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I. — Descartes’ Rule of Signs

1. Descartes’ Rule of Signs consists of the following two propositions:

If F (x) designates a polynomial ordered by powers of x, the number of
positive roots of the equation F (x) = 0 is at most equal to the number of
variations of the [signs of the coefficients of the] polynomial F (x).

If the number of positive roots is less than the number of variations, the
difference is an even number.

To establish the first proposition, I will show that, if it is true when the
polynomial has (m−1) variations, then it is equally true when the polynomial
has m variations. The proposition will thereby be immediately established
in full generality since it is evident for the case where all the terms of the
polynomial have the same sign.

Thus let

F (x) = Axp + . . . +Mxr +Nxs + . . . +Rxu

be a polynomial ordered by increasing or decreasing powers of x and present-
ing m variations of sign. The equation

F (x)x−α = 0 ,
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where α denotes an arbitrary real number, has the same positive roots as the
equation

F (x) = 0(1)

and the function on the left hand side remains finite and continuous when x
grows indefinitely beginning from a positive number ε as small as one might
wish. One can thus apply Rolle’s Theorem between the limits 0 and ∞,
and one sees that the number of roots of equation (1) is at most one greater
than the number of roots of the equation x−(α+1)[xF ′(x) − αF (x)] = 0 or,
equivalently,

xF ′(x)− αF (x) = 0 .(2)

The coefficients of that equation are respectively

A(p− α), . . . , M(r − α), N(s− α), . . . , R(u− α) .

The polynomial F (x) having m variations, let us suppose that M and N
are of opposite sign and choose the arbitrary number α so that it falls between
the numbers r and s1; one sees that, in the preceding series, the numerical
values of the coefficients multiplying A, . . . , M and those multiplying the
quantities N, . . . , R have opposite signs.

The left hand side of equation (2) has specifically the sign variations of
the series

A, . . . , M, −N, . . . , −R ,

that is to say (m − 1) sign variations; it follows that that equation has at

most (m − 1) positive roots and that equation (1) has as most m positive
roots. Proposition I is thus completely established.

To demonstrate proposition II, it is sufficient, as one knows, to remark
that the number of positive roots of equation (1) and the number of sign
variations of the polynomial F (x) always have the same parity.

2. The preceding proof made no assumption that the values of the expo-
nents p, . . . , r, s, . . . , u are integers; they can be fractions or even irrational.∗

∗In Laguerre’s work, the term polynomial was employed for any finite sum of real powers
of x. The phrase integral polynomial was reserved for what we now call polynomials. I
drop this distinction when it does not cause confusion.

1One could simply take α equal to r or s; but, in some applications of the preceding
arguments, it is useful to provide for, between certain limits, control of the value of α.
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Thus the equation

x3 − x2 + x
1
3 + x

1
7 − 1 = 0 ,

presenting three variations, has at most three positive roots; it is clear, more-
over, that it cannot have any negative roots.

One can equally well suppose that F (x) is a power series ordered by
increasing powers of x. If it is convergent for all positive values of x smaller
than a given number a but does not converge for x = a, it follows from
the preceding proof that the number of positive values of x for which F (x)
is convergent and takes the value zero is at most equal to the number of
variations in sign of the series.

Moreover, if the number of values of x which have that property is less
than the number of variations of the series, then the difference is an even
number.∗

In fact, the number of variations of the terms of the series being supposed
finite (this is necessary to be able to apply the preceding theorem meaning-
fully), F (x) is equal to a polynomial Φ(x) followed by an indefinite number of
terms all having the same sign as the last term of Φ(x). For x = 0, the series
has the same sign as that of the first term of Φ(x). When x approaches the
value a, Φ(x) approaches a finite value; the remaining terms, which are infi-
nite in number, all have the sign of the last term of Φ(x), and their absolute
value grows indefinitely∗, since the series is divergent for x = a.

Thus, when x approaches arbitrarily close to a, the series of F (x)‡ grows
indefinitely in absolute value and exhibits the sign of of the last term of Φ(x);
the number of sign variations of the series and the number of roots under
consideration are thus of the same parity; from whence immediately follows
the last proposition above.

All the above considerations likewise apply to the case where F (x) is a
series ordered by decreasing powers of x and also in the event that F (x) is
a series beginning with increasing powers of x followed by decreasing powers
of the variable.

∗Pólya [Über einige Verallgemeinerungen der Descartesschen Zeichenregel, Sonder-
abdruck aus Archiv der Mathematik und Physik. III. Reihe. XXIII. Heft 1, 1914]
has shown that the divergence at x = a is necessary here using the example F (x) =
1− π2

3 x+ x2

22 + x3

32 + x4

42 + . . . which has only one positive root in (0, 1).
∗That is, the absolute value of the partial sums of the series, to be precise.
‡The text has the misprint Φ(x) here.
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3. Let

f(x) = A0x
m + A1x

m−1 +A2x
m−2 + . . . + Am−1x+Am(3)

be a polynomial of degree m; I will consider the sequence of polynomials

fm(x) = A0 ,

fm−1(x) = A0x+ A1 ,

fm−2(x) = A0x
2 + A1x+ A2 ,

· · · · · · · · · · · · · · · · · · · · · ,
f1(x) = A0x

m−1 + A1x
m−2 + . . . + Am−1 ,

f(x) = A0x
m + A1x

m−1 + . . . + Am−1x+ Am .

where the last is precisely the given polynomial.
The values taken by these polynomials, for a given value of the variable

equal to a, are easily calculated by recurrence; one has, certainly, the well
known relation

fi(a) = afi+1(a) + Am−i ,

and the quantities fm(a), fm−1(a), . . ., f1(a), f(a) arise when one obtains
the result of substituting a in f(x).∗

Thus posed, one can state the following proposition:

If a is a positive number, the number of variations of the terms of the
series

fm(a), fm−1(a)†, fm−2(a), . . . , f1(a), f(a)

is at least equal to the number of roots of the equation f(x) = 0 which are
greater than a, and, if there are more, the difference of these two numbers is
an even number.

For proof, I consider the identity

f(x)

x− a = fm(a)xm−1 + fm−1(a)xm−2 + . . . + f1(a) +
f(a)

x− a
∗This nested factorization f(x) = Am + x(Am−1 + x(Am−2 + x( . . . ))) is often used to

evaluate polynomials in computer applications.
†The original text has the misprint fm+1(a) here.
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for values of x greater than a; the right hand side may be expanded in a
convergent power series in decreasing powers of x and one has

f(x)

x− a = fm(a)xm−1 + fm−1(a)xm−2 + . . .

+ f1(a) +
f(a)

x
+
af(a)

x2
+
a2f(a)

x3
+ . . . .

The number of values of x for which the series converges and takes the
value zero is precisely the number of roots of the equation f(x) = 0 which
are greater than a∗; this number, by virtue of the fundamental proposition
that I demonstrated earlier, is at most equal to the number of variations of
the right hand side, which reduces evidently to the number of variations of
the terms of the sequence

fm(a), fm−1(a), fm−2(a), . . . , f1(a), f(a) ,

from which results the stated theorem.
As an application, I will consider the equation

f(x) = x4 − 3x3 + x2 − 8x− 10 = 0 .

It has no negative roots; in calculating successively the result of the substitu-
tion in the left hand sides of the numbers 1, 2, and 3, one forms the following
table:

x f5(x) f3(x) f2(x) f1(x) f(x)

+1 +1 −2 − 1 − 9 − 19
+2 +1 +1 + 3 − 2 − 14
+3 +1 +6 +19 +49 +137

All the numbers relative to +3 being positive, one thereby concludes that
there are no roots of the equation which are greater than +3; furthermore,
as the numbers relative to +2 exhibit only a single variation, one is certain
that there is a root between +2 and +3 and only one. Moreover, as the
number relative to +1 exhibits no more than one variation, one concludes
that there is only one root greater than +1: precisely the one we have already

separated; finally if one considers the transformation by
1

x
,

10x5 + 8x4 − x3 + 3x2 − 1 = 0 ,

∗Laguerre implicitly assumes f(a) 6= 0.
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the substitution of +1 yields the sequence of numbers +10, +18, +17, +20,
+19, which hasn’t any variation. The equation therefore has no root smaller
than +1 and, consequently, has only one positive root, which lies between
+2 and +3.

4. The preceding proposition can be restated in another fashion.

With a being positive, it is clear that the quantities

A0a
m, A0a

m + A1a
m−1, A0a

m + A1A
m−1 + A2a

m−2, . . .

have, respectively, the same signs as the quantities fm(a), fm−1(a), fm−2(a),
. . . ; we may thus say that the number of roots of the equation f(x) = 0 is
at most equal to the number of variations of the terms of the sequence

A0a
m, A0a

m + A1a
m−1, . . . , A0a

m + A1a
m−1 + . . . + Am−1a+ Am .

In general, if P +Q+R+ S + . . . is some sequence of terms, I will term
the number of alternations of that sequence as the number of variations of
the sequence

P, P +Q, P +Q+R, P +Q+R + S, . . . .

