amplitude anomalies, with a dry hole as the ultimate consequence.
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Productive Facies

(a)

?

(b)

Productive Facies

(c)

?

(d)

Figure 1.2: Impact of inaccuracies in the background subsurface model on the reflec-
tivity estimation. a) Productive facies in the subsurface. b) After the seismic acquisi-
tion, processing, and reflectivity inversion, we can interpret the amplitude anomalies
to map the reservoir rocks. c) Same as a), but including an unaccounted anomaly
in the background. d) Reflectivity amplitude becomes altered (red traces), leading
to incorrect mapping of the reservoir rocks. In more realistic scenarios, amplitudes
would be a↵ected by the combined e↵ect of more than one anomaly. [NR]
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1.2 Proposed solution

In this dissertation, I explore joint inversion of the subsurface reflectivity and back-

ground components, r and b, respectively. Hereafter I will refer to such joint inversion

as JIRB, standing for “Joint Inversion for Reflectivity and Background”. The idea

about incorporating b is to account for the inaccuracies of the background model

during the reflectivity inversion. Hereafter I denominate the inaccurate background

model as b0 so that the accurate background model is given as b = b0 +�b, where

�b is the perturbation in the background. I incorporate the background model com-

ponent into the inversion by using the WEMVA operator. The migration image,

which depends on the background model, gets corrected as the inversion progresses.

Simultaneously, the reflectivity is fitted to such an improved migration image using

the action of the Gauss-Newton Hessian, similarly as LWI in model space operates.

The reflectivity estimated with JIRB is expected to be more reliable than that ob-

tained with conventional LWI using an inaccurate background model, b0.

1.3 Opportunity area for the new method

One drawback of the JIRB method proposed in this dissertation is the much longer

computational time in comparison to conventional reflectivity inversion, mainly be-

cause of the addition of the WEMVA operator. In fact, why not performing velocity

estimation separately and then going for conventional reflectivity inversion? My an-

swer to this question is that jointly inverting for reflectivity and the background is

not intended for large-scale exploration imaging, but detailed works in small areas for

reservoir characterization purposes. In reconnaissance and exploration works, seismic

interpreters “comb” the subsurface in the quest of oil and gas plays and opportunities.

During this stage, drilling prospects are not examined in great detail because they

are not yet proved to be productive. On the contrary, once hydrocarbon accumula-

tions have been discovered, careful and detailed interpretation is performed at the
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reservoir scale to propose a drilling plan for optimal exploitation. It is often required

amplitude-preserving processing focused on the reservoir area. We may use LWI in

model space to accomplish this task by pre-computing the Gauss-Newton Hessian

and performing the inversion. However, if the background model is discovered not to

be accurate enough, we may re-use the existing Gauss-Newton Hessian to run JIRB,

rather than re-computing the Hessian with a previously re-estimated velocity.

There is another point of view regarding the implementation of the JIRB method. I

hypothesize that the reflectivity estimation would improve if jointly performed with

the background model. Conversely, the background model would benefit from the

incorporation of the reflectivity in the inversion. For such a reason, in the numerical

tests, I also compare the velocity estimation using WEMVA and JIRB.

1.4 Notation convention

Here I formally introduce the notation that I will use in this dissertation. Following

Barnier and Almomin (2014), let m represent the subsurface model parameters, here-

after consisting of slowness squared. Based upon the “scale dichotomy” (Shen and

Symes, 2008), let us assume that m can be split into the contribution of a background

model (low-wavenumber component), b, and a reflectivity model (high-wavenumber

component), r,

m = b+ r. (1.3)

As aforementioned, we can further split the background component into the super-

position of an inaccurate background, b0 and perturbation e↵ect, �b,

b = b0 +�b. (1.4)

Therefore, substituting equation (1.4) into equation (1.3) we obtain
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m = b0 +�b+ r. (1.5)

The above assumption is fundamental in seismic imaging for techniques, including

LWI and WEMVA. Hereafter I assume that the observed field data are well repre-

sented as Born linearized data, which I denote as dobs. Using the notation L(b) to

denote the Born linearization operator evaluated at the background model, b, and

for the true background model and reflectivity model, btrue and rtrue, respectively, we

obtain

dobs = L(btrue)rtrue. (1.6)

The migration image evaluated at the background model b will be denoted as I(b),

and it is obtained as the adjoint of the Born linearization operator applied to the

observed Born data dobs, constituting reverse-time migration,

I(b) = L(b)Tdobs. (1.7)

The full-waveform inversion Gauss-Newton Hessian is similarly defined for a back-

ground model b as H(b) = L(b)TL(b), while the wave equation migration velocity

analysis operator, denoted as W(b), is defined as the derivative of the migration

image with respect to the background model,

W(b) =
@I(b)

@b
. (1.8)
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1.5 Thesis overview

1.5.1 Chapter 2: Theory

In this chapter, I formally derive the JIRB method. I discuss the initial stage, where

I had set the problem as a linear optimization process. Then I show that the lin-

earization of the migration image with respect to the background model makes this

approach fail. Finally, I show the current nonlinear implementation.

An additional term is needed to drive the background model to solutions that correct

and focus the migration image. In the zero subsurface o↵set domain, we can enforce

this requirement by maximizing the energy of the migration image (Tang, 2011a).

This method is similar to semblance maximization (Soubaras and Gratacos, 2007)

and stack power maximization (Zhang and Shan, 2013). There are two choices in the

extended domain: maximization of the stacking power (for angle-domain common

image gathers) or minimization of the image after applying di↵erential semblance

optimization (for o↵set-domain common image gathers).

1.5.2 Chapter 3: Random boundary condition

The random boundary condition (RBC) was originally proposed by Clapp (2009) for

RTM, to avoid the storage of the whole source wavefield time history. It can also be

used for WEMVA to avoid the storage of source and receiver wavefields time histories,

enabling the application of the method under limited-memory computational settings,

at the cost of additional wavefields propagations. In this chapter, I elaborate on the

implementation of the RBC as part of the JIRB constituents, in particular for the

WEMVA operator.
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1.5.3 Chapter 4: Application to synthetic 2D data

In this chapter, I show the method’s implementation in the sedimentary section of

the Sigsbee model. I synthesized the data using the acoustic scalar Born modeling

operator. I prepared five inversions. The first one is conventional LWI using as input

the migration image with the wrong background. The second one is conventional

LWI using the migration image with the correct background model. The third one is

the JIRB test using the wrong background model. I evaluated the e↵ect of the wrong

background model in the estimated reflectivity, compared with the correct result,

and to which extent JIRB is capable of estimating the correct background while

correcting the reflectivity during the inversion. The fourth and fifth inversions consist

of WEMVA and JIRB, respectively, whose background estimations are followed by

conventional LWI for comparison purposes.

1.5.4 Chapter 5: 3D Application to 3D ocean-bottom node

data from the Gulf of Mexico

In the last chapter, I apply the JIRB method to a 3D ocean-bottom node dataset

provided by Shell. I perform the imaging experiments using the downgoing component

as input field data, which has been previously obtained using the PZ-summation

technique. I employ the well-known technique of mirror imaging. I initially planned

on performing two inversions. The first one is conventional LWI using the migration

image with the available velocity model. The second one is the JIRB method. The

objective is to evaluate the ability to focus residual inaccuracies in the estimated

reflectivity. However, the estimated reflectivity using JIRB significantly di↵ers from

that of LWI, rather than just constituting a better version of the latter. Therefore,

I added numerical tests comparing the background models obtained with WEMVA

and JIRB in RTM volumes produced with refined grids to better appreciate changes

in the stratigraphy.



Chapter 2

Theory

In this chapter, I present formal derivations of di↵erent implementations the JIRB

algorithm. I first show the linearization from the most general case and the reason for

its failure. Next, I present the original derivation from the FWI objective function.

Next, I show the final nonlinear JIRB objective function. Finally, I present some

implementation ideas in the extended domain.

2.1 Derivation of JIRB: Most general cases

Let us recall equation (1.2) for conventional LWI in model space:

�(r) =
1

2
kH(b)r� I(b)k22 . (2.1)

The most general case of JIRB simply consist in the incorporation of b into the

inversion:

12
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�(r,b) =
1

2
kH(b)r� I(b)k22 . (2.2)

Note that both the Hessian and the migration image depend on the background model

b, which hereafter will correspond to the accurate background model that we do not

know a priori.

