

Joint inversion of reflectivity and background subsurface components

Thesis defense

Alejandro Cabrales

August 14, 2020

Main task in seismic imaging: Estimate acoustic/elastic subsurface parameters!

First, we need to acquire seismic data, onshore...

... or offshore!

Next, we need to process the seismic data!

Velocity model building

Next, we need to process the seismic data!

Different scales of the subsurface parameters

m

Subsurface model

Different scales of the subsurface parameters

m

Subsurface model

Background component of subsurface model (lowwavenumber component) Reflectivity component of subsurface model (highwavenumber component)

- Predict data with the acoustic/elastic wave equation
- Nonlinear; presence of local minima
- We obtain a high-wavenumber version of **b**!

- Generally good for imaging purposes!
- FWI should be better, but it'd more prone to fall into local minima
- A good idea could be used WEMVA model as input for FWI!

- Also known as "Least-squares migration"
- Assumes accurate background subsurface model
- Effective, but requires lots of computations: 1 iteration costs \sim 2 migrations

Linearized waveform inversion (*image space*)

- The FWI's Gauss-Newton Hessian is defined as: $\mathbf{H} = \mathbf{L}^{\mathrm{T}}\mathbf{L}$
- It can be less precise than data-space LWI
- Once the Hessian is estimated, the inversion is fast (matrix-like multiplications)

<u>Thesis proposal</u>: Inverting for the reflectivity and background model simultaneously!

Reflectivity component of subsurface model

Background component of subsurface model

What motivated my research?

What motivated my research?

What motivated my research?

Joint Inversion of Reflectivity and Background Components (JIRB)

- Chapter 1: Introduction
- Chapter 2: Theory
- Chapter 3: Random boundary condition
- Chapter 4: Application to synthetic 2D data
- Chapter 5: Application to 3D marine data

Joint Inversion of Reflectivity and Background Components (JIRB)

- Chapter 1: Introduction
- Chapter 2: Theory
- Chapter 3: Random boundary condition
- Chapter 4: Application to synthetic 2D data
- Chapter 5: Application to 3D marine data

Some bits of theory

THEORY

What you need to know to understand JIRB:

- 1) How to precompute the Hessian for LWI
- 2) Reverse-time migration (RTM)
- 3) How the WEMVA operator works

THEORY

RTM: $\mathbf{I}(\mathbf{b}) = \mathbf{L}(\mathbf{b})^{\mathrm{T}} \Delta \mathbf{d}$

<u>Conventional reverse-time migration (RTM)</u>:

1) Propagate the source wavefield (Fwd in time)

RTM: $\mathbf{I}(\mathbf{b}) = \mathbf{L}(\mathbf{b})^{\mathrm{T}} \Delta \mathbf{d}$

<u>Conventional reverse-time migration (RTM)</u>:

- 1) Propagate the source wavefield (Fwd in time)
- 2) Propagate the receiver wavefield (Bwd in time)

RTM: $\mathbf{I}(\mathbf{b}) = \mathbf{L}(\mathbf{b})^{\mathrm{T}} \Delta \mathbf{d}$

Conventional reverse-time migration (RTM):

- 1) Propagate the source wavefield (Fwd in time)
- 2) Propagate the receiver wavefield (Bwd in time)
- 3) Perform zero-lag crosscorrelation in time

$$\mathbf{I}(\mathbf{x}) = \sum_{t} \mathbf{S}(\mathbf{x}, t) \mathbf{R}(\mathbf{x}, t)$$

<u>WEMVA</u>:

1) Propagate the source wavefield (Fwd in time)

<u>WEMVA</u>:

- 1) Propagate the source wavefield (Fwd in time)
- 2) Scatter the source wavefield

WEMVA:

- 1) Propagate the source wavefield (Fwd in time)
- 2) Scatter the source wavefield
- 3) Propagate the receiver wavefield (Bwd in time)

<u>WEMVA</u>:

- 1) Propagate the source wavefield (Fwd in time)
- 2) Scatter the source wavefield
- 3) Propagate the receiver wavefield (Bwd in time)
- 4) Scatter the receiver wavefield