Given this definition, the preceding theorem may be restated in the fol-
lowing fashion:

Given the polynomial

F (x) = Axα +Bxβ + Cxγ + . . . + Lxλ ,

where the right hand side is ordered according to decreasing powers of x.
Then the number of roots of the equation F (x) = 0 which are greater than a
positive number a is at most equal to the number of alternations of the series

Aaα +Baβ + Caγ + . . . + Laλ ,

and if these two numbers differ, their difference is an even number.

The proof that I have just given for this theorem clearly assumed that
the numbers α, β, γ, . . . are positive integers, but it is easy to see that this
restriction is unnecessary.
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In the first place, if any of them are negative, upon multiplying F (x) by
any appropriate power of x (which does not change the number of positive
roots of the equation), one can make all the exponents positive.

In the second place, if any of the numbers α, β, γ, . . . are rational frac-
tions, one can make them integers by changing x to xω, ω being the smallest
common multiple of the denominators of the numbers α, β, γ, . . . . The
proposition thus holds even with the exponents are negative or rational, and,
by a standard argument, one can deduce that it continues to hold when the
exponents are irrational.

Nothing even prevents one from supposing that the number of terms of
the function F (x) are infinite, so long as the series formed by these terms is
convergent at x = a.

5.∗ One may investigate the bound on the number of positive roots of
an equation f(x) = 0 which are less than a positive number a by considering

the expression
f(x)

a− x which, for all the values of x between zero and a, may

be expanded in a series of increasing powers of the variable. The argument
follows exactly that which I have employed above and, without stopping
to go into the details of the proof, I will immediately assert the following
fundamental proposition:

Given the polynomial

F (x) = Axα +Bxβ + Cxγ + . . . + Lxλ ,

where the right hand side is ordered by increasing powers of x and where
the exponents are arbitrary real numbers, positive or negative, rational or
irrational, then the number of positive roots of the equation F (x) = 0 which
are less then a given positive number a is at most equal to the number of
alternations of the series

Aaα +Baβ + Caγ + . . . + Laλ ,

and, if these two numbers differ, their difference is an even number1.

∗The original text has the incorrect section number 6 here.
1The case where F (x) is ordered by decreasing powers of x leads likewise to the following

proposition:

The number of positive roots of the equation F (x) = 0 which are greater than unity is
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This proposition continues to hold when the number of terms of F (x)
is infinite, provided that the series composed of its terms is convergent for
x = a; the number of its variations will evidently remain finite if the series
tends, for x = a, towards a limit different from zero.

I will mention, as a special case and because of its importance in appli-
cations, the following corollary:

The number of roots of the equation F (x) = 0 which lie between 0 and
+1 is at most equal to the number of alternations of the series

A+B + C + . . . + L ,

and, if these two numbers differ, their difference is an even number.

6. Let f(x) be a polynomial and write

F (x) = f(a+ x) = f(a) + xf ′(a) +
x2

1 · 2f
′′(a) + . . . .

If h is a positive number, it follows from the preceding discussion that the
number of roots of the equation F (x) = 0 that lie between 0 and h, or, in
other words, the number of roots of the equation f(x) = 0 which lie between
a and a+ h, is at most equal to the number of alternations of the expression

f(a) + hf ′(a) +
h2

1 · 2f
′′(a) + . . . .

Similarly, posing

F (x) = f(a− x) = f(a)− xf ′(a) +
x2

1 · 2f
′′(a) + . . . ,

one finds that, for a positive quantity h, the number of roots of the equation
f(x) = 0 which lie between a and a − h is at most equal to the number of
alternations of the series

f(a)− hf ′(a) +
h2

1 · 2f
′′(a) + . . . .

at most equal to the number of alternations of the series

A+B + C + . . .+ L ,

and, if these two numbers differ, their difference is an even number.
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One may thus state this proposition:

If f(x) is a polynomial and a and h are two arbitrary numbers, positive or
negative, then the number of roots of the equation f(x) = 0 which lie between
a and a + h is at most equal to the number of alternations of the series

f(a) + hf ′(a) +
h2

1 · 2f
′′(a) + . . . ,

and, if these numbers differ, their difference is an even number.

Remark.—Let us consider the various quantities

f(a), f(a) + hf ′(a), f(a) + hf ′(a) +
h2

1 · 2f
′′(a), . . . ,

of which the last is precisely f(a + h), and let P and Q be respectively the
smallest and largest of them; all the expressions

f(a)− P, f(a)− P + hf ′(a), f(a)− P + hf ′(a) +
h2

1 · 2f
′′(a), . . . ,

will positive; it follows that, if one writes f(x)− P = ϕ(x), that the series

ϕ(a) + hϕ′(a) +
h2

1 · 2ϕ
′′(a) + . . .

will not have any alternations. The equation f(x) − P = 0 thus hasn’t any
root between a and a+h; one would similarly prove the same for the equation
f(x) −Q = 0; whence follows this important conclusion:

When x ranges from x = a to x = a+h, the value of the polynomial f(x)
always stays between the numbers P and Q.

7. The preceding theorem is only a special case of a more general proposi-
tion which is easy to establish directly and that one may state in the following
fashion:

Let f(x) be a polynomial of degree n, ω an arbitrary number, and a and
b any two numbers not containing ω between them. If one denotes by V the
number of alternations that arise in the series

f(x) + (ω − x)f ′(x) +
(ω − x)2

1 · 2 f ′′(x) + . . . +
(ω − x)n

1 · 2 · · ·nf
n(x) ,(1)
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when one substitutes a for x, and by V ′ the number of alternations of that
series when one substitutes b for x, then the number of roots of the equation
f(x) = 0 that lie between a and b is at most equal to the absolute value of the
difference V − V ′. If ω does lie between a and b, then the number of roots
between a and b is at most equal to the sum V + V ′; in the latter case, the
difference of these two numbers, if it is nonzero, is an even number.

To establish this proposition, I will remark that the number of alterna-
tions of series (1), which I will abbreviate by∗

U0 = f(x) ,

U1 = f(x) + (ω − x)f ′(x) ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . ,

Ui = f(x) + (ω − x)f ′(x) +
(ω − x)2

1 · 2 f ′′(x) + . . . +
(ω − x)i

1 · 2 · · · if
i(x) ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

Un = f(ω)

is, for a given value of x, the number of variations of the terms of the sequence
U0, U1, . . ., Ui−1, Ui, Ui+1, . . ., Un, of which the last is the constant f(ω).
Supposing, to fix our ideas, that a < b < ω, let us examine how the number
of variations could change as x increases continuously from x = a to x = b.

Should an intermediate function Ui vanish for a value α of x between a
and b, the number of variations of the sequence can only change if Ui−1 and
Ui+1 have opposite signs†.

But one evidently has

Ui+1(α) =
(ω − α)i+1

1 · 2 · · · (i+ 1)
f i+1(α) ,

a quantity which has the same sign as f i+1(α). Moreover, an easy calculation
gives

U ′i(x) =
(ω − x)i

1 · 2 · · · if
i+1(x) ,

from which one sees that U ′i(α) and Ui+1(α) have the same sign. Thus if

∗The original text contains the misprint U instead of U0 here.
†Laguerre does not consider the case where Ui and Ui+1 vanish together.
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Ui−1(α) and Ui+1(α) are positive, U ′i(α) is also positive and Ui(x), being
increasing for x = α, passes from negative to positive, causing the loss of two
variations in the sequence under consideration. If, on the other hand, Ui−1(α)
and Ui+1(α) are both negative, Ui(x) passes from positive to negative, again
causing the loss of two variations. It is thus only possible to lose variations,
and only an even number, if one of the intermediate functions vanishes when
x varies continuously from x = a to x = b.

When the function U0 = f(x) vanishes, one sees that there will always
be one variation lost; the proposition is thus demonstrated in the case where
a and b are both less than ω, and a entirely similar argument will easily
establish the other cases.

Remark I. — If the arbitrary number ω is sufficiently large and positive,
the functions U0, U1, U2, . . . have respectively the same signs as the functions
f(x), f ′(x), f ′′(x), . . ., and one then recovers Budan’s theorem.

Remark II. — When the number ω is an upper bound for the roots
of the equation, the preceding proposition gives the exact number of roots
whenever all the roots are real and the numbers a and b are less than ω. The
same conclusion holds when ω is a lower bound for the roots of the equation
having only real roots and a and b are greater than ω.

8. The method that I have just employed for obtaining the number of
roots of the equation f(x) = 0 which are greater than a positive number a is

based upon the observation that the equation
f(x)

x− a = 0 has the same roots

and that the development of
f(x)

x− a in decreasing powers of x converges for

all values of x greater than a.
It is clear that I could equally well have used the expansion of the expres-

sion
f(x)

(x− a)p
, where p is an arbitrary integer, and it is easily proved in the

same fashion that one would then obtain, in general, a sharper bound. De-
noting by Φ(x) an ordered series of integer powers (increasing or decreasing)
of x, on may easily demonstrate that, α being an arbitrary positive number,
the expression Φ(x)(x− α) (which is generally a series but may fortuitously
reduce to a polynomial) exhibits at least as many variations as the series
Φ(x); the proof is entirely similar to that of Segner’s lemma on which that
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geometer’s proof of Descartes’ Rule of Signs was based.
Conversely it follows that, F (x) denoting a polynomial or an ordered

series of integer powers (increasing or decreasing) of x and α denoting an

arbitrary positive number, the expansion of the expression
F (x)

x− α exhibits at

most as many variations as the expansion of F (x); one can add that, if the
numbers of these variations differ, their difference is an even number.