In equation (2.2), the model space becomes expanded, and so it is the model null space

(Aster et al., 2013). Therefore, it becomes necessary to incorporate another restriction

to drive b away from spurious solutions. For zero subsurface o↵set imaging, we can

maximize the energy of the migration image to constrain b, obtaining

�(r,b) =
1

2
kH(b)r� I(b)k22 �

�

2
kI(b)k22 , (2.3)

where � is a trade-o↵ parameter. The minus sign allows maximizing the second

functional within a minimization scheme. The interpretation of equation (2.3) is that

the reflectivity fits an updated migration image that gets improved as the background

model is corrected. Now I substitute equation (1.4) into (2.3) to obtain

�(r,b0 +�b) =
1

2
kH(b0 +�b)r� I(b0 +�b)k22 �

�

2
kI(b0 +�b)k22 , (2.4)

where hereafter b0 will represent the inaccurate background model, which we assume

it is available. Now it is the perturbation �b what becomes a model parameter in

the inversion.
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2.2 Linearization attempt

Equation (2.4) is nonlinear with respect to �b in both the Gauss-Newton Hessian

and the migration image. We can make use of the following expansions:

H(b0 +�b)r = H(b0)r+O(�b, r), (2.5a)

I(b0 +�b) = I(b0) +W(b0)�b+O(k�bk2). (2.5b)

For a su�ciently small �b we can drop the higher order terms, (O(�b, r) and

O(k�bk)). After doing that, equation (2.5a) means that the action of the Hessian

upon the reflectivity when it is evaluated at the correct background, is not signifi-

cantly di↵erent from the same action of the Hessian, but evaluated at the incorrect

background. In this case the dropped higher order terms are second order in r and

�b simultaneously, which are both small with respect to b0. To support this claim

I performed numerical experiments with the sedimentary section of the Sigsbee 2A

model. Figure 2.1 show the true velocity, a perturbation in velocity, and the true re-

flectity. Figures 2.2, 2.3, and 2.4 compare the terms of expression (2.5a) for Gaussian

anomalies similar to that of Figure 2.1(b), but with peak values of -200, -800, and

-1600 ft/s for the Gaussian anomaly. Notice that the di↵erence becomes evident only

at 1600 ft/s. This value represents an error of approximately 20% with respect to

the background average, which is larger than the residual anomalies intended for the

either the WEMVA or the JIRB methods.

Expression (2.5b) constitutes the Taylor’s series expansion of the migration image

around the wrong background model, which we can truncate after the first-order

term in �b. W represents the forward WEMVA operator, which is the derivative of

the migration image with respect to the background model. This expression is valid

for perturbation values such that k�bk ⌧ kb0k.
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(a) (b)

(c)

Figure 2.1: Sedimentary section of the Sigsbee model, showing: a) True velocity
model. b) Gaussian anomaly. c) True reflectivity. [CR]
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(a) (b)

(c)

Figure 2.2: Test on the validity of expression (2.5a) for the Sigsbee model sedimentary
section, using a Gaussian velocity perturbation of 200 ft/s: a) H(b)r; b) H(b0)r. c)
Di↵erence between images a) and b). [CR]
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(a) (b)

(c)

Figure 2.3: Test on the validity of expression (2.5a) for the Sigsbee model sedimentary
section, using a Gaussian velocity perturbation of 800 ft/s: a) H(b)r; b) H(b0)r. c)
Di↵erence between images a) and b). [CR]
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(a) (b)

(c)

Figure 2.4: Test on the validity of expression (2.5a) for the Sigsbee model sedimentary
section, using a Gaussian velocity perturbation of 1600 ft/s: a) H(b)r; b) H(b0)r. c)
Di↵erence between images a) and b). [ER]
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Substituting equations (2.5a) and (2.5b) into equation (2.4) yields

�(r,�b) =
1

2
kH(b0)r� I(b0)�W(b0)�bk22 �

�

2
kI(b0) +W(b0)�bk22 . (2.6)

The first functional in equation (2.6) has the expected behavior of minimizing the

di↵erence between the reflectivity under the action of the Hessian, and the migration

image evaluated at the wrong background, corrected with the WEMVA term applied

to the perturbation in the background. This term becomes a perturbation in the

image that contains the corrections to the background model.

However, the second functional in equation (2.6) does not have the expected behavior.

The reason is because, whereas the linearization in expression (2.5b) is valid for small

�b values, substituting such a linearized term into the norm gives

kI(b0 +�b)k22 ⇡ kI(b0) +W(b0)�bk22 , (2.7)

which is inaccurate. In fact, expression (2.7) preserves a second order term in�b, but

neglects another (see Appendix A for details). The consequence is that the linearized

norm in the right-hand side of expression (2.7) behaves as a quadratic function of the

type Ax2+Bx+C, with curvature term A � 0 because it is represented by a positive

semidefinite matrix (Nocedal and Wright, 2006; Aster et al., 2013). In other words,

the linearized norm is convex, thus there is no maximum at the true background, as

it is expected from the original functional (left-hand side of expression (2.7)), which

is concave.

To further illustrate the problem, I performed numerical tests on a flat-layer model

and the sedimentary sector of the Sigsbee model (Figure 2.5). The flat-layer model

includes a positive Gaussian anomaly in velocity. This model represents the true

background model, btrue = b0 + �btrue. The incorrect background model b0 does
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not contain the anomaly. Hence, this anomaly represents the true perturbation in the

background, �btrue. On the other hand, the true Sigsbee background model does not

contain a Gaussian anomaly. However, to construct an incorrect background model,

I added a negative Gaussian anomaly in velocity to the true background model. The

Gaussian anomalies for both models are shown in Figure 2.7.

I synthesized true data dtrue in both cases by applying Born modeling to the corre-

sponding reflectivity models (Figure 2.8) using the true background models. For the

flat-layer model, the acquisition geometry consists of 101 shots regularly spaced every

140 m, and receivers every 20 m. For the Sigsbee model, the acquisition geometry

consists of 54 shots spaced every 500 ft, and receivers every 75 ft.

The first test demonstrates that the image power maximization term in the linearized

objective function (right-hand side of expression (2.5b)) does not have the desired

property of concavity. To do this, I created trial perturbations in the background

model, given as �btrue + ↵�brand, where �btrue is the true anomaly, �brand rep-

resents randomly distributed perturbations whose amplitudes are confined within

the interval
⇥
�max(�btrue),max(�btrue)

⇤
, and ↵ is a scalar parameter with values

�1,�0.9, ..., 0.9, 1. Then I evaluated the functional,
��I(b0) +W(b0)

⇥
�btrue + ↵�brand

⇤��2

2
,

using di↵erent random realizations of �brand, and exploring along each direction with

the ↵ values, so ↵ = 0 corresponds to the evaluation of the objective function using

the true background anomaly.

Figure 2.9 shows the result of 50 tests of the evaluation of the objective function

using random directions, �brand, each one for the 21 values of ↵. Notice that there is

no upper bound, and although the minima of the curves cluster around the vicinity

of the true anomaly, none of them corresponds to it. These results prove that this

objective function is convex, as I discussed before.

I performed similar tests for the fully nonlinear objective function of image power

maximization (left-hand side of expression (2.5b)). Similar to the previous test, I

evaluated this function at random directions. The results for both models are shown
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(a) (b)

Figure 2.5: True background models in velocity. a) Flat model. b) Sigsbee model.
[ER]

(a) (b)

Figure 2.6: Wrong background models in velocity. a) Flat model. b) Sigsbee model.
[ER]
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(a) (b)

Figure 2.7: Perturbations in the background models expresed in velocity. a) for the
flat model. b) For the Sigsbee model. [ER]

(a) (b)

Figure 2.8: Reflectivity models in slowness squared. a) Flat model. b) Sigsbee model.
[ER]
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(a) (b)

Figure 2.9: Experiment results of 50 random directions of the kI(b0)+W(b0)�btrue+
↵�brandk22 functional in the a) flat model, and the b) Sigsbee model. Each random
direction was explored with the ↵ scalar. [NR]

(a) (b)

Figure 2.10: Experiment results of 50 random directions of the kI(btrue+↵�brand)k22
functional in the a) flat model, and the b) Sigsbee model. Each random direction was
explored with the ↵ scalar. [NR]
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in Figure 2.10. These results confirm that this objective function is concave along the

directions explored. While these experiments do not tell us for sure if it is, in fact,

concave, we can still conclude that this may be an approximate heuristic. However,

even though the maximum values of the curves cluster around ↵ = 0, not all of them

are exactly there.

2.3 Derivation from full-waveform inversion

The first attempt to envision a JIRB method was through the simplification of the

Newton’s equation associated to the FWI iterative solution (e.g. Cabrales-Vargas

et al., 2016; Cabrales-Vargas, 2018).

Full-waveform inversion (Tarantola, 1984a; Pratt et al., 1998; Virieux and Operto,

2009) is a nonlinear optimization technique that, in principle, can estimate all the

wavenumber components of the subsurface model parameters, m. However, in prac-

tice, it su↵ers from cycle skipping if the di↵erence between the initial model and

the actual model is more than half a wavelength in the data space. Multiscaling

approaches are often employed to circumvent the local minima problem (e.g. Virieux

and Operto, 2009).