5) Perform crosscorrelations:

$$\Delta \mathbf{I}(\mathbf{x}) = \sum_{t} \left[\delta \mathbf{S}(\mathbf{x}, t) \mathbf{R}(\mathbf{x}, t) + \mathbf{S}(\mathbf{x}, t) \delta \mathbf{R}(\mathbf{x}, t) \right] = \Delta \mathbf{I}_{\mathrm{S}}(\mathbf{x}) + \Delta \mathbf{I}_{\mathrm{R}}(\mathbf{x})$$

Joint inversion of reflectivity and background components Start with conventional LWI (image space):

Joint inversion of reflectivity and background components

Make of **b** another model parameter:

Joint inversion of reflectivity and background components

Make of **b** another model parameter:

Original idea: Linearizing

Substitute expanded image into objective function:

$$\Phi(\mathbf{r}, \Delta \mathbf{b}) = \|\mathbf{H}(\mathbf{b}_0 + \Delta \mathbf{b})\mathbf{r} + \mathbf{I}(\mathbf{b}_0) - \mathbf{W}(\mathbf{b}_0)\Delta \mathbf{b}\|_2^2 - \lambda \|\mathbf{I}(\mathbf{b}_0) + \mathbf{W}(\mathbf{b}_0)\Delta \mathbf{b}\|_2^2$$

Original idea: Linearizing

Substitute expanded image into objective function:

$$\Phi(\mathbf{r}, \Delta \mathbf{b}) = \|\mathbf{H}(\mathbf{b}_0 + \Delta \mathbf{b})\mathbf{r} + \mathbf{I}(\mathbf{b}_0) - \mathbf{W}(\mathbf{b}_0)\Delta \mathbf{b}\|_2^2 - \lambda \|\mathbf{I}(\mathbf{b}_0) + \mathbf{W}(\mathbf{b}_0)\Delta \mathbf{b}\|_2^2$$

This linearization scheme didn't work!!!

Solution: Set JIRB as a nonlinear problem

 $\mathbf{H}(\mathbf{b})\mathbf{r} \approx \mathbf{H}(\mathbf{b}_0)\mathbf{r}$

Numerical Results

2D NUMERICAL TESTS

2D synthetic test: Preliminaries

Velocity model (sed. Section Sigsbee):

- Horizontal: 20,000 ft (6096 m)
- Vertical: 27,000 ft (8230 m)
- Spacing: 75 ft (22.86)

Acquisition geometry:

- 54 split-spread shots
- 651 receivers per shot
- Shot spacing: 500 ft (152.4 m)
- Receiver spacing: 75 ft (22.86)

Imaging:

• Inversions ran until line search failed

2D synthetic test: Preliminaries

2D synthetic test: Preliminaries

Born modeled data: **d**_{obs}=**L(b)r**

Point-spread functions: Hessian estimation														
	28000			32000		Distance (f 36000			.) 40000		44000			
		5		- 22		24		- 24	-	- 27		-24		
			1.5	1	1	1	1	1		- 10 -				
			1.						1					
50	Sec. 1		10						-	-		-		
ŏ		-		-				-						
0					-			-		-			100	
		-				-	-	-				-		
1	100								10 A		-	.	-	
00	10			-	100			-01		1.101	12		100	
١Ö	100					-				•	- 0-		0	
Ó	199		100		100	- 19 M.		- CT			20 A	1.00	100	
-			100	-		-	-	0	•		100	-	1	
16	100	-		-		-	-	-	-	•	-		1	
,0-		-			-	-	-	-	-	-	1000			
٥ :	-	-	-	-		-	1000	-	0	-	1000			
~O			-		-	-	-	-	100	-				
~ ~												1		
NC NC		-	-					-	-					
ŏ-	-		-		-		-				-			
00			-		-	-	-	-	-	-		1		
0	200		-		The second	-	-			-	-	1		
וא	-							-						
ŭ	Sec. 2		No. of Lot, No.		-					-	-		-	
ŏ														

Depth (ft)

Reflectivity model: True reflectivity vs. LWI

Reflectivity model: LWI vs. JIRB

True perturbation in the background

JIRB perturbation in the background ($\lambda = 25$)

Background model: WEMVA vs. JIRB

WEMVA perturbation in the background

JIRB perturbation in the background ($\lambda = 25$)

3D NUMERICAL TESTS

3D real data test: Ocean Bottom Node (OBN)

3D real data test: Ocean Bottom Node (OBN)

• Geophone: Measures Displacement => Vector

Upgoing component

Downgoing component

Upgoing and downgoing components

Upgoing and downgoing components

We separate components using PZ-summation!