The same situation evidently holds if one considers the more general

expression
F (x)

ϕ(x)
where ϕ(x) is an arbitrary polynomial constructed from

factors of the form x− α, α being real and positive.

Having made this important point, I now consider the expression
f(x)

(x− a)p
,

where f(x) is a polynomial, a a positive number, and p an arbitrary integer.
Let n be the number of roots of f(x) = 0 which are greater than a, and V

the number of variations exhibited in the expansion of the previous expression
in decreasing powers of x; it follows from the abovementioned propositions
that n is at most equal to V (their difference, if nonzero, furthermore being an
even number); the number V can only be reduced as the integer p increases:
it is not possible to reduce it below a certain limit, since it must be always
greater than or equal to n.∗

The essential point in this method, in order to infer the number n with
the best possible approximation, would be to precisely determine the limit of
the number V when p increases indefinitely; but this investigation appears
to present great difficulties.

In preference, I will use the following proposition:

If one writes the fraction
f(x)

(x− a)p
in the form:

Axα +Bxβ + . . . + Lxλ + xλ
[
A

x− a +
B

(x− a)2
+ . . . +

L
(x− a)p

]
where the exponents α, β, . . . , λ are in decreasing order (λ may be negative),
a form, moreover, which can be realized in an infinite number of ways, then
the number of roots of the equation f(x) = 0 which are greater than a positive
number a is at most equal to the number of variations of the terms of the

∗The text omits or equal to, relying on the proximity of limite and supérieur (upper
bound) for the intended meaning.
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sequence
A, B, . . . , L; A, B, . . . , L ,

and, if these two numbers differ, their difference is an even number.

Let n be the number of roots of the proposed equation which are greater
than a and V be the number of variations exhibited in the expansion of
f(x)

(x− a)p
in decreasing powers of x; one has, as I have shown,

n ≤ V .

Let us now denote by V0 the number of variations of the sequence

A, B, . . . , L, A

and by V1 the number of variations that appear in the series expansion of
the expression

A
x− a +

B
(x− a)2

+ . . . +
L

(x− a)p
;(1)

then one will evidently have

V = V0 + V1 .

It follows from the preceding that V1 is at most equal to the number of
variations that appear in multiplying the expression in (1) by (x− a), that
is to say equal to the number of variations of the expansion of

A+
B

x− a +
C

(x− a)2
+ . . . +

L
(x− a)p−1

;

if we denote by V (A,B) the number of variations between the two quantities
A and B (a number which is precisely zero or one) and by V2 the number of
variations exhibited in the expansion of the expression

B
x− a +

C
(x− a)2

+ . . . +
L

(x− a)p−1
,

one will thus have
V1 ≤ V (A,B) + V2
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and, similarly,
V2 ≤ V (B, C) + V3 ,

where V3 represents the number of variations exhibited in the expansion of
the expression

C
x− a +

D
(x− a)2

+ . . . +
L

(x− a)p−2
;

from which one readily deduces that

V1 ≤ V (A,B) + V (B, C) + . . . + V (K,L) ,

and the stated proposition follows immediately.

9. Applying the preceding theorem is simplest in the case a is equal to
unity, a case that leads easily to the general case by a change of variable,
making use of an algorithm which has already been employed by Horner and
by Budan.

This algorithm consists of forming successively, by means of recursion,

the different coefficients of the expansions of
f(x)

x− 1
,

f(x)

(x− 1)2
,

f(x)

(x− 1)3
, . . .

in decreasing powers of x.
To illustrate this, letting

f(x) = α0x
5 + α1x

4 + α2x
3 + α3x

2 + α4x+ α5 ,

one would first write (Table A) the coefficients of this equation (the coef-
ficients of missing terms being replaced by zeros), and append to them an
infinite series of zeros.

Below that, in a first horizontal line, one would write a series of numbers
a0, a1, a2, . . ., where the first is α0, and each successive element being the
sum of the previous term with the term of the series immediately above this
one in the same vertical column, so that a1 = a0 + α1, a2 = a1 + α2, . . .; one
sees that all the terms a5, a6, a7, . . . following a4 are all equal to each other.
The numbers thus obtained are, as it is easy to see, the coefficients of the

expansion of
f(x)

x− 1
in decreasing powers of x.

Below that, in a second horizontal line, one would write a series of num-
bers b0, b1, b2, . . . computed from the numbers a0, a1, a2, . . . in the same way
we earlier used α0, α1, α2, . . . so that

b0 = a0, b1 = b0 + a1, b2 = b1 + a2, . . . ,
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these new numbers being the coefficients of the expansion of
f(x)

(x− 1)2
in

decreasing powers of x.
Continuing in the same fashion, one would form a series of horizontal

lines
c0 c1 c2 c3 c4 . . . ,
d0 d1 d2 d3 d4 . . . ,
e0 e1 e2 e3 e4 . . . ,
. . . . . . . . . . . . . ,

where the various terms give the coefficients of the expansions
f(x)

(x− 1)3
,

f(x)

(x− 1)4
,

f(x)

(x− 1)5
, . . . , in decreasing powers of x.

If, in particular, one considers the numbers a5, b4, c3, d2, c1, f0, it is easy
to see that, up to positive numeric factors, they are equal to f(1), f ′(1),
f ′′(1), f ′′′(1), f iv(1), fv(1); it is for the goal of forming these numbers in a
straightforward and rapid fashion that Budan made use of the above tableau
and it follows from his theorem that the number of variations exhibited by
these terms gives an upper limit to the number of roots of the equation which
are greater than 1. But one can make use of this tableau in an even more
advantageous manner.

Table A.

α0 α1 α2 α3 α4 α5 0 0 0 . . .
a0 a1 a2 a3 a4 a5 a6 a7 a8 . . .

. . . . . . . . . . . .
b0 b1 b2 b3 b4 b5 b6 b7 b8 . . .

. . . . . . . . . . . .
c0 · · · c1 · · · c2 · · · c3 c4 c5 c6 c7 c8 . . .

. . . . . . . . . . . .
d0 · · · d1 · · · d2 · · · d3 · · · d4 d5 d6 d7 d8 . . .

. . . . . . . . .
e0 e1 e2 e3 e4 e5 e6 e7 e8 . . .

. . . . . . . . .
f0 · · · f1 · · · f2 · · · f3 f4 f5 f6 f7 f8 . . .
g0 g1 g2 g3 g4 g5 g6 g7 g8 . . .
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Reviewing the manner in which this table is constructed, one sees quite
easily that one has the following identities:

f(x)

(x− 1)3
= c0x

2 + c1x+ c2 +
c3

x− 1
+

b4

(x− 1)2
+

a5

(x− 1)3
,

f(x)

(x− 1)4
= d0x+ d1 +

d2

x
+
d3

x2
+

d4

x2(x− 1)

+
c5

x2(x− 1)2
+

b6

x2(x− 1)3
+

a7

x2(x− 1)4
;

from which it follows, by virtue of the theorem demonstrated above, that
the number of roots of the equation f(x) = 0 which are greater than one is
at most equal to the number of variations that appears in each of the two
sequences

c0, c1, c2, c3, b4, a5

and
d0, d1, d2, d3, d4, c5, b6, a7 .

More generally, if one labels as the principal diagonal the diagonal which
contains the numbers a5, b4, c3, d2, e1, f0 and which are (up to positive
numeric factors) the values of f(x) and its derivatives for x = 1, one may
state the following proposition:

Having formed Table A, if one follows an arbitrary row horizontally until
one has reached or passed the entry corresponding to the principal diagonal
and then follows the table obliquely upwards parallel to that diagonal until one
reaches the first row, then the number of roots of the equation f(x) = 0 which
are greater than one is at most equal to the number of variations exhibited
by the successive terms of the table one has encountered during this traverse;
and if these numbers differ, their difference is an even number.

Returning to Table A, one thus sees that the number of positive roots
greater than unity is at most equal to to the number of variations displayed
by the terms of the series

f0, f1, f2, f3, e4, d5, c6, b7, a8 .

10. Some examples are not amiss at this point to clarify the preceding.
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Example I. — Consider the equation x3− 4x+ 6 = 0; to obtain a limit
for the number of roots greater than one, one forms the following table:

1 0 −4 6 0
1 1 −3 3 3

. . . . . .

1 2 −1 2
. . . . . .

1 · · · 3 · · · 2
. . .

1

The principal diagonal contains the three terms 1, 3, −1, 3, which exhibit
two variations; application of Budan’s theorem indicates the possibility of two
roots.

But the series 1, 3, 2, 2, 3, formed by following the third row until the
term +2 and moving up parallel to the diagonal, shows no variations; the
equation thus has no root greater than unity.