In a nutshell, FWI aims to minimize in the least-squares sense the misfit between the

observed seismic data and synthetic data corresponding to model m, which we can

express as

�(m) =
1

2
kd(m)� dobsk22, (2.8)

where

d(m) = S
⇥
L(m)

⇤
(2.9)
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is the modeled data calculated by using the full-wave propagation operator, L, col-
lected at the receivers’ position by the sampling operator, S.

The solution of the FWI optimization problem in equation (2.8) using gradient descent

optimization schemes or Hessian based methods (Nocedal and Wright, 2006) requires

the computation of the gradient of the misfit function, which is given by

rm�(m) =
⇥
rmL(m)

⇤T
ST

⇥
SL(m)� dobs

⇤
= L(m)TST

⇥
SL(m)� dobs

⇤
, (2.10)

where rm constitutes the gradient with respect to the subsurface model parameters,

ST is the adjoint operator of sampling (hence it injects data at the receivers’ positions),

and SL(m)�dobs represents the data residuals that are projected into the model space

by means of the RTM operator, L(m)T =
⇥
rmL(m)

⇤T
.

The FWI solution can be obtained by local linearization where the current subsurface

model, mi, is updated by a direction vector �m such that k�mk << kmik, thereby
exhibiting a local quadratic behavior. Now we can expand the gradient in Taylor’s

series around mi and drop second- and higher-order terms, obtaining

rm�(mi + �m) ⇡ rm�(mi) +rmrm�(mi)�m = rm�(mi) +Hfwi(mi)�m, (2.11)

where Hfwi(mi) is the FWI Hessian, not be confused with the FWI Gauss-Newton

Hessian, H = LTL, introduced in a previous section. As mentioned before, solving

equation (2.11) represents the optimization of a quadratic problem in �m. Therefore,

the gradient evaluated at the updated model, mi+1 = mi + �m, becomes zero, and

equation (2.11) reduces to
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Hfwi(mi)�m = �rm�(mi). (2.12)

Equation (2.12) represents the well-known Newton’s equation (Nocedal and Wright,

2006).

Now I will incorporate equation (1.5) into Newton’s equation by defining the current

model and the model step as follows:

mi = b0,

�m = �b+ r.
(2.13)

On the other hand, according to Biondi et al. (2015) we can split the FWI Hessian

into the FWI Gauss-Newton Hessian and the adjoint of the WEMVA operator:

Hfwi = H+WT
. (2.14)

Substituting equations (2.13) and (2.14) into the Newton’s equation yields

Hfwi(mi)�m =
⇥
H(b0) +W(b0)

⇤
(�b+ r). (2.15)

As far as I am assuming the remaining inaccuracies in the background model to be

small, it is valid to employ maximization of the image energy. Therefore, I dropped

the transpose symbol in W because the WEMVA operator is self-adjoint in the zero-

subsurface o↵set domain.

Re-arranging terms in the right-hand side of equation (2.15) we obtain

⇥
H(b0)r+W(b0)�b

⇤
+
⇥
H(b0)�b+W(b0)r)

⇤
. (2.16)
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The first part inside brackets in expression (2.16) contains the image termH(b0)r em-

ployed in model-space LWI, and the term W(b0)�b that represents the perturbation

in the image regarding the correction of the background model. I keep both terms

because they have a predictable impact on primary events related to the subsurface

reflectivity. The second part in brackets very likely contributes to second-order scat-

tering events
⇥
W(b0)r

⇤
and refinement of the low-wavenumber component

⇥
H�b

⇤
.

I drop the first term because it is not related to the subsurface reflectivity’s primary

events, and I drop the second one because the method does not aim to retrieve a

high-wavenumber background model.

Regarding the FWI gradient in the Newton’s equation (right-hand side of equation

(2.12)), it becomes r�(b0). Substituting this gradient in equation (2.10) yields

r�(b0) =
⇥
rL(b0)

⇤T
ST

⇥
SL(b0)� dobs

⇤
. (2.17)

Nonlinear wave propagation at the background model (free of reflections) will model

only direct waves and diving waves. Therefore, the term ST
⇥
SL(b0) � dobs

⇤
simply

represents the negative of the perturbation in the data, �dobs, (Barnier and Almomin,

2014), i.e., the data after removing the direct and diving waves. On the other hand,

the adjoint of the gradient term represents Born adjoint modeling or RTM evaluated

at b0. Thus, equation (2.17) becomes the negative of the RTM image,

r�(b0) = �L(b0)
T�dobs = �I(b0). (2.18)

Substituting the first term in braces in expression (2.16) and equation (2.18) in the

Newton’s equation we obtain

H(b0)r+W(b0)�b = I(b0), (2.19)
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which I named Linearized Waveform Inversion with Velocity Updating (LWIVU), and

is equivalent to minimizing the objective function

�(r,�b) =
1

2
kH(b0)r� I(b0) +W(b0)�bk22 . (2.20)

Note that this objective function represents the first functional in equation (2.6). The

only di↵erence is in the positive sign for W(b0)�b, which is not a problem because

the perturbation in the background can take positive or negative values.

2.4 Nonlinear scheme

Given the shortcoming of the objective function (2.6), Cabrales-Vargas and Sarkar

(2019) proposed to keep the nonlinear objective function for the migration image, still

maintaining the assumption ||�b||2 << ||b0||2, so that the approximation H(b0 +

�b) ⇡ H(b0) is accurate. Therefore, the JIRB objective function became

�(r,�b) = kH(b0)r�W(b0)�b� I(b0)k22 � � kI(b0 +�b)k22 . (2.21)

This change makes the first term a linear least-squares problem over both �b and r,

while the second term is nonlinear and non-quadratic.

Although the objective function (2.21) behaves as desired, it is more straightforward

and sensible to implement the non-linearity in both objective functions:

�(r,b) = kH(b0)r� I(b)k22 � � kI(b)k22 . (2.22)

Objective function (2.22) can be solved (for local minima) using gradient-based meth-

ods such as steepest descent, nonlinear conjugate gradients, or quasi-Newton (Nocedal
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and Wright, 2006). Notice that the Gauss-Newton Hessian is precomputed with the

wrong background model, and does not require to be updated as it is the case for the

migration image. Solving objective function (2.22) is the core of the JIRB method.

Chapter 4 shows a variation where I merely add preconditioning and weighting fac-

tors.

2.5 Extended domain

The joint inversion of reflectivity and perturbation in the background can also be cast

in the extended domain as

�(r̃,�b) =
1

2

���H̃(b0 +�b)r̃� Ĩ(b0 +�b)
���
2

2
+

�

2

���DĨ(b0 +�b)
���
2

2
, (2.23)

where the tilde represents extension in subsurface o↵set and D represents the di↵er-

ential semblance optimization operator (DSO) (Symes and Carazzone, 1991). In this

case, the second functional ought to be minimized to penalize non-zero subsurface

o↵set energy originated from incorrect background model.

At first glance it appears that in the expanded case the second functional can be

linearized by substitutingDĨ(b0+�b) ⇡ D
⇥̃
I(b0)+W̃(b0)�b

⇤
in the norm, because

both the nonlinear and the linearized functionals are convex, in contrast to the non-

extended case where we maximize the image power, analyzed before. However, this

approximation still lacks one second-order term that can lead to incorrect results (see

Appendix A).

We can use a similar objective function as that of the zero subsurface o↵set domain:

�(r̃,b) =
1

2

���H̃(b0)r̃� Ĩ(b)
���
2

2
+

�

2

���DĨ(b0 +�b)
���
2

2
. (2.24)
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The obvious caveat of equation (2.24) is that inversion in the extended domain is more

costly than the inversion in the zero o↵set domain because the scattering operator

and the imaging condition operator dominate the computations. This problem is

particularly severe in 3D imaging. Some people have proposed strategies to alleviate

the problem, such as the so-called “Nyquist approach”(Sun and Fu, 2013), where we

reduce to the minimum the number of times that the imaging condition is applied

during RTM, depending on the frequency range of the data. However, in order to

achieve enough extension, the computational burden is still considerable. The DSO

operator often requires special preconditioning to avoid high-wavenumber artifacts in

the gradient (e.g. Shen and Symes, 2008; Tang, 2011b; Weibull and Arntsen, 2013).

For such reasons, in this dissertation I implement the JIRB methodology exclusively

in the zero subsurface o↵set domain.



Chapter 3

Random Boundary Condition

3.1 Introduction

The RTM implementation using the random boundary condition (RBC) was proposed

by Clapp (2009) as an alternative to checkpointing (e.g. Symes, 2007), to avoid the

storage of the source wavefield propagation history at the cost of an additional time-

reverse propagation to re-generate it. Shen and Clapp (2011) further adapted the

technique to cope with low-wavenumber limitations. This improvement is particularly

beneficial to the proper computation of the FWI gradient (Shen and Clapp, 2015).