Shell 3D dataset (Gulf of Mexico)

Subsurface model and data

Subsurface model (slowness squared):

- Inline: 4000 m
- Crossline: 5050 m
- Vertical: 2500 m
- Spacing: 25 m
- Imaging aperture: 50 samples

Data:

km2

 $\frac{0.3}{s2}$

≈. 0

- 226 nodes in the computational area
- Sorted in common-receiver gathers
- Binned to 25x25 m grid
- 539x441=237699 traces (include aperture)
- CRGs span the computational area
- Ricker wavelet, ~10.5 Hz dom. Frequency

Imaging:

- Mirror imaging, using the downgoing component
- Inversions ran for 10 iterations (9 WEMVA)

Point-spread functions: Seeded every 15 gridpoints

JIRB reflectivity 51025 49025 49025 47025 Distance Y(m) 0 1000 Depth (m) 2000 $\Phi(\mathbf{r}, \mathbf{b}) = \|\mathbf{H}\mathbf{r} - \mathbf{I}(\mathbf{b})\|_2^2 - \lambda \|\mathbf{I}(\mathbf{b})\|_2^2$ 2.165e + 052.145e + 052.125e+05

Distance X(m)

JIRB background model 51025 0.4 49025 bistance Y(m) $^{\rm km2}$ 0 с<u>.</u> N N N \bigcirc 1000 Depth (m) 2000

2.165e+05

2.145e + 05

Distance X(m)

2.125e+05

96

℃.0

 $\Phi(\mathbf{r}, \mathbf{b}) = \|\mathbf{H}\mathbf{r} - \mathbf{I}(\mathbf{b})\|_2^2 - \lambda \|\mathbf{I}(\mathbf{b})\|_2^2$

Refined RTM tests

4.

 \bigcirc

0.3s2/km2

₹ 0 <u>Objective</u>: Improve stratigraphic features

- Refine model to 12.5x12.5x12.5 m
- Re-bin data to 12.5x12.5 m grid
- 877x681=597237 traces
- Imaging aperture: 50 samples
- Duplicate dom. frequency (~19 Hz)
- Run refined RTM tests for initial
- background model, WEMVA, and JIRB background models

Compare refined RTM images run with initial model vs. WEMVA model

Refined RTM using initial background

Refined RTM using WEMVA background

Compare refined RTM images run with WEMVA model vs. JIRB model

Refined RTM using WEMVA background

Refined RTM using WEMVA background

Refined RTM using JIRB background

Refined RTM using WEMVA background

Refined RTM using JIRB background

Refined RTM using WEMVA background

3D NUMERICAL RESULTS

Refined RTM using JIRB background

To conclude...

- The JIRB method can correct remaining inaccuracies in the background model, yielding more focused seismic events in the reflectivity image
- The JIRB method can also obtain a better background model for RTM or LWI
- The method could not be implemented in a linear fashion. A nonlinear scheme was the solution
- Synthetic and field data tests show improvement in seismic events' focusing. In particular, the 3D field data exhibited improvements in deep-water stratigraphic features

Acknowledgements

Thanks to Shell, granting permission to use the OBN dataset

• Special thanks to Bonnie Jones, for giving the permission on behalf of Shell, and for her comments on Chapter 5

Biondo

Bob

Louis

Jerry

Gary

Jon

Stew

Ettore & Guillaume

Fantine

Yinbin

Rahul

Joe

Rustam

Milad

Rachael

Jared

Liliane

Claudia

Pemex's crew:

- <u>The bosses</u>: Humberto Salazar, Carlos Caraveo, Alfredo Vázquez, Leonardo Aguilera,...
- <u>Current colleagues</u>: Karen, Alejandra, Ernesto, Sergio, Silvino, Madai, Juan, Jorge,...
- Friends: Javier Sánchez, Humberto Arévalo, Sergio Chávez, Moisés Hernández,...

THANKS FOR YOUR ATTENTION!