To see if it has roots smaller than one, let us consider the transformation

by
1

x
,

6x3 − 4x2 + 1 = 0 ;

one would form the following table

6 −4 0 1
6 2 2 3

which shows immediately that the proposed equation has no positive roots;
application of Descartes’ Rule of Signs to the transformation by −x makes
it clear moreover that it has a single negative root.

Example II. — Consider the equation

x4 − 5x3 + 12x2 − 15x+ 9 = 0 ,

which clearly has no negative root. To obtain a limit for the number of roots
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greater than one, we would form the following table:

1 −5 12 −15 9 0
1 −4 8 −7 2 2

. . . . . .

1 −3 5 −2 0
. . . . . .

1 −2 3 1
. . . . . .

1 −1 2
. . . . . .

1 · · · 0

The terms of the principal diagonal 1, −1, 3, −2, 2 exhibit four variations
here, for which Budan’s theorem permits up to four roots; but the series 1,
0, 2, 1, 0, 2 does not show any variations, so one concludes that the equation
does not have any root greater than unity.

To investigate the number of roots less than one, I consider the transfor-

mation by
1

x
,

9x4 − 15x3 + 12x2 − 5x+ 1 = 0 ,

which gives the following table:

9 −15 12 −5 1
9 −6 6 1 2

. . .

9 · · · 3 · · · 9 · · · 10

Since the series 9, 3, 9, 10, 2 has no variations, one sees that the equation
yields no positive roots less than one; all roots are thus imaginary.

Example III. — For the equation x4 − 3x3 + 9x− 9 = 0, the transfor-
mation by −x,

x4 + 3x3 − 9x− 9 = 0 ,

shows immediately that it has only one negative root. To find a bound for
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the number of positive roots greater than one, I form the following table:

1 −3 0 9 −9
1 −2 −2 7 −2 −2 −2 −2 −2

. . . . . .

1 −1 −3 4 2 0 −2 −4
. . . . . .

1 0 −3 1 3 3 1
. . . . . .

1 1 −2 −1 2 5
. . . . . .

1 2 0 −1 1
. . .

1 · · · 3 · · · 3 · · · 2

The terms on the principal diagonal show three variations, but the series

1, 3, 3, 2, 1, 5, 1, −4, −2

only exhibiting one, one sees that the proposed equation has only a single
root greater than one.

In regards the positive roots less than one, I would consider the transfor-

mation by
1

x
,

9x4 − 9x3 + 4x− 1 = 0 ,

which yields the following table:

9 −9 4 −1
9 0 4 3

,

from which one concludes that the equation has no [positive] roots less than
one.

11. Let f(x) be a polynomial; designating by ω a positive quantity and
by m an arbitrary integer, let us consider the expansion, in increasing powers
of x, of the fraction

f(x)(
1− x

ω

)m .
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Let V be the number of variations of that expansion; it follows from the above
that the number V can only decrease as the number m grows; moreover it
is at least equal to the number p of positive roots of the equation f(x) = 0
which are less than ω. With this established, let the numbers ω and m grow
indefinitely in such a way that the ratio m

ω approaches a given positive limit

z; since
1(

1− x
ω

)m has ezx as its limit, one can state the following proposition:

If z denotes a positive number, the number of variations V which appear
in the expansion of ezxf(x) in increasing powers of x can only decrease as z
grows and it is at least equal to the number p of positive roots of the equation
f(x) = 0.

Let
f(x) = a0 + a1x+ a2x

2 + . . . + anx
n

and∗

ezxf(x) = A0 + A1x+ A2
x2

1 · 2 + A3
x3

1 · 2 · 3 + . . . ;

one easily finds that

A0 = a0, A1 = a0z + a1, A2 = a0z
2 + 2a1z + 2a2, . . . ,

and, in general,

Ai = a0z
i + ia1z

i−1 + i(i− 1)a2z
i−2 + i(i− 1)(i− 2)a3z

i−3 + . . . .

From this one sees that, for z positive, Ai has the same sign as the
expression

a0z
n + ia1z

n−1 + i(i− 1)a2z
n−2 + i(i− 1)(i− 2)a3z

n−3 + . . . ;

if one then forms the polynomial

F (x) = a0z
n + a1z

n−1x+ a2z
n−2x(x− 1) + . . .

+ anx(x− 1) . . . (x− n+ 1) ,

the number V is equal to the number of variations of the sequence

F (0), F (1), F (2), . . . .

∗The original text has the misprint A2
x2

1 · α here.
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Let us pose z =
1

ω
and, by changing x into

x

ω
,

{
Φ(x) = a0 + a1x+ a2x(x− ω) + a3x(x− ω)(x− 2ω) + . . .

+ anx(x− ω) · · · (x− (n− 1)ω) .
(A)

V is also equal to the number of variations of the series

Φ(0), Φ(ω), Φ(2ω), . . . .

Denoting by p′ the number of positive roots of the equation Φ(x) = 0,
one has moreover V ≤ p′; whence, by virtue of the relation V ≥ p,

p′ ≥ p .

Thus the equation Φ(x) = 0 has at least as many positive roots as the
equation f(x) = 0; in particular, if the equation f(x) = 0 has all its roots
real and positive, the same is true for the equation

Φ(x) = 0 .

I will further remark that, V being in this case equal to p, the substitution
in Φ(x) of the numbers 0, ω, 2ω, . . . must yield precisely p variations; from
this it follows that, i denoting an arbitrary integer, the equation Φ(x) = 0
has, at most, one root between iω and (i+ 1)ω.

Letting, for example,

f(x) = (1 + x)n = 1 + nx +
n(n− 1)

1 · 2 x2 + . . . + xn ;

one will have

Φ(x) = 1 + nx+
n(n− 1)

1 · 2 x(x− ω) + . . .

+ x(x− ω) · · · (x− (n− 1)ω) .

One sees that the equation Φ(x) = 0 has all real roots and, further, that
one may separate all of them by substituting in the polynomial Φ(x) the
series of numbers

0, ω, 2ω, 3ω, . . . .
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12. As I have demonstrated, the number V of variations of the terms of
the expansion of ezxf(x) is at least equal to the number p of positive roots of
the equation f(x) = 0; this number can only diminish when z takes on larger
and larger values. One may ask if, for sufficiently large values of z (and, in
consequence all values greater), V will be precisely equal to p.

Let us suppose, without loss of generality, that the equation f(x) = 0 does
not have a zero root. From that which I have established above, it follows
that, for z positive, V is at most equal to the number of positive roots of
the equation Φ(x) = 0, where Φ(x) represents the polynomial defined by
equation (§11.A).

Let ωkΘ(ω) be the discriminant of this polynomial; the number k will
generally be zero, except in the case where the equation f(ω) = 0 has a
multiple root. Let us denote by ω1 a positive number less than the smallest
positive root of the equation Θ(x) = 0, and gradually vary ω from 0 up to
ω1. The equation Φ(x) = 0 never having a zero root, since a0 is different
from zero, any negative root cannot become positive; the roots which are
imaginary for ω = 0 would not become positive, because they would only be
able to become equal in pairs, which is impossible since ω is smaller than ω1.
It could happen, if the equation f(x) = 0 has some equal roots, that certain
positive multiple roots may become imaginary; in every case, letting p′ be
the number of positive roots of the equation Φ1(x) = 0, where Φ1(x) is the
polynomial Φ(x) after substituting ω1 for ω, one has p′ ≤ p.

But one has V ≤ p′ and, thus, ≤ p; on the other hand, V ≥ p; therefore
V = p and thus, the number ω1 having been chosen as detailed above, one

is assured that, if one takes z =
1

ω1

, for that value of z (and for all values

greater) the number of variations exhibited in the expansion of ezxf(x) is
exactly equal to the number of positive roots of the equation f(x) = 0.

This theorem continues to hold if that equation, contrary to my previous
assumption, does have zero as a root.

This results provide a method entirely different from that of Lagrange
and that of Sturm for determining the exact number of positive roots of an
equation.

This method only requires the calculation of the discriminant ωkΘ(ω) of
the polynomial φ(x); but, this polynomial being a function of the variable ω,
the calculation of this discriminant is nevertheless very laborious.

One has then to determine a lower bound ω1 for the positive roots of the
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equation Θ(ω) = 0 and, this accomplished, the number of variations of the
infinite sequence

Φ1(0), Φ1(ω1), Φ1(2ω1), . . .

gives exactly the number of positive roots of the proposed equation.
Although this procedure is rarely practical, I nevertheless believe I must

mention it in view of the small number of methods which permit one to
determine the exact number of roots of an equation which lie between two
given limits.

II. — On Equations of the Form

A1F (α1x) + A2F (α2x) + . . .+ AnF (αnx) = 0 .

13. Let

F (x) = a0 + a1x+ a2x
2 + . . .

be an infinite series ordered by increasing powers of x, in which I assume all
the coefficients are positive or zero, with the first distinct from zero.

Let us consider the equation

f(x) = A1F (α1x) +A2F (α2x) + . . . +AnF (αnx) = 0 ,(1)

where the αi’s denote some positive quantities that I will suppose are ar-
ranged in decreasing order so that one has

α1 > α2 > α2 > . . . > αn−1 > αn .