More recently, Clapp and Alves (2016) adapted the method to elastic RTM.

Besides this “traditional” implementation of the RBC in RTM, I also adapted them

for the WEMVA operator, which is one of the computationally expensive operators

needed to implement JIRB. To my knowledge, RBC had not been used before in

WEMVA. For this reason, this chapter is dedicated to explain how it works.

31
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3.2 Brief review of the random boundary condi-

tion on RTM

When imaging using RTM, we perform the propagation of the wavefields in opposite

time directions, i.e., the source wavefield’s history is constructed by forward-time

propagation of the injected source wavefield. In contrast, we construct the receiver

wavefield by reverse-time propagation of the injected field data. For such reason, one

of the wavefields (typically the source wavefield) remains either in RAM or physical

memory during the propagation of the other wavefield, of which merely two history

frames are kept in memory to perform the correlation imaging condition (Claerbout,

1971) on the fly. Even if storing only one of the wavefields, we still need to account

for thousands of time frames that in 3D represent seismic volumes of considerable

size, not to talk about the I/O latency that comes to the detriment of computational

performance.

Di↵erent strategies can be implemented to reduce storage. Symes (2007) proposed

the use of checkpoints. This strategy consists on saving a determined number of

time frames for the re-computation of the wavefields from optimally chosen times.

This method works well in practice, but it still requires a non-trivial selection of the

optimum checkpoints (Symes, 2007).

Another strategy proposed by Clapp (2008) is saving the boundaries of the source

wavefield in a rectangular halo beyond the imaging space, and re-injecting them to

perform a reverse-time propagation of the source wavefield as performing the usual

reverse-time receiver wavefield propagation, while multiplying corresponding time

frames to build the image. This strategy allows a re-computation similar to check-

points, with better applicability for large volumes (Clapp, 2008).

Both methods - checkpointing and saving the boundaries - require I/O work to some

extent. For such reason, Clapp (2009) proposed the use of the RBC to recreate the

source wavefield in reverse-time propagation. This operation only requires keeping
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two time frames in RAM for both the source wavefield and the receiver wavefield,

thereby constituting a tremendous saving in storage. Even though the RBC requires

the re-computation of the source wavefield, it avoids excessive I/O operations.

Figure 3.1 schematically shows the RBC implementation in comparison to the con-

ventional RTM computation.

The upper part of Figure 3.1 illustrates the stages of conventional RTM implemen-

tation were the source wavefield is forward-time propagated and its whole history of

nt samples (orange frames) is stored (a). Next, the receiver wavefield (blue frames)

is reverse-time propagated (b-g) and cross-correlated with the receiver wavefield on

the fly. Note that only two temporal frames of the receiver wavefield need be kept

in memory. This strategy works well for small 2D datasets. However, for large 2D

datasets or 3D datasets, the source wavefield needs to be stored in disk, and their

corresponding time frames have to be accessed as needed during the cross-correlation.

The lower part of Figure 3.1 illustrates the stages of RTM using the RBC. The source

wavefield is forward-time propagated as before, but only two temporal frames of its

history are kept in memory (a). Then it trespasses the limit reaching sample nt + 1.

Next, the source wavefield is reverse-time propagated simultaneously with the receiver

wavefield and cross-correlated on the fly (b-g). Note that only a total of four temporal

frames are kept in memory, thereby wavefield storage is no longer needed.
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Figure 3.1: Comparison of conventional RTM implementation (top) and using the
random boundary condition (bottom). [NR]
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3.3 Application of the random boundary condition

to WEMVA

The WEMVA operator has two components, namely the source-side component and

the receiver-side component (Almomin and Tang, 2010; Tang, 2011a). Each com-

ponent consists of two operations. For the source-side component, one propagates

forward in time the source wavefield, then scatters this wavefield against the pertur-

bation in the background model (forward operator) or the perturbation in the image

(adjoint operator) and propagates the scattered wavefield. Finally, one propagates

backward in time the receiver wavefield and cross-correlates it with the scattered

source wavefield. We can use a similar argument for the computation of the receiver-

side WEMVA component.

Figure 3.2 illustrates the di↵erent stages of the forward WEMVA operator. The

WEMVA scattering stage is similar to Born scattering, whereas the WEMVA cross-

correlation of the background wavefields with the scattered wavefields is similar to

the RTM imaging condition. It is during the latter stage that we can apply the RBC.

We can implement the WEMVA operator as follows:

• Forward propagation of the source wavefield in the background slowness field.

• Backward propagation of the receiver wavefield in the background slowness field.

• Scattering of the source wavefield upon the perturbation in the image or the

perturbation in the background model.

• Scattering of the receiver wavefield upon the perturbation in the image or the

perturbation in the background model.

• Zero-lag time cross-correlation of the source wavefield and scattered receiver

wavefield (receiver side).
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Figure 3.2: Stages of the forward WEMVA operator. a) Propagation of the back-
ground source and receiver wavefields. b) Propagation of scattered source wavefield
and correlation with background receiver wavefield. c) Propagation of scattered re-
ceiver wavefield and correlation with the background source wavefield. The arrow in
front of the symbol “t” represents time direction forwards (pointing right) or back-
ward (pointing left). [NR]
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• Zero-lag time cross-correlation of the receiver wavefield and scattered source

wavefield (source side).

• Addition of source and receiver sides of WEMVA.

Next, I show the implementation of the above steps when we store the background

source and receiver wavefields, then when we store only one background wavefield,

and finally, when applying RBC that we do not have to store anything.

3.3.1 Implementation of the WEMVA operator storing the

background wavefields

If we can a↵ord to store the propagated wavefields, then we can execute the WEMVA

process as described in Algorithm 1.

Algorithm 1 WEMVA implementation saving both source and receiver wavefields

• Forward propagate the source wavefield and store; then, scatter upon perturba-
tion and forward propagate the scattered source wavefield.

• Backward propagate the receiver wavefield and store; then, scatter upon pertur-
bation and backward propagate the scattered receiver wavefield.

• Perform cross-correlations during propagations of the scattered wavefields.

This procedure demands four propagations (indicated in italics): two propagations for

the background wavefields and two propagations for the scattered wavefields. Note

that only the source and the receiver wavefields need be stored, not the scattered

wavefields.



CHAPTER 3. RANDOM BOUNDARY CONDITION 38

3.3.2 Implementation of the WEMVA operator storing one

background wavefield

Let us assume that we can a↵ord to store only one background wavefield, for instance,

the source wavefield. In this case, we can proceed as indicated in Algorithm 2.

Algorithm 2 WEMVA implementation storing one wavefield at a time

• Forward propagate the source wavefield and store it.

• Backward propagate the receiver wavefield and scatter upon perturbation; then,
backward propagate the scattered receiver wavefield on the fly.

• Cross-correlate the scattered receiver wavefield with the stored source wavefield,
whereas propagating the former.

• Delete the source wavefield.

• Backward propagate the receiver wavefield and store it.

• Forward propagate the source wavefield and scatter upon perturbation; then,
forward propagate the scattered source wavefield on the fly.

• Cross-correlate the scattered source wavefield with the stored receiver wavefield,
whereas propagating the former.

Notice that now we need to perform two additional propagations compared to the

previous case. This is the price that we pay when we avoid storing one background

wavefield.

3.3.3 Implementation of the WEMVA operator with RBC

One step further to prevent the storage of the background wavefields is using RBC to

ensure the reversibility of propagations. We can proceed as indicated in Algorithm 3.

The cost of not saving wavefields at all is performing three further propagations with

respect to the case of storing both wavefields. In total, we need to perform seven
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Algorithm 3 WEMVA implementation storing none of the wavefields (using RBC)

• Forward propagate the source wavefield; then save the last two time frames.

• Backward propagate the receiver wavefield and scatter upon perturbation; then,
backward propagate the scattered receiver wavefield “on the fly”.

• At the same time, backward re-propagate the source wavefield and cross-
correlate with the scattered receiver wavefield. Save the last two frames of
the receiver wavefield.

• Forward propagate the source wavefield and scatter upon perturbation; then,
forward propagate the scattered source wavefield “on the fly”.

• At the same time, forward re-propagate the receiver wavefield and cross-correlate
with the scattered source wavefield.

propagations. This scheme is the one that I employ in the computational codes that

accompany this thesis.
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Application to synthetic 2D data

4.1 Experiment setup

In this section, I apply the JIRB method to the sedimentary section of the 2D Sigsbee

2A synthetic model (Figure 4.1). I display the background subsurface models in

slowness squared, except when explicitly indicated. For the purpose of testing the

validity of the method, I committed the inverse crime (see discussion in Schuster,

2017).