Thus posed, if we expand the second member of equation (1) in a power
series, we will have

f(x) = a0(A1 + A2 + . . . + An)

+ a1(A1α1 + A2α2 + . . . + Anαn)x

+ a2(A1α
2
1 + A2α

2
2 + . . . +Anα

2
n)x2

+ a3(A1α
3
1 + A2α

3
2 + . . . +Anα

3
n)x3

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ;
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and it follows from Descartes’ Rule of Signs that the number p of positive
roots of equation (1) [that is to say the number of positive quantities at which
f(x) vanishes and for which the series expansion of the function is convergent]
is at most equal to the number of variations appearing in the terms of the
infinite sequence 

A1 + A2 + . . . + An ,
A1α1 + A2α2 + . . . + Anαn ,
A1α

2
1 + A2α

2
2 + . . . + Anα

2
n ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(A)

To determine an upper limit to the number of variations, let us truncate
this series at index i,∗

A1α
i
1 +A2α

i
2 + . . . + Anα

i
n ,

and let us denote by V ′ the number of variations that appear in these i+ 1
initial terms.

Denoting by V ′′ the number of variations of the infinite series

A1α
i
1 + A2α

i
2 + . . . + Anα

i
n, A1α

i+1
1 + A2α

i+1
2 + . . . + Anα

i+1
n , . . . ,

one has evidently V = V ′ + V ′′.
But the second series is composed of the values taken by the function

Φ(x) = A1α
i
1α

x
1 + A2α

i
2α

x
2 + . . . + Anα

i
nα

x
n ,

when one successively substitutes x = 0, x = 1, x = 2, . . . ; the number
of variations of the terms of that series is at most equal to the number of
positive roots of the equation Φ(x) = 0, or, equivalently, the number of roots
greater than unity of the equation

A1α
i
1z

logα1 + A2α
i
2z

logα2 + . . . Anα
i
nz

logαn = 0 ,(2)

that one obtains by the substitution ex = z.
As the positive numbers α1, α2, . . ., αn are decreasing, so are the expo-

nents log α1, logα2, . . ., logαn; it follows, by virtue of a proposition demon-
strated earlier (§5), that the number of roots of equation (2) which are greater
than one is at most equal to the number of alternations of the series

A1α
i
1 +A2α

i
2 + . . . + Anα

i
n .

∗The original text has the misprint Anαi.
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Letting R be the number of these alternations, one will thus have

V ′′ ≤ R and V ≤ V ′ +R ;

from whence
p ≤ V ′ +R .

14. Let us consider in particular the case where one truncates series (A)
at its first term; it follows from the above that p is at most equal to the
number of roots of the equation

A1z
logα1 + A2z

logα2 + . . . Anz
logαn = 0

which are greater than one, and one may state this important proposition:
The number of positive roots of the equation

A1F (α1x) + A2F (α2x) + . . . + AnF (αnx) = 0 ,

where the quantities α1, α2, . . ., αn are positive numbers in decreasing order,
is at most equal to the number of alternations of the series

A1 + A2 + A3 + . . . +An .

15. In a more general fashion one could consider the equation

A1F (α1x) + A2F (α2x) + . . . + AnF (αnx) = Φ(x) ,

where Φ(x) is a polynomial. But I believe it would be unproductive for me
to expound further on this topic; what I have already covered is more than
sufficient for seeing how one could treat this question.

III. — On the Equation
∫ b
a
e−zxΦ(z) dz = 0.

16. Let us apply the preceding results to the case where F (x) = ex; the
expansion of this function is, as one knows, convergent for all values of the
variable and has only positive coefficients.
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Consider the equation

A1e
α1x + A2e

α2x + . . . + Ane
αnx = 0 ,(1)

where the numbers α1, α2, . . ., αn appear in decreasing order and are other-
wise arbitrary, whether positive or negative.

This equation clearly has the same roots as the equation

A1e
(k+α1)x + A2e

(k+α2)x + . . . +Ane
(k+αn)x = 0 ,

where k denotes an arbitrary positive number that one can always choose so
that the numbers (k + α1), (k + α2), . . ., (k + αn) are all positive.

Applying the theorem of §14, one sees that equation (1) has at most as
many positive roots as the series

A1 + A2 + . . . + An(A)

has alternations.
Let us now suppose that the numbers α1, α2, . . ., αn are terms of an

arithmetic progression in which the increment is very small and whose first
and last terms are respectively −a and −b with a < b. The coefficients A1,
A2, . . .∗ being completely arbitrary, one sees that the equation can, as the
increment of the progression tends towards zero, be written in the form∫ b

a
e−zxΦ(z) dz = 0 ,(2)

where Φ(z) denotes an entirely arbitrary function, continuous or discontinu-
ous; it could, for example, vanish in as many intervals as one would like.

On the other hand, the number of alternations of the series (A) is at

most equal to the number of roots of the equation
∫ x

a
Φ(x)dx = 0 which lie

between a and b† (it could be less in the event that this equation would have
roots in this interval of even multiplicity); from whence we have the following
proposition:

∗The original text incorrectly writes A0, A1, . . . .
†Pólya (Sur un théorème de Laguerre, Comptes rendus, 156 (1913), 996-99) points out

this argument is fallacious as it assumes that no new roots appear in the limit. He gives

the counterexample fn(x) = (x− 1)2 +
1
n2

.

26



The number of roots of equation (2) is at most equal to the number of

roots of the equation
∫ x

a
Φ(x)dx = 0 which lie between a and b.

One can estimate the number of alternations of the series (A) in an-
other way; dividing the interval between a and b into [sub]intervals such
that, within each of them, the function Φ(x) does not identically vanish, is
continuous and has the same sign.

One could, on writing∗∫ b

a
e−zxΦ(z) dz

=
∫ a1

a
Φ1(z) dz +

∫ a2

a1

Φ2(z) dz + . . . +
∫ b

an
Φn(z) dz ,

state the following proposition:
The number of positive roots of equation (2) is at most equal to the number

of alternations of the series†∫ a1

a
Φ1(x) dx+

∫ a2

a1

Φ2(x) dx+ . . . +
∫ b

an
Φn(x) dx .

∗The original text has the misprint
∫ a2

a Φ2(z)dz here.
†Pólya, op. cit., provides the following argument (with a = 0, b =∞) that the number

of roots of (2) is less then the number of intervals of constant sign:
The theorem is evident for V = 0; suppose that it is true for V = n − 1. The function

Φ(z) having precisely n+ 1 intervals of constant sign, let z0 be the boundary between two
such adjacent intervals. If the function f(x) given by the left hand side of equation (2)
has r roots greater than any x0 for which the integral converges, then the function

f∗(x) =
d

dx
ez0xf(x) = ez0x

∫ ∞
0

(z0 − z)e−zxΦ(z)dz ,

will have at least r − 1; this is a simple consequence of Rolle’s theorem.
On the other hand, the function (z0 − z)Φ(z) has precisely (n − 1) + 1 intervals of

constant sign; by our induction hypothesis for V = n − 1, f∗(x) has at most n − 1 roots
greater than x0.

From this one concludes

r − 1 ≤ n− 1 or r ≤ n = V . Q.E.D.
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17. As an application of the preceding theorems, take a = 0 and b =∞
and

Φ(z) =
a0

Γ(α0)
zα0−1 +

a1

Γ(α1)
zα1−1 + . . . +

an
Γ(αn)

zαn−1 ,

where the αi denote arbitrary positive numbers and Γ is the Eulerian function
of the second type.∗

The equation†
∫ ∞

0
e−zxΦ(z) dz = 0 becomes

a0

xα0
+

a1

xα1
+ . . . +

an
xαn

= 0 ,

and I observe that the number of its positive roots is precisely equal to the
number of positive roots of the equation

a0x
α0 + a1x

α1 + . . . + anx
αn = 0 .(1)

On the other hand, the equation
∫ x

0
Φ(x) dx = 0 becomes

a0xα0

Γ(α0 + 1)
+

a1xα1

Γ(α1 + 1)
+ . . . +

anxαn

Γ(αn + 1)
= 0 ,(2)

and it follows from the preceding proposition that the number of positive
roots of equation (1) is at most equal to the number of positive roots of
equation (2).

18. Let us consider the nth degree equation

a0 + a1x+ a2x
2 + . . . + anx

n = 0 ,(1)

which I rewrite in the form

a0x
ω + a1x

1+ω + a2x
2+ω + . . . + anx

n+ω = 0 ,

where ω denotes a nonnegative number.
It follows from the preceding that equation (1) has at most as many

positive roots as the equation

a0

Γ(ω + 1)
+

a1x

Γ(ω + 2)
+

a2x
2

Γ(ω + 3)
+ . . . +

anx
n

Γ(ω + n+ 1)
= 0 ,

∗I.e., the standard generalization of the factorial function.
†dz is missing in the original text.
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or, equivalently, the equation

a0 +
a1x

ω + 1
+

a2x
2

(ω + 1)(ω + 2)
+ . . . +

anx
n

(ω + 1)(ω + 2) · · · (ω + n)
= 0 ;(2)

ω designating, as I have said, an arbitrary positive number or zero.
The same arguments hold with regards to negative roots, as it is easy to

see on considering the substitution of −x. In particular, one can state the
following important property:

If equation (1) has all its roots real, then equation (2) equally has all its
roots real.