4.1.1 Synthetic data

I smoothed the original model and added a negative Gaussian anomaly in slowness

squared (Figure 4.2(d)), corresponding to a positive velocity anomaly of approxi-

mately 850 ft/s (259 m/s) at its apex, obtaining the model shown in Figure 4.2(a).

Such a model extends horizontally for 20000 ft (6096 m) spaced every 75 ft (22.86

m), and 27000 ft (8230 m) in depth spaced every 50 ft (15.24 m), and constitutes the

true background model, btrue, from which I synthesized Born modeled data, d(btrue),

also using the reflectivity model shown in Figure 4.2(b). The acquisition geometry

40
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(a)

Figure 4.1: Original Sigsbee A velocity model. The dashed rectangle indicates the
sedimentary section employed for the numerical experiments. [NR]

consists of 54 split-spread shots spaced every 500 ft (152.4 m). Each shot gather

contains 651 receivers spaced every 75 ft (22.86 m). The recording time is 11.92 s

with 4 ms time step. Figure 4.3 shows a shot gather that stands at the center of the

model.

For the inversion experiments, I prepared a model identical to btrue, except for the

Gaussian anomaly. This model without the anomaly became the wrong model, b0,

shown in Figure 4.2(c). In the numerical implementation, the subsurface models

include an extension of 26250 ft (8001 m) to the left and the right because the first

and last shots stand at the limits of the image space. I obtain such an extension

by replicating the last trace at each side. For the implementation of the random

boundary conditions (RBC), I created velocity frames, initially within the spatial

extension of each shot gather. Next, I included an extension of 1000 ft (304.8 m) to

the left and to the right to account for the migration aperture. Next, I incorporated
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(a) (b)

(c) (d)

Figure 4.2: a) True background model (btrue), b) true reflectivity model (rtrue), c)
wrong background model (b0), and d) Gaussian anomaly representing the perturba-
tion in the background (�b). [ER]

a halo of 1000 ft (304.8 m) that constitutes the support for the RBC. For the upper

part of the model, I added extra space before the random halo to prevent artifacts

that arise when the source stands at or close to the RBC. Figure 4.4 illustrates the

velocity frame for a single shot close to the center of the model space.
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(a)

Figure 4.3: Single shot gather of the Sigsbee A model. [CR]

4.1.2 Inversion preliminaries

I pre-computed the Gauss-Newton Hessian of FWI, H(b0), using the point-spread

functions (PSFs) shown in Figure 4.5. I produced this section by “seeding” spikes

every 15 gridpoints and applying forward Born modeling followed by adjoint Born

modeling. Gridpoints at the center of the PSFs correspond to zero-lag elements of

the Hessian matrix, which are part of its main diagonal. Similarly, points picked at

non-central locations of the PSFs correspond to o↵-diagonal elements of the Hessian

matrix with the same non-zero lag.

For the Hessian application, I first pick samples corresponding to a determined lag.

Next, I apply bilinear interpolation, followed by smoothing using a triangle filter, and

then perform the Hessian multiplication for this lag “on the fly”. I move on to the

next lag and repeat the operation.
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(a)

Figure 4.4: Velocity framework for the RBC for the central shot. The dashed square
indicates the imaging area. [NR]

I had previously performed conventional WEMVA tests to invert for the background

model component independently. During these tests, I incorporated a gaining weight-

ing factor of the form E = diag(zn0 , z
n
1 , z

n
2 , ...) (where zi represents depth levels, and

n is a positive integer), and applied it to the migration image to improve the inver-

sion results (see Appendix B). I experimentally found n = 2.5 as the best value for

the power coe�cient. I incorporated this weighting factor to the WEMVA opera-

tor member of the JIRB implementation. Likewise, I also incorporated B-splines to

precondition the gradient.

After including both weighting and preconditioning, the JIRB objective function be-

comes

�(r,p) =
1

2

��E
⇥
H(b0)r� I(Bp)

⇤��2

2
� �

2

2
kEI(Bp)k22 , (4.1)
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(a)

Figure 4.5: Point-spread functions computed on the sedimentary section of Sigsbee
A. I gained and clipped the section for visualization purposes. [CR]

where the inverted background component model can be recovered using binv = Bpinv.

The JIRB experiments used the nonlinear steepest descent method. The inversion

tests ran until the solver was unable to find an adequate step size to update the

model.

I plotted the inverted reflectivity images displayed in the following section at the same

color scale within the same figure set. For comparison purposes, I also computed con-

ventional LWI (equation (1.2)) using the correct background model. Such inversion

ran for 30 iterations.

For the background models, I compare perturbations in the background,�b = b�b0,

rather than the absolute background models, for better visualization. I plotted the

results at the same color scale within each figure set, except when specified.
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4.2 Numerical results

4.2.1 Comparing JIRB with LWI

Figure 4.6(a) shows the LWI reflectivity using the correct background model. Note

how the amplitude values closely resemble those of the true reflectivity section in

Figure 4.6(b). Figure 4.7 shows a zoom into the depth interval of 12000�22000 ft for

a better visualization. Note that seismic features at LWI have the correct kinematics.

I hereafter use this zoom level for the rest of this section. I also regarded the LWI

reflectivity model as the desired result.

Figure 4.8 shows the LWI reflectivity using the wrong background model compared

with the true reflectivity. As expected, reflections at the center of the image get

pulled upwards because of the absence of the Gaussian anomaly (note in particular

the central spike relative to the grid lines in both cases). There is also unfocused

energy in the reflectors of the lower part of the section.

Next, I display each JIRB result organized in sets of figures as follows: a) JIRB

reflectivity vs. desired LWI reflectivity, both plotted with the same color scale and

independent color scale, the latter to better appreciate reflectivity details otherwise

obscured by the section whose amplitude dominates; b) JIRB perturbation in the

background vs. true perturbation in the background; and c) trace comparisons of

JIRB, LWI, and true reflectivities (I extracted the central trace for such comparisons).

Figure 4.9 shows the inverted reflectivity model obtained with JIRB using � = 12.

Figure 4.10 shows the comparison of the corresponding JIRB perturbation in the back-

ground with the true perturbation in the background. Here and hereafter I display the

perturbations rather than the background models for the sake of better visualization.

I chose this example as the baseline because I found that it approximately represents

the minimum value of � at which we can obtain the desired correction. Note how the

reflectors moved back to their correct position, and the reflection events are almost
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kinematically equivalent (Figures 4.9(c) and 4.9(d)). Compare with the LWI reflectiv-

ity. The correction in the reflectivity progresses at the same time as the background

model gets corrected during the inversion. Nonetheless, the amplitudes are higher

than the desired reflectivity (Figures 4.9(a) and 4.9(b)), as further corroborated by

the trace comparison for JIRB, LWI, and the true reflectivity, shown in Figure 4.11.

One solution to this problem can be the incorporation of the minimum norm regu-

larization of the reflectivity into the JIRB objective function. The main drawback is

the introduction of an additional trade-o↵ parameter that we ought to estimate.

Elemental analysis of the objective function (4.1) promptly drives us to deduce that

higher values of � underweight the reflectivity-related gradient contribution. Con-

versely, smaller values of � exacerbate the problem of higher amplitude, as Figures

4.15 and 4.17 exemplify for � = 10, notwithstanding that the JIRB perturbation in

the background appears to be una↵ected (Figure 4.16). Going for smaller values,

e.g., � = 5, further underweights the background-related gradient to the point that it

would not be able to correct the reflectivity inaccuracies. Figures 4.12 and 4.14 illus-

trate this problem. Note that the central spike does not reach the correct position.

This issue is due to the comparatively poor recovery of the background component

as observed in Figure 4.13, which the reader should compare to Figure 4.10(a)).

Going for higher values of �, I experimented using 15, 20, and 25. I also used � = 30,

but the sections are not very di↵erent from � = 25, hence they are not shown. Figures

4.18, 4.20, and 4.22 respectively show the corresponding reflectivity sections, while

Figures 4.19, 4.21, and 4.23 show the corresponding trace comparisons. I omitted

the perturbations in the background because they do not significantly di↵er from the

case of � = 12. We observe that the reflectivity amplitudes of the JIRB results get

reduced as � values increase, as anticipated. The best result is arguably obtained

using � = 25. Nonetheless, note in trace comparisons of Figure 4.23 that, at shallow

depths, amplitudes get underestimated, while at deep depths amplitudes still get

overestimated.

One problem derived from increasing the � value is that the solver stops at earlier
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iterations. As a consequence, the JIRB images lose resolution in comparison to LWI.

Conversely, keeping higher resolution by reducing the � value yields the higher-than-

ideal amplitudes observed before. For a better appreciation of this issue, Figure 4.24

shows the comparison of the amplitude spectra of the JIRB and LWI traces plotted

above. From these plots, we can arguably choose the � = 20 or the � = 25 reflectivity

result as the best compromise between amplitude accuracy and seismic resolution.
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(a)

(b)

Figure 4.6: Comparison between a) conventional LWI with the true background
model, and b) true reflectivity. [CR]
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(a)

(b)

Figure 4.7: Zoom at sections in Figure 4.6: a) LWI with true background model; b)
true reflectivity. [CR]
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(a)

(b)

Figure 4.8: Zoom at a) LWI with wrong background model, and b) true reflectivity.
[CR]
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(a) (b)

(c) (d)

Figure 4.9: a) JIRB reflectivity using � = 12. b) LWI reflectivity with true back-
ground model. c) and d) Same as a) and b) but plotted with independent color scales.
[CR]
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(a)

(b)

Figure 4.10: a) JIRB perturbation on the background using � = 12. b) True pertur-
bation in the background. [CR]
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(a)

Figure 4.11: Trace comparison between JIRB (� = 12), LWI, and true reflectivity.
[CR]
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(a) (b)

(c) (d)

Figure 4.12: a) JIRB reflectivity using � = 5. b) LWI reflectivity with true back-
ground model. c) and d) Same as a) and b) but plotted with independent color scales.
[CR]
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(a)

(b)

Figure 4.13: a) JIRB perturbation on the background using � = 5. b) True pertur-
bation in the background. [CR]
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(a)

Figure 4.14: Trace comparison between JIRB (� = 5), LWI, and true reflectivity.
[CR]
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(a) (b)

(c) (d)

Figure 4.15: a) JIRB reflectivity using � = 10. b) LWI reflectivity with true back-
ground model. c) and d) Same as a) and b) but plotted with independent color scales.
[CR]



CHAPTER 4. APPLICATION TO SYNTHETIC 2D DATA 59

(a)

(b)

Figure 4.16: a) JIRB perturbation on the background using � = 10. b) True pertur-
bation in the background. [CR]
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(a)

Figure 4.17: Trace comparison between JIRB (� = 10), LWI, and true reflectivity.
[CR]
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(a) (b)

(c) (d)

Figure 4.18: a) JIRB reflectivity using � = 15. b) LWI reflectivity with true back-
ground model. c) and d) Same as a) and b) with independent color scales. [CR]
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(a)

Figure 4.19: Trace comparison between JIRB (� = 15), LWI, and true reflectivity.
[CR]
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(a) (b)

(c) (d)

Figure 4.20: a) JIRB reflectivity using � = 20. b) LWI reflectivity with true back-
ground model. c) and d) Same as a) and b) with independent color scales. [CR]
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(a)

Figure 4.21: Trace comparison between JIRB (� = 20), LWI, and true reflectivity.
[CR]
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(a) (b)

(c) (d)

Figure 4.22: a) JIRB reflectivity using � = 25. b) LWI reflectivity with true back-
ground model. c) and d) Same as a) and b) with independent color scales. [CR]
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(a)

Figure 4.23: Trace comparison between JIRB (� = 25), LWI, and true reflectivity.
[CR]
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(a) (b)

(c) (d)

(e) (f)

Figure 4.24: Amplitude spectra of the trace comparisons for a) � = 5, b) � = 10, c)
� = 15, d) � = 20, e) � = 25, and f) � = 30. [CR]
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4.2.2 Using the JIRB background model for LWI

Similar to (but less sophisticated than) reflection FWI (e.g. Xu et al., 2012), JIRB

incorporates the reflectivity into the inversion. Therefore, we can expect to recover

a better estimation of the background model in comparison to WEMVA, where the

background model is estimated alone. In this subsection, I performed the correspond-

ing tests. The inverted background models using JIRB and WEMVA are employed to

generate the migration images and the PSFs required by LWI in each case. I used the

JIRB background model corresponding to � = 25. Both JIRB- and WEMVA-based

LWI tests ran for 30 iterations.

Figures 4.25(a) and 4.25(b) show the perturbations in the background obtained using

JIRB and WEMVA, respectively. The di↵erence between both appears to be negli-

gible, although the comparison of the color scales shows that the JIRB perturbation

has higher amplitude. Figures 4.26(a) and 4.26(b) show the reflectivity inversions

for WEMVA and JIRB background models, respectively. I plotted the sections using

the same color scale. Note how the JIRB result has more focused events, despite the

small di↵erences between the background models. The JIRB reflectivity also exhibits

higher wavenumber content, as observed in the better resolved weak layers and con-

firmed by the traces comparison (Figure 4.27). However, noise arises in the form of

high-dipping events crossing through the layers. In tests using the JIRB background

model for other values of � (not shown here), there was no significant di↵erence in

the estimated reflectivity.
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(a)

(b)

Figure 4.25: a) Perturbation in the background obtained using JIRB. b) Perturbation
in the background obtained using WEMVA. [CR]
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(a)

(b)

Figure 4.26: a) LWI reflectivity using the WEMVA background model. b) LWI
reflectivity using the JIRB background model. [CR]
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(a)

(b)

Figure 4.27: a) Trace comparison between LWI obtained with the WEMVA back-
ground model, LWI obtained with the JIRB (� = 25) background model, and the
true reflectivity. b) Spectra comparison of the LWI for WEMVA AND JIRB back-
ground models. [CR]
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4.3 Conclusions

In this chapter, I showed the application of the JIRB method to a 2D synthetic

dataset obtained from the sedimentary section of Sigsbee A.

The direct implementation of the joint inversion corrects the inaccuracies in the re-

flectivity at the same time that the background model is estimated. An adequate

choice of the parameter � is crucial to have the better trade-o↵ between obtaining

higher-than-optimal amplitudes and seismic resolution. The main limitation is the

possibility of not running enough iterations to obtain the desired resolution, even for

small values of �.

I also tested conventional LWI with the JIRB background model in comparison to

the WEMVA background model. There is a small, yet noticeable improvement in

crispness and seismic resolution despite the small di↵erence between the JIRB and

the WEMVA background models.



Chapter 5

Application to 3D marine data

In this chapter, I illustrate the JIRB method by presenting an application to an

ocean bottom node (OBN) 3D dataset from the Gulf of Mexico, provided by Shell.

I followed similar steps as in the synthetic tests of the previous chapter. With the

tests shown in the current chapter, I evaluate the plausibility and performance of the

JIRB method in real data, free of the inverse crime.

For comparison purposes, I prepared conventional LWI reflectivity. Similar to the

previous chapter, I implemented JIRB and analyzed the corresponding background

and reflectivity components. I also prepared an LWI test using the JIRB background

model. Finally, I further evaluate the performance of JIRB versus WEMVA by uti-

lizing the corresponding background models as input for fine-scale RTM.

I judged the results according to two criteria: 1) image focusing, and 2) enhancement

of geological features. The seismic interpretation resorts to the limited available

knowledge of the geology of the area. More accurate interpretations require more

regional assessment of the geology, and incorporation of borehole data.

73



CHAPTER 5. APPLICATION TO 3D MARINE DATA 74

(a) (b)

Figure 5.1: Areal distribution of a) shots, b) receivers (nodes). The small squares
indicate the image area for the numerical tests. [CR]

5.1 Preliminary steps

5.1.1 Data preparation

Figure 5.1 shows the areal distribution of the shots and the receivers (nodes) for

the OBN acquisition campaign. The target consists of sedimentary reservoir rocks

pinching out against the wall of a salt diapir, with apparent episodes of passive and

active growths (Jackson and Hudec, 2017). Stratigraphic traps are also present, in

particular related to deepwater deposits. The squares in both maps encompass the

imaging area that I chose for the numerical tests. It contains part of the sedimentary

volume and the diapir. There are 226 nodes contributing to the image within this

area. The original recording time is 14 s sampled at 2 ms. For the numerical tests

shown in this chapter, I only employed the first 8 s.
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(a) (b)

Figure 5.2: a) Source wavelet and b) the corresponding amplitude spectrum. [ER]

Dahlke (2019) performed the PZ-summation to separate the upgoing and the down-

going wavefield components. This procedure consists of the adaptive addition and

subtraction of the geophone vertical component and the hydrophone component of

the data (Soubaras, 1996; Pacal et al., 2015). Dahlke (2019) also reshaped the wavelet

and removed the bubble e↵ect. I utilized these pre-processed data for the numerical

tests shown in this chapter. Although the upgoing component produces sharper re-

flectivity contrasts, I chose the downgoing component because it has better coverage

of the subsurface, and therefore, less tendency to produce aliasing artifacts in the

images (Pacal et al., 2015). I employed the standard mirror technique (Grion et al.,

2007; Pacal et al., 2015) for the imaging processes. I also resorted to the principle of

reciprocity (Knopo↵ and Gangi, 1959), injecting the source wavelet at the nodes’ po-

sitions, whereas I injected the data traces at the source positions in the corresponding

common-receiver gathers (CRG).