19. Consider the polynomial a0 + a1x + a2x
2 + a3x

3; let us form the
product

ezx(a0 + a1x+ a2x
2 + a3x

3) = U0 + U1z + U2z
2 + . . . ,

where the Ui are functions of z. As it is easy to prove, one has in general dUi
dz

=
Ui−1, so that all the functions with index lower than Ui are the successive
derivatives of the latter.

One evidently has

Ui =
a0xi

1 · 2 · · · i +
a1xi−1

1 · 2 · · · (i− 1)
+

a2xi−2

1 · 2 · · · (i− 2)
+

a3xi−3

1 · 2 · · · (i− 3)
;

from whence one sees that the equation Ui = 0 has as many real roots distinct
from zero as the equation

a3 +
a2x

i− 2
+

a1x
2

(i− 2)(i− 1)
+

a0x
3

(i− 2)(i− 1)i
= 0 .

But this equation has, according the previous theorem, all of its roots real
if i− 2 is greater than zero, and if the equation a0 + a1x+ a2x

2 + a3x
3 = 0

itself has all real roots. The equation Ui = 0 thus equally has all its roots
real if i is > 2, and the same proposition holds for the equations U2 = 0,
U1 = 0, since U2 and U1 are the first two derivatives of U3.

This demonstration generalizes to a polynomial of arbitrary degree; from
whence it is easy, indeed, to establish the following theorem directly:
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Let f(x) be an arbitrary polynomial decomposable into linear factors and

F (x) = ezxf(x) = U0 + U1x+ U2x
2 + . . . ;

where Ui are the coefficients of this expansion; then the equation in z

Ui = 0

has all its roots real.

20. F (x) representing, as above, the function ezxf(x), let us write

F (x+ h) = ezhezxf(x+ h) = V0 + V1x+ V2x
2 + . . . ;

Vk denoting the coefficients of the expansion, let us write Vk = ϕ(z), so that
Vk−1 = ϕ′(z), Vk−2 = ϕ′′(z), . . . ; the equation ϕ(z + t) = 0 has, for any z, all
real roots and may be expanded as

ϕ(z) + tϕ′(z) +
t2

1 · 2ϕ
′′(z) + . . . +

tk

1 · 2 · · · kϕ
(k)(z) = 0

or

Vk + tVk−1 +
t2

1 · 2Vk−2 + . . . +
tk

1 · 2 · · · kV0 = 0

or again

F (k)(h)

1 · 2 · · · k +
F (k−1)(h)

1 · 2 · · · (k − 1)
+

t2

1 · 2
F (k−2)(h)

1 · 2 · · · (k − 2)
+ . . .+

tk

1 · 2 · · · kF (h) = 0 ,

or finally, on changing h to x, t to
1

t
and clearing denominators,

F (x) + kF ′(x)t+
k(k − 1)

1 · 2 F ′′(x)t2

+
k(k − 1)(k − 2)

1 · 2 · 3 F ′′′(x)t3 + . . . + F (k)(x)tk = 0 ;

and one sees that this equation in t has, for any x, all of its roots real.
If one thus writes the following system

F (x) + tF ′x = 0 ,
F (x) + 2 tF ′(x) + t2F ′′(x) = 0 ,
F (x) + 3 tF ′(x) + 3 t2F ′′(x) + t3 F ′′′(x) = 0 ,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,
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one sees that, for any value of x, these equations have all real roots. The
same holds for the equations

F ′ (x) + tF ′′ (x) = 0 , F ′ (x) + 2 tF ′′ (x) + t2F ′′′ (x) = 0 , . . . ,
F ′′(x) + tF ′′′(x) = 0 , F ′′(x) + 2 tF ′′′(x) + t2F iv(x) = 0 , . . . ;

the derivative of F (x) being given by ezx[f(x) + zf ′(x)] and the equation
f(x) + zf ′(x) = 0 having all its roots real, it is quite clear that F ′(x) is a
function of the same type as F (x), and it is the same for all of its derivatives.

21. The preceding propositions are likewise easily established when one
supposes them proven for the case where F (x) is a polynomial; it is sufficient
to remark that ezxf(x) can be considered as the limit of the polynomial(

1 +
zx

n

)n
f(x), which is decomposable into real linear factors.

The same holds true with regards to the function e−ux
2+zxf(x), where

I suppose u is positive; this function can be, in effect, considered as the

limit of

(
1− ux2

n

)n (
1 +

zx

n

)n
f(x); but the preceding propositions are not

applicable to a function of the form eϕ(x)f(x), if the polynomial ϕ(x) is of
degree greater than two or, if quadratic, the coefficient of x2 is positive.

These very simple remarks will find useful applications in the theory of
transcendental functions.

22. Upon making a change of variable, the theorem established in §18
can be restated as follows:

If the equation

a0 + a1x+ a2x
2 + . . . + anx

n = 0(1)

has all of its roots real, then so does the equation

a0 +
a1x

α+ ω
+

a2x2

(α+ ω)(2α+ ω)
+

a3x3

(α+ ω)(2α + ω)(3α+ ω)
+ . . . = 0 ,

where α and ω denote arbitrary positive quantities, the latter may be zero.
From the result that, given an equation having all its root real, one can
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derive an infinite number of others enjoying the same property; on applying
the preceding theorem a second time one sees, for example, that the equation

a0 +
a1x

(α+ ω)(α′ + ω′)
+

a2x
2

(α+ ω)(2α+ ω)(α′ + ω′)(2α′ + ω′)

+
a3x3

(α+ ω)(2α+ ω)(3α+ ω)(α′ + ω′)(2α′ + ω′)(3α′ + ω′)
+ . . . = 0

has all its root real, α′ and ω′ being subject to the same conditions as α and
ω.

Let, in general, Θ(x) be a polynomial of arbitrary degree decomposable
into real factors of the first degree and not becoming negative for any positive
value of the variable, so that Θ(x) takes the form

Θ(x) = xp(ax+ b)q (a′x+ b′)q
′
(a′′x+ b′′)q

′′
. . . ,

the numbers p, q, q′, q′′, . . . being whole numbers or being equal to zero, a,
a′, a′′, . . ., and b, b′, b′′, . . . being positive, one will see easily from the above
that the equation∗

a0 +
a1x

Θ(1)
+

a2x
2

Θ(1) Θ(2)
+

a3x
3

Θ(1) Θ(2) Θ(3)
+ . . . +

anx
n

Θ(1) Θ(2) · · · Θ(n)
= 0

has all its roots real.
But one can provide an even greater generalization to that proposition;

equation (1) having, indeed, all of its roots real, the same goes for the equa-
tion

a0 +
a1x

1 + ω
+

a2x
2

(1 + ω)(1 + 2ω)
+

a3x
3

(1 + ω)(1 + 2ω)(1 + 3ω)
+ . . . = 0 ,

and also the equation

a0 +
a1x

(1 + ω)2
+

a2x
2

(1 + ω)2(1 + 2ω)2
+

a3x
3

(1 + ω)2(1 + 2ω)2(1 + 3ω)2
+ . . . = 0 ,

and in general the equation

a0 +
a1x

(1 + ω)k
+

a2x
2

(1 + ω)k(1 + 2ω)k
+

a3x
3

(1 + ω)k(1 + 2ω)k(1 + 3ω)k
+ . . . = 0 ,

∗The original text has the misprint a1
Θ(1) .

32



where k denotes an arbitrary whole number.

Let us now make the arbitrary positive number
1

ω
and the whole number

k grow indefinitely is such a way that kω approaches the limit log
1

q
, where

q denotes any positive number less than or equal to unity.
The preceding equation will become

a0 + a1qx+ a2q
3x2 + a3q

6x3 + . . . + anq
n(n+1)

2 xn = 0 ,

and will have all its root real; the same holds for the equation obtained by

substituting ω2 for q and
x

ω
for x,

a0 + a1ωx+ a2ω
4x2 + a3ω

9x3 + . . . + anω
n2

xn = 0 ,

where ω is any real quantity with absolute value at most equal to one.
From these considerations that I have just presented immediately results

the following proposition:

If equation (1) has all of its roots real, the equation

a0 +
a1ωx

Θ(1)
+

a2ω
4x2

Θ(1)Θ(2)
+

a3ω
9x3

Θ(1)Θ(2)Θ(3)
+ . . . +

anω
n2
xn

Θ(1)Θ(2) · · ·Θ(n)
= 0

also has all of its roots real; Θ(x) denoting an arbitrary polynomial satisfying
the conditions stated above and ω being an arbitrary real number having
absolute value equal to or less than unity.