I binned the downgoing component data (which I henceforth refer to simply as “the

data”) to obtain a regular grid of 25⇥25 m, which is suitable for imaging frequencies

up to 30 Hz. For simplicity, I constructed the binned CRGs spanning the whole study

area. I employed a 10.5 Hz dominant frequency Ricker wavelet as a source function,

bandpassed to a maximum frequency of 30 Hz. Figure 5.2 shows the normalized

wavelet and the corresponding amplitude spectrum.
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5.1.2 Reverse-time migration

I prepared conventional RTM volumes to have the first view of the subsurface in the

study area with my computational code [RTM images of the area are also available in

Dahlke (2019)]. It allows the evaluation of my imaging toolbox on this OBN dataset.

The RTM image also constitutes the input data for model-space LWI and JIRB.

I prepared the velocity model to image using the downgoing component, as shown

in Figure 5.3. First, I numerically expanded the water layer to enact the mirror

imaging strategy. Then, I defined a datum corresponding to a numerical ocean floor

mirrored about the water surface, and where the mirrored nodes will lie. Finally, as

aforementioned, using reciprocity, I inject the source wavelet at the position of such

mirrored nodes and the data at the source positions.

The migration aperture is 1250m (50 samples) in both x and y directions. For the

random boundary condition (Clapp, 2009) I surrounded the volume with a halo of 50

samples. Like the synthetic data in Chapter 4, I included an extra layer of 50 samples

on the top boundary to avoid placing the “sources” (which are the nodes acting as

such, for reciprocity) upon the random layer’s border, thereby preventing numerical

artifacts. Figure 5.4 shows one velocity volume prepared for the migration of a single

CRG. The lines indicate planes whereby the inline, the crossline, and the depth slice

sections project to the lateral sides and top of the volume. Note that the randomness

is mild at the volumes’ interior, and increases toward the computational boundaries.

I pre-computed 226 velocity volumes for di↵erent realizations of the engine code to

generate di↵erent random halos. This strategy allows one to cancel out the incoherent

random artifacts while reinforcing the subsurface signal in the image during stacking.

Figure 5.6(a) shows inline, crossline, and depth slice sections of the RTM volume. I

applied a Laplacian filter to attenuate the low-wavenumber artifacts. The reflectors

are almost flat except in the vicinity of the salt intrusion. The sedimentary units are

tilted by the diapir growth, which is still deforming the ocean floor. I interpreted the

presence of a possible channel complex at the indicated position. The presence of
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this geological element can be expected in turbidite systems (e.g. Huang, 2018). See

Figure 5.5. The diapir’s walls are virtually vertical and are barely imaged with the

chosen aperture. In other tests (not shown), I recovered such a diapir wall by using a

larger migration aperture, but at the expense of introducing migration “smiles” that

contaminated the reflectors. The purpose of the inversion tests is to properly image

the sedimentary structures, rather than imaging the salt flanks. Hence, I keep the

migration aperture small.

For the discussion on the image di↵erences and improvements, I mainly focused on

sedimentary features, such as those indicated by arrows in Figure 5.6(b), which prob-

ably correspond to a confined channel complex (e.g. Huang, 2018).
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(a)

(b)

(c)

Figure 5.3: a) Ocean-bottom node acquisition cartoon, illustrating the water-surface
multiple trajectory for a source-node pair. b) Numerical extension of the water ve-
locity and re-datuming of the nodes, showing the equivalent source-node trajectory.
c) After the application of the reciprocity principle to a source-node pair. [NR]
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(a)

Figure 5.4: Random boundary frame for a single common-receiver gather. [CR]
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(a)

Figure 5.5: Illustration of turbidite system. Taken from Huang (2018). [NR]
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(a)

(b)

Figure 5.6: a) RTM image of the OBN data. b) Same as a), with arrows indicating
the base and the lateral bounds of a possible channel complex. [CR]
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5.1.3 Point-spread functions

Like the synthetic test of the previous chapter, I employed PSFs to estimate the

Gauss-Newton Hessian for the 3D data tests. I seeded spikes every 15 gridpoint and

cascaded Born modeling followed by RTM to compute such PSFs, shown in Figure

5.7. From this volume, the PSFs are read and interpolated “on the fly” to estimate

Hessian terms. Notice that at the salt diapir’s position, the energy of the PSFs

becomes more smeared and faint than in the sedimentary part. Although Figure

5.7 shows the distribution of PSFs only in the model space, they span all across the

computational space (i.e., including the boundaries halo).

(a)

Figure 5.7: PSF distribution in the image space. [CR]
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5.2 Inversion results

5.2.1 Reflectivity comparison

In this section, I compare the result of conventional LWI and JIRB for the reflectivity

estimation. It is homologous to the numerical test in section 4.2.1.

Figure 5.8(a) shows the result of conventional LWI in model space, i.e., the result of

solving equation (1.2). The background model is the original provided by Shell and is

not updated during the LWI process. The Gauss-Newton Hessian was approximated

by an “on the fly” interpolation of the PSFs shown in Figure 5.7. The inversion ran

for 20 iterations, which was enough to flatten the objective function. The inversion

recovered some high wavenumber components. It also introduced vertical artifacts in

the estimated reflectivity image, even destroying the top of the salt diapir.

Figure 5.8(b) shows the result of JIRB reflectivity after 10 iterations, i.e., the result

of solving equation (4.1). Notice that the events of the JIRB image are more focused.

Such is a consequence of updating the background component at the same time as the

reflectivity. However, this result is di↵erent from merely an improved version of the

LWI result (Figure 5.8(a)). Logically, there is a more complex interaction between

the model parameters (the reflectivity and background) than what I expected when

I initially formulated the method as a linear problem.
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(a)

(b)

Figure 5.8: a) Reflectivity obtained with conventional LWI. b) Reflectivity component
of JIRB. [CR]
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5.2.2 Background component comparison

Background component inversions

Figures 5.9, 5.10, and 5.11 show the initial or original background model, the inverted

background model using WEMVA, and the inverted background model using JIRB for

� = 8, respectively. During the inversions, I applied a mask to the gradient to prevent

updating the squared slowness of the salt body and the water layer (see equation

(B.3)). Notice that the initial model appears to be laterally smooth and relatively

featureless in the sedimentary part, whereas the updated models exhibit vertical and

lateral variations. This is better observed in the di↵erence between the inverted

and the initial background models in Figures 5.12 and 5.13. The additional detail

obtained with the inversions should contribute to focus the image better. We observe

that improvement in the estimated JIRB reflectivity image (Figure 5.8(b)). On the

other hand, geologically speaking, it makes perfect sense to expect such heterogeneity

in a deepwater depositional environment. In both inversions, JIRB and WEMVA, I

preconditioned the background model using B-splines (see Appendix B), which helped

prevent the occurrence of spurious, high wavenumber, artifacts.
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(a)

Figure 5.9: Original background model. ER
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(a)

Figure 5.10: Background model obtained with WEMVA. ER
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(a)

Figure 5.11: Background model obtained with JIRB. [CR]
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(a)

Figure 5.12: Di↵erence between WEMVA and initial background models. [CR]
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(a)

Figure 5.13: Di↵erence between JIRB and initial background models. [CR]
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Refined RTM images

It remains in a quandary which one of the inversions achieved better result, WEMVA,

or JIRB. It is very di�cult to make a sensible judgement based solely on the results of

Figures 5.9 to 5.13. One alternative is to proceed similarly as in Chapter 4: performing

LWI using the corresponding inverted background models. However, for this 3D case,

I performed refined RTM tests using the inverted models, reducing the grid size to

12.5 ⇥ 12.5 ⇥ 12.5 m, i.e., half the original grid size and thereby duplicating the

wavenumber of the migration image. This refinement allows for better imaging of the

stratigraphic features that I want to enhance. The drawback of such refinement is

the increase in computational time and storage by a factor of 8 or 16 in 3D.

Figure 5.14(a) shows the refined RTM image obtained with the original background

model (Figure ??). I zoomed into the sedimentary section to better appreciate the

stratigraphy, excluding the water layer and the salt diapir. I show the same inline

and crossline that I showed before in the previous results, but a shallower depth

slice (approximately 1100 m). The latter exhibits channel signatures, which are very

common in deep water environments. For comparison, Figure 5.14(b) shows the RTM

refined image using the WEMVA inverted background model (Figure ??). Notice how

the stratigraphic features of the inline and crossline sections become more focused in

the WEMVA volume, e.g., the channel features immediately below the reflector at

2000 m. However, the comparison is not valid for the depth slice because the velocity

change introduced by the inversion significantly shifted the seismic events upward.