23. Consider, as an application of the preceding theorem, the equation

(1 + x)n = 1 + nx+
n(n− 1)

1 · 2 x2 + . . . + nxn−1 + xn = 0 ;

ω and Θ(x) continuing to be defined as above, I will write

F (x) = 1 +
nωx

Θ(1)
+
n(n− 1)

1 · 2
ω4x2

Θ(1)Θ(2)
+ . . . +

ωn
2
xn

Θ(1)Θ(2) · · ·Θ(n)

The polynomials of this form possess the following remarkable properties:
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1. The equation F (x) = 0 has all roots real.
2. The various derivatives of F (x) may be expressed in terms of polyno-

mials of the same type.
One has, certainly,

F ′(x) =
nω

Θ(1)

[
1 + (n− 1)

ω3x

Θ(2)
+

(n− 1)(n− 2)

1 · 2
ω8x2

Θ(2)Θ(3)

+
(n− 1)(n− 2)(n− 3)

1 · 2 · 3
ω15x3

Θ(2)Θ(3)Θ(4)
+ . . .

]
.

If then one defines Θ(x+ 1) = H(x) and

Φ(x) = 1 +
(n− 1)ωx

H(1)
+

(n− 1)(n− 2)

1 · 2
ω4x2

H(1)H(2)

+
(n− 1)(n− 2)(n− 3)

1 · 2 · 3
ω9x3

H(1)H(2)H(3)
+ . . . ,

one obtains
F ′(x) =

nω

Θ(1)
Φ(ω2x) ;

but Φ(x) is a polynomial of the same type as F (x), since H(x) is decompos-
able into linear real factors and is never negative for any positive value of
x.

Having just established this for the first derivative, it clearly follows for
all the subsequent derivatives.

3. If one writes, separating real and imaginary parts,

F (ix) = V (x) + iW (x) ,

the equations V (x) = 0 and W (x) = 0 have all their roots real and, more
generally, if a denotes an arbitrary real constant, the equation

V (x) + aW (x) = 0

has all its roots real.
To show this it suffices to remark that this equation can be written

1 +
nωx

Θ(1)
a− n(n− 1)

1 · 2
ω4x2

Θ(1)Θ(2)

− n(n− 1)(n− 2)

1 · 2 · 3
ω9x3

Θ(1)Θ(2)Θ(3)
a+ . . . = 0 ,
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and that the equation[
1− n(n− 1)

1 · 2 x2 +
n(n− 1)(n− 2)(n− 3)

1 · 2 · 3 · 4 x4 + . . .

]

+ a

[
nx− n(n− 1)(n− 2)

1 · 2 · 3 x3 + . . .

]
= 0

has all its roots real, whatever the real constant a; it is, in fact, the equation

which determines tan
α

n
when one is given tanα.

In particular, if one sets Θ(x) = x and ω = 1, one has

F (x) = 1 +
nx

1
+
n(n− 1)

1 · 2
x2

1 · 2

+
n(n− 1)(n− 2)

1 · 2 · 3
x3

1 · 2 · 3 + . . . +
xn

1 · 2 · 3 · · ·n ,

a polynomial which arises in several important questions of Analysis.1

Setting, instead, Θ(x) = 1, one has

Fn(x) = 1 + nωx+
n(n− 1)

1 · 2 ω4x2 +
n(n− 1)(n− 2)

1 · 2 · 3 ω9x3 + . . . + ωn
2

xn ;

the polynomials thus defined satisfy the equation

Fn(x) = nωFn−1(ω2x) .

24. One particular case of interest is the equation
∫ b

a
e−zxΘ(z) dz = 0∗,

where one supposes that Θ(z) is a polynomial whose form changes succes-
sively† when the variable z increases from a to b.

This equation may be manipulated‡ into the form

eα0xf0(x) + eα1xf1(x) + . . . + eαnxfn(x) = 0 ,

∗x is missing in the original text.
†i.e., a piecewise-polynomial integrand.
‡integration by parts followed by clearing powers of x from the denominator.
1On this subject see a memoir of Chebyshev (Mélanges mathématiques et as-

tronomiques, v. II, p. 182, St. Petersburg, 1859), my note Sur l’intégrale
∫ ∞
x

e−x dx

x
(Bulletin de la Société mathématique, v. VII, p. 72) and a note of Halphen, Sur une série
pour développer les fonctions d’une variable (Comptes rendus des séances de l’Académie
des Sciences, 9 October 1882).
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where the αi are constants and the fi are polynomials.
To examine the simplest case, let α0, α1, . . ., αn be arbitrary real quan-

tities arranged in increasing order and a0, a1, . . ., an be arbitrary real quan-
tities; let us write, for compactness,

p0 = a0 ,

p1 = a0 + a1 ,

p2 = a0 + a1 + a2 ,

. . . . . . . . . . . . . . . . . . . . . . . ,

pn = a0 + a1 + a2 + . . . + an ,

and let us consider the equation∗∫ α1

α0

e−zxp0dz +
∫ α2

α1

e−zxp1dz +
∫ α3

α2

e−zxp2dz + . . . +
∫ ∞
αn
e−zxpndz = 0 .

On evaluting these integrals, it easy to see that it simply becomes

a0e
−α0x + a1e

−α1x + a2e
−α2x + . . . + ane

−αnx = 0 ;

and the number p of its positive roots is the same as that of the roots of the
equation

a0z
α0 + a1z

α1 + a2z
α2 + . . . + anz

αn = 0 ,

which lie between 0 and 1. This equation results in fact from the first when
one substitutes e−x = z.

One knows moreover (§16) that the number p is at most equal to the
number of alternations of the series∫ α1

α0

p0dz +
∫ α2

α1

p1dz +
∫ α3

α2

p2dz + . . . +
∫ ∞
αn

pndz ,

from whence we have the following propositions:
The numbers α0, α1, α2, . . ., αn being arranged in increasing order, the

number of roots of the equation

a0z
α0 + a1z

α1 + a2z
α2 + . . . + anz

αn = 0(1)

∗The original text has the misprint
∫ α1

α2

e−zxp2dz.
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which lie between 0 and 1 is at most equal to the number of alternations of
the series

p0(α1 − α0) + p1(α2 − α1) + . . . + pn−1(αn − αn−1) + pn.∞ 1 ,(2)

where p0, p1, p2, . . ., pn have the meaning given above.
Furthermore (which is the same theorem in another guise):
If the numbers α0, α1, α2, . . ., αn are arranged in decreasing order, the

number of roots of equation (1) which are greater than unity is at most equal
to the number of alternations of the series (2).

25. I have observed earlier (§14) that the number of positive roots of the
equation

A0F (α0x) +A1F (α1x) + A2F (α2x) + . . . + AnF (αnx) = 0(1)

is at most equal to the number of roots of the equation

A0z
logα0 + A1z

logα1 + . . . Anz
logαn = 0

that are greater than one; provided the numbers logα0, logα1, . . ., logαn,
are in decreasing order.

Let us now write

p0 = A0 ,

p1 = A0 + A1 ,

p2 = A0 + A1 + A2 ,

. . . . . . . . . . . . . . . . . . . . . . ,

pn = A0 + A1 + A2 + . . . + An ;

it follows, from the preceding, that the number of positive roots of equation
(1) is at most equal to the number of alternations of the series

p0 log
α1

α0
+ p1 log

α2

α1
+ . . . + pn−1 log

αn
αn−1

+ pn.∞ .

1According to the definition of the alternations of a series, it is clear that the number
of alternations of the series a+ b+ c+ d.∞ is the number of variations of the terms of the
sequence

a, a+ b, a+ b+ c, d .
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IV. — On Equations of the Form
a0

(x− α0)ω
+

a1

(x− α1)ω
+

a2

(x − α2)ω
+ . . .+

an
(x− αn)ω

= 0.

26. Consider the equation

a0

(x− α0)ω
+

a1

(x− α1)ω
+

a2

(x− α2)ω
+ . . . +

an
(x− αn)ω

= 0 ,(1)

where the numbers α0, α1, . . ., αn are in decreasing order and ω is an arbitrary
positive number.

Let us choose a positive number k large enough so that the quantities
k+α0, k+α1, . . ., k+αn are positive and make the transformation y = x+k,

a0

[y − (k + α0)]ω
+

a1

[y − (k + α1)]ω
+ . . . +

an
[y − (k + αn)]ω

= 0

or, for compactness,

a0

(y − α′0)ω
+

a1

(y − α′1)ω
+ . . . +

an
(y − α′n)ω

= 0 .

This equation may be written

a0(
1− α′0

y

)ω +
a1(

1− α′1
y

)ω + . . . +
an(

1− α′n
y

)ω = 0 .(2)

Letting (
1− 1

y

)−ω
= 1 +

M1

y
+
M2

y2
+
M3

y3
+ . . . = F

(
1

y

)
;

the preceding equation may be written in the form

F

(
α′0
y

)
+ F

(
α′1
y

)
+ . . . + F

(
α′n
y

)
= 0 ,

where the left hand side converges for all values of y greater than α′0.
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If one now notices that all the coefficients Mi are positive, one will es-
tablish, as earlier (§13), that the number of roots of equation (2) which are
greater than α′0 is at most equal to the number of roots of the equation

a0x
logα′0 + a1x

logα′1 + . . .+ anx
logα′n = 0 ,

which are greater than unity; this number is thus at most equal to the number
of alternations of the series

a0 + a1 + . . . + an .