Thus, while in the depth slice of Figure 5.14(a) we interpret channels, in the depth

slice of 5.14(b) we can interpret other geological elements, a fan constituted by the

white feature at the top of the depth slice, fed by a channel, and either crevasse splays

or minor fan lobes originating from the same channel.

In the following, I compare the WEMVA- and the JIRB-based RTM images. Their

di↵erences are much more subtle than those with the RTM for the original background

model. I highlighted some of such di↵erences; others are di�cult to observe without

toggling the images.
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(a)

(b)

Figure 5.14: Refined RTM volume for a) Original model, b) WEMVA model. [CR]
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Figures 5.15(a) and 5.15(b) show the refined RTM image obtained with the WEMVA

and the JIRB background models, respectively (Figures ?? and ??). The depth slice

shows improvement in a part of the fan and one of the channels, as indicated by the

red ellipses and the red arrow. In the sections, the yellow ellipses indicate di↵erences

in the reflectors that suggest more focusing. There are also vertical adjustments of

the seismic events due to the velocity discrepancy between the background models.

Figures 5.16(a) and 5.16(b) show the comparison for a deeper level (around 1300 m).

The left half of the depth slice is featureless, possibly an abyssal plain. The right half

shows a straight channel that bifurcates into two fans with a dendritic pattern. The

rightmost feature appears to be another fan lobe, with internal channelization. The

main improvements in the JIRB volume that I can identify are the better definition of

the channels inside the first lobe (red oval) and the sharper border of the second one,

both indicated by red ellipses. On the contrary, the straight channel, indicated by

the red arrows, is better defined in the WEMVA volume. In the section, I highlighted

some channel features that appear to be better focused when using JIRB.

Figure 5.17 shows a deeper level, around 1800m, where some of the changes are

indicated in red. It corresponds to the top of a stratigraphic unit between 1800

and 2000m that I interpret as a possible mass-transport complex that spans beyond

the limits of the study area. In the vertical sections, we observe shingle geometries

(short reflector units beginning in toplaps and ending in downlaps), and possible

channels and fans deposited on top. Although there are features in the sections that

noticeably become more focused in the JIRB volume (indicated by the yellow ellipses),

the improvements are much more di�cult to observe in the depth slice.

Figures 5.18(a) and 5.18(b) show a channelized level at 2000 m. The channels’ sig-

natures are distinguishable in the sections. In the depth slice, we observe that they

constitute part of the channel complex in white upon the dark gray plain, although

some other, grayish, channels, are visible at the lower part of the depth slice. The red

ellipses indicate features that are better observed in the JIRB volume. Most of them

are obscured in the WEMVA volume because the corresponding background model
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was either inaccurately focus them, and/or because they are slightly shifted with re-

spect to the depth slice. The correction in the JIRB volume brought them back to

the stratigraphic level. Additional features that are slightly corrected by JIRB are

indicated in the sections by the yellow ellipses and arrow.
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(a)

(b)

Figure 5.15: Refined RTM volume for a) WEMVA model, b) JIRB model. [CR]
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(a)

(b)

Figure 5.16: Refined RTM volume for a) WEMVA model, b) JIRB model. [CR]
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(a)

(b)

Figure 5.17: Refined RTM volume for a) WEMVA model, b) JIRB model. [CR]
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(a)

(b)

Figure 5.18: Refined RTM volume for a) WEMVA model, b) JIRB model. [CR]
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5.3 Conclusions

The JIRB method results on the OBN 3D dataset show some subtle improvements in

comparison with the WEMVA results. It demonstrates that the joint inversion of the

reflectivity and the background model by combining the least-squares RTM and the

WEMVA operators can potentially correct residual inaccuracies in velocity, which in

turn benefits the estimated reflectivity. The JIRB method yielded a better estimation

of the reflectivity than LWI, but at a much higher cost. I had initially sought the

improvement of the reflectivity by allowing updating the background model. However,

as my project progressed, I also had to look at the method from a di↵erent perspective:

to improve the background model by incorporating the reflectivity, instead of inverting

for the background model alone. As so, I compared the JIRB vs. the WEMVA

inversion, which are much more comparable in cost. There are small yet noticeable

improvements with the JIRB method. Such improvements give a firm clue that

incorporating the reflectivity into the background model inversion contributes to the

correction of small inaccuracies in the latter. There is still plenty of room for future

research on this topic. Of particular interest is obtaining an appropriate value of the

� parameter, which in this dissertation, I had to estimate by trial and error.



Appendix A

Problem in linearizing the image

norm

The linear objective function (2.6) has a serious drawback in the second functional.

The key point is that first performing the linearization of I(b) and plugging the

expression into the norm || · ||22, is not the same as the linearization of ||I(b)||22. In

fact, doing the former completely changes the properties of ||I(b)||22.

Let us include another term in the expansion of the migration image

I(b0 +�b) = I(b0) +W(b0)�b+ Z(b0,�b) +O(||�b||3), (A.1)

where Z(b0,�b) incorporates all the second order terms in the expansion. Plugging

(A.1) into the function ||I(b0 +�b)||22 gives
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||I(b0 +�b)||22 = I(b0)
TI(b0) + 2�bTW(b0)

TI(b0)

+ 2Z(b0,�b)TI(b0) +�bTW(b0)
TW(b0)�b+O(||�b||3)

= kI(b0) +W(b0)�bk22 + 2Z(b0,�b)TI(b0) +O(||�b||3).

(A.2)

Notice the additional term 2Z(b0,�b)TI(b0), which is second order and is not ac-

counted for by the second term in the objective function (2.6). Therefore, the ap-

proximation of such term of is not order accurate, which is problematic in this case

as the curvature of the function is flipped near �btrue, being no longer concave. In

fact, the approximation kI(b0) +W(b0)�bk22 is actually a convex function with a

constant Hessian that is at least positive semidefinite. As consequence, there is no

upper bound or maximum close to the correct background model perturbation, as we

observe in the numerical results in Chapter 2 (see Figure 2.9). This implies that one

can move along any arbitrary direction with strictly positive curvature, and increase

the objective function kI(b0) +W(b0)�bk22 indefinitely, which is clearly not what is

desired.



Appendix B

Preconditioning in WEMVA

Inversion using WEMVA is intended to solely recover the low-wavenumber compo-

nent of the subsurface. However, the high-wavenumber component, in other words,

the reflectivity, often manifests its presence in the solution. The reason for that is

because such a high-wavenumber component belongs to the model null space of the

WEMVA operator. A similar problem arises when DSO is utilized in the extended

domain and high-wavenumber artifacts are present in the gradient, thus a↵ecting the

final inverted model (Vyas and Tang, 2010). One popular way to combat such arti-

facts is preconditioning the gradient with B-splines (Weibull and Arntsen, 2013). On

the other hand, the migration image in the WEMVA objective function might also

required preconditioning to appropriately weight the amplitudes of the shallow part

with respect to the deep part. In the following I show both preconditioning strate-

gies (for the background model and for the image) that I applied in the numerical

examples that illustrate this thesis.

B.1 Preconditioning the background model

Recall the WEMVA objective function for maximization of the image power,
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�(b) = �1

2
kI(b)k22 .

We can define b = Bp, where B represents the B-spline interpolation operator

(Fomel, 2000; Tang, 2011b; Weibull and Arntsen, 2013), and p represents the projec-

tion of the background model onto a coarse grid. Operator B maps the subsurface

model from a coarse grid onto a fine grid.

Substituting in the objective function gives

�(p) = �1

2
kI(Bp)k22 . (B.1)

This objective function is optimized with respect to the subsurface model projected

onto the coarse grid, p. Then, it is interpolated into the fine grid using operator B.

This procedure removes high-wavenumber components from the background model

whilst retaining the expected low-wavenumber components. We can obtain the initial

model p0 from b0 by iteratively solving the following normal equations:

BTBp0 = BTb0

B.2 Preconditioning the image

It is often the case that the migration image exhibits imbalanced amplitudes, e.g.,

high amplitudes the shallow part that decrease as going deeper. We can include a

weighting factor that compensates for such an e↵ect, thereby obtaining

�(p) = �1

2
kEI(Bp)k22 . (B.2)
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where

E = diag(zn),

and z is the vector that contains the depth steps, and n is an integer positive value.

In other words, the diagonal matrix operator E applies a depth-dependent amplitude

compensation to the image.

B.3 Gradient of preconditioned objective function

We can calculate the gradient of the preconditioned objective function and obtain

r�(p) = �

@EI(Bp)

@p

�T
EI(Bp) = �


@I(Bp)

@b

@b

@p

�T
ETEI(Bp)

= �
⇥
W(Bp)B

⇤T
ETEI(Bp) = �BTW(Bp)TETEI(Bp).

(B.3)

Note that the minus sign of the objective function ought to be preserved in the

gradient.
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