Furthermore the number of roots of equation (2) which are greater than
α′0, that is α0 + k, is precisely equal to the number of roots of equation (1)
which are greater than α0. We can thus state the following proposition:

With the quantities α0, α1, . . ., αn, being arranged in decreasing order,
the number of roots of the equation

a0

(x− α0)ω
+

a1

(x− α1)ω
+ . . . +

an
(x− αn)ω

= 0

which are greater than α0 is at most equal to the number of alternations of
the series

a0 + a1 + . . . + an .

The number of these alternations is either even or odd, according to
whether the two quantities a0 and (a0+a1+. . .+an) have the same or opposite
signs; the same holds for the number of roots of the equation greater than α0,
as one sees on successively substituting in the left hand side of the equation
+∞ and the quantity α0 + ε, where ε denotes an infinitesimal quantity. This
does not apply in the case where one has a0 + a1 + . . . + an = 0; this case
excepted, one can say that:

If the number of roots of the equation greater than α0 and the number of
alternations of the series formed by the coefficients differ, their difference is
an even number.

27.∗ Putting aside, for the moment, the general case, I will focus in
particular on the equation

a0

x− α0
+

a1

x− α1
+

a2

x− α2
+ . . . +

an
x− αn

= 0 .(1)

∗The original text incorrectly numbered this as §28. I have renumbered this and the
remaining sections correctly in this version.
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In the interval between αi and αi+1, insert two numbers ξ and ξ′, in such a
way that the numbers

α0, . . . , αi, ξ, ξ
′, αi+1, . . . , αn(A)

are arranged in either increasing or decreasing order, and let us make the
substitution

x =
Xξ − ξ′
X − 1

,

from which one recovers

X =
x− ξ′
x− ξ .

To the series (A) correspond the following quantities:

α′0, . . . , α
′
i, ∞, 0, α′i+1, α

′
n ,

arranged in order of value1.
One easily sees that all the quantities α′k are positive: α′i is thus the largest

of them; equation (1) becomes, after the substitution indicated above,

∑ ak
Xξ−ξ′
X−1 − αk

= 0

or equivalently

∑ ak
X(ξ − αk)− (ξ′ − αk)

=
∑ ak

ξ − αk
1

X − α′k
.

1It is well to be precise about what I mean here. The quantities are said to be arranged
in order of increasing or decreasing value if a variable quantity, which always varies in
the same sense, successively takes the values of the terms of the series of these quantities,
passing through infinity as necessary.

Thus the quantities
+4, −3, 0, +1

are arranged by increasing value, and the quantities

1, 0, −1, +5

by decreasing value.
Instead of arranging the quantities along a straight line, one could arrange them thus:

along a cycle (a circle traversed in a specific direction).
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But, α′i being the largest of the numbers α′k which are all positive, upon
applying the proposition proven earlier, one sees that the number of roots of
the equation ∑ ak

ξ − αk
1

X − α′k
= 0(2)

which are greater than α′k, i.e. the number of roots of equation (1) which are
within the interval (ξ, αi)1, is at most equal to the number of alternations of
the series

ai
ξ − αi

+
ai−1

ξ − αi−1
+

ai−2

ξ − αi−2
+ . . . +

ai+2

ξ − αi+2
+

ai+1

ξ − αi+1
.

28. As an application, let is consider the equation

14

x+ 2
− 1

x+ 1
+

2

x
− 1

x− 1
+

14

x− 2
= 0 .(1)

The quantities
−2, −1, 0, +1, +2

being arranged in increasing order, we will have to consider the five intervals

(−2, −1), (−1, 0), (0, +1), (+1, +2), (+2, −2) ,

of which the last contains infinity.
Denoting by ξ an arbitrary real quantity, we deduce, from the above, the

following consequences:
1. For ξ in the interval (−2, −1), the number of roots of equation (1)

which line between ξ and −2 is at most equal to the number of alternations
of the series

14

ξ + 2
+

14

ξ − 2
− 1

ξ − 1
+

2

ξ
− 1

ξ + 1
,

and the number of roots which line between ξ and −1, at most equal to the
number of alternations of the series

− 1

ξ + 1
+

2

ξ
− 1

ξ − 1
+

14

ξ − 2
+

14

ξ + 2
.

1The quantities α, β, . . . , λ, µ, . . . , τ , ω being arranged in increasing order, I call the
interval (λ, µ) that interval determined by these two numbers which does not contain any
of the other numbers. This interval can include ∞ if λ and µ have opposite signs; thus
given the sequence

+4, −3, 0, +1 ,

the interval (+4, −3) includes the point at infinity.
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In particular, let us substitute, in the first series, ξ = −1 − ε, where ε
denotes an infinitesimal positive quantity; the series becomes

14− 14

3
+

1

2
− 2 +∞ ;

since it exhibits no alternations, one concludes that equation (1) has no roots
in the interval (−2, −1).

2. For ξ in the interval (−1, 0), the number of roots of the equation which
lie between ξ and −1 is at most equal to the number of alternations of the
series

− 1

ξ + 1
+

14

ξ + 2
+

14

ξ − 2
− 1

ξ − 1
+

2

ξ
,

and the number of roots between ξ and 0 at most equal to the number of
alternations of the series

2

ξ
− 1

ξ − 1
+

14

ξ − 2
+

14

ξ + 2
− 1

ξ + 1
.(2)

In particular, let us substitute in the first series ξ = −ε;∗ the series
becomes

−1 + 7− 7 + 1−∞ ;

since it exhibits two alternations, one sees that the interval (−1, 0) contains
either two roots or none.

3. For ξ in the interval (0, +1), the number of roots of the equation
which lie between 0 and ξ is at most equal to the number of alternations of
the series

2

ξ
− 1

ξ + 1
+

14

ξ + 2
+

14

ξ − 2
− 1

ξ − 1
,(3)

and those roots between ξ and +1, at most equal to the number of alterna-
tions of the series

− 1

ξ − 1
+

14

ξ − 2
+

14

ξ + 2
− 1

ξ + 1
+

2

ξ
.

Substituting, for example, ξ = 1− ε, the first series becomes

2− 1

2
+

14

3
− 14 +∞ ;

∗The original text has the misprint x for ξ.
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which exhibits two alternations: thus the equation has in the interval (0, +1)
either 0 or 2 roots.

One arrives at the same conclusion on substituting +ε in the second series;
it becomes, in fact,

+1− 7 + 7− 1 +∞ ,

and this series also exhibits two alternations.
4. For ξ in the interval (+1, +2), the number of roots which lie between

ξ and +1 is at most equal to the number of alternations of the series

− 1

ξ − 1
+

2

ξ
− 1

ξ + 1
+

14

ξ + 2
+

14

ξ − 2
,

and the number of roots between ξ and +2, at most equal to the number of
alternations of the series

14

ξ − 2
+

14

ξ + 2
− 1

ξ + 1
+

2

ξ
− 1

ξ − 1
.

Substituting ξ = 1 + ε, for example, in the second series, produces

−14 +
14

3
− 1

2
+ 2−∞ ;

as it shows no alternation, the equation hasn’t any roots in the interval under
consideration.

5. Finally, let us consider the interval (+2, −2) which contains the point
at ∞; for ξ in this interval, the number of roots which lie between ξ and 2 is
at most equal to the number of alternations of the series

14

ξ − 2
− 1

ξ − 1
+

2

ξ
− 1

ξ + 1
+

14

ξ + 2
,

and the number of roots between ξ and −2, at most equal to the number of
alternations of the series

14

ξ + 2
− 1

ξ + 1
+

2

ξ
− 1

ξ − 1
+

14

ξ − 2
.

Substituting in the second series, for example, ξ = 2 + ε, it becomes

7

2
− 1

3
+ 1− 1 +∞ ;
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and, as it exhibits no alternation, the proposed equation has no roots in the
interval (+2, −2).

29. The preceding equation can thus only have roots in the intervals
(−1, 0) and (0, +1).

Substituting ξ = −3

4
in the series (2), it becomes

−8

3
+

4

7
− 14 · 4

11
+

14 · 4
5
− 4 ,

and exhibits one alternation; the equation thus has one and only one root

between 0 and −3

4
and, likewise, exactly one root between −3

4
and −1.

Secondly, substituting ξ =
3

4
in the series (3), it becomes

8

3
− 4

7
+

14 · 4
11
− 14 · 4

3
+ 4 ;

as it does not exhibit any alternation, it follows that the interval
(

0,
3

4

)
contains only a single root and it is likewise the same for the interval

(
3

4
, 1
)

.

One sees therefore that the proposed equation has all of its roots real;

the first lies between −1 and −3

4
, the second between −3

4
and 0, the third

between zero and +
3

4
, and the fourth between +

3

4
and +1.

These conclusions may be, in fact, easily verified, the equation in the form
of a polynomial being

(2x2 − 1)(7x2 − 4) = 0 1 .

1This memoir formed the first chapters of a Treatise that Laguerre proposed to publish
on the theory of the resolution of numerical equations. The majority of the propositions
which it contains had already been presented in other papers by the author, but in a less
complete fashion. This is why, in order to avoid repetition and to present the results in the
form in which Laguerre indicated definite preference, we have thought it appropriate to
place this memoir at the beginning of the contributions concerning the theory of equations,
contrary to the rule which we have adopted to organize in chronological order the works
concerning a given subject. E.Rouché
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