Chapter 2

Decomposing marine pressure

data into a vector wavefield

Elastic modeling or migration of data recorded in a marine environment can be formu-
lated as a coupled acoustic-elastic problem, with a common boundary condition at the
sea floor. A simpler alternative is to solve only the elastic wave equation, with vanishing
shear moduli within the water layer. To enable the application of this approach to real
problems, it is necessary to transform the recorded scalar pressure wavefield into a vector
particle-displacement field. In this chapter [ derive a method to perform such vectorization
of recorded marine data which is completely independent of the subsurface geology. Few
assumptions are required for the theoretical justification of the method, the most impor-
tant being that the depth of the cable is a smooth function of the receiver position. The
wavefield vectorization is obtained through a simple, inexpensive, linear operation in the
frequency-horizontal wavenumber domain. Except for attenuation of near-water-velocity
dips good results were obtained when the method was applied to both synthetic and real

data.

2.1 Introduction

Wave propagation in a marine environment can be separated into two parts: propagation
through the water, for which the acoustic wave equation applies, and propagation in the
subsurface strata, for which the elastic wave equation applies. While in liquids a scalar

pressure wavefield is enough to properly describe the propagation of acoustic waves, in
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solid layers a vector wavefield (particle displacement or particle velocity) is required to
completely describe the motion of such waves. The coupling of the two wavefields can
be achieved by the application of the continuity of the normal components of stress and

displacement at the liquid-solid interface.

A different approach, on which the elastic modeling and migration method described
in chapters 3 and 4 are based, is to solve only the elastic wave equation, distinguishing the
solid and liquid regions only by their different elastic parameters. The application of the
migration method is based on the assumption that the particle displacement vector field
is known at the surface. However, a significant part of seismic reflection data collected
nowadays comes from offshore surveys, where the seismic waves propagating in the water

are recorded by pressure-sensitive phones arranged along a cable.

To apply the migration method to practical problems it is imperative that a vector
displacement wavefield be obtained from the recorded pressure field. The next sections
show that the conversion of the scalar recorded field into the elastic (vector) wavefield
at the cable depth can be achieved by the application of a simple linear filter in the

frequency-spatial wavenumber domain.

One of the critical points of the vectorization is the implicit separation of the downgoing
and upcoming waves at the cable depth. In the most general case this separation cannot
be done for standard marine data and the use of two cables at different depth has been
advocated by several authors as a way to solve the separation problem (see e.g. Monk
(1990) for a general discussion). I show that with the help of a few assumptions it is
possible to solve the wavefield separation problem for standard marine surveys. Although
the particular application described here (vectorization of the recorded field) does not
seem to be critically sensitive to these assumptions, other applications such as deghosting
may prove to be unfeasible under this separation scheme. The assumptions are that the
water surface is nearly horizontal and that the cable depth is a smooth function of the
receiver position. The cancellation of the total wavefield at some vertical wavenumbers
introduces a set of singular strings in the vectorizer operator. However, it is possible to
remove these singularities and to design a stable operator with a small loss of resolution

in events with apparent velocities near the water velocity.
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2.2 Theoretical background

2.2.1 Relating the pressure and displacement wavefields

The pressure wavefield ¢(z, z,1) in a general heterogeneous, isotropic fluid medium, obeys
the scalar wave equation
K(,2) V- (= —Vg(z, 50} = oz,
. z = —— .
((z, 2 o(z.7) T, 7, ETRASIRAE
(Claerbout, 1985), which in the frequency domain is represented by
1
K(2,2) V- {——=V¢(z,z,w)} = —w?¢(z,z,w). (2.1)
( e
In the equations above, K and p represent the bulk modulus and the density of the media,
respectively.
The P wave particle-displacement vector field u is related to the pressure by the

following expression:

e, z,w) = —K(z,2) V-u(z, z,w). (2.2)

Substituting equation (2.2) into equation (2.1) leads to
1
w?p(z, z)

Recalling that, in general, the vector field u can be represented by the sum of a

Vou(z,z,w) = V- { Vé(z,z,w)}. (2.3)

gradient potential with a rotational potential, and that in the recording medium (water)

the displacement field must be irrotational, equation (2.3) can be simplified to

1
w?p(z, 2)

This equation relates the displacement vector field to the scalar pressure field for general

u(z,z,w) = Vo(z, z,w). (2.4)

liquid media.

Difficulties arise in the computation of the pressure gradient when equation (2.4) is to
be applied to standard offshore data. Because conventional marine datasets are collected
with a single cable, positioned nearly parallel to the water surface, the horizontal derivative
of the pressure field can be easily evaluated, while the absence of vertical sampling hinders
the direct evaluation of the vertical derivative. In the next sections I derive a method for

evaluation of the pressure gradient from data acquired with a standard geometry.
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2.2.2 Decomposing the recorded pressure field into the downgoing and

upcoming wavefields

Most of the treatment that follows is carried out either in the 7-p or in the w-x, domain.
To simplify the analysis, avoiding the unnecessary intrusion of convolutions along the &,
axis, the discussion focuses on the points in space where the wavefield is measured, that
is, at the points (z, 2 = 2zp) where 2o is the cable depth. At these points the bulk moduli
and density are constant and known: K(z,z2) = K, and p(z,2) = p.

The pressure field ¢ at any position of the space can be represented as the superposition

of an upward propagating wavefield ¢, with a downward propagating wavefield ¢g4:

oz, 20,w) = Pulx,20,w) + Pa(z,20,w). (2.5)

Continuation of these wavefields in the frequency-horizontal wavenumber domain (w-x;)

is controlled by the following equations:

0 )
5;¢u(ﬁx7207w) = —1lHR; ¢u(ﬁz‘7Z07w) (26)
0 :

"a—;(l)d(ﬁzyzo,w) = 1Ky ¢d("@17207w)7 (27)

where k, is the vertical wavenumber, which relates to the horizontal slowness p through

the dispersion relation

W

2
p (ke
= —p2 = == . 2.
fr T YR TP T YVE ( ) (25)
To separate these two wavefields, we must make the following assumptions:

e The water-air reflection coefficient!® is —1.
e The water surface is nearly horizontal.

e The cable depth is a smooth function of the receiver position.

IThis is not actually a requirement but a reasonable practical choice that considerably simplifies the
mathematical treatment.
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Under these assumptions, the upcoming and downgoing fields can be related by a simple

time shift equation in the 7-p domain:

¢’d(P, 207T) = - ¢u(p7 20, T — 220(](]7)), (29)

where ¢ is the vertical slowness. When the source is located below the cable equation (2.9)
can be applied without restrictions, and the only event for which it doesn’t hold perfectly
true, for cases in which the source is above the cable, is the direct wave.

Substituting equation (2.9) into equation (2.5), both in the w-p domain, we obtain

¢(ps 20,) = ¢u(p, 20,w) [1 — exp (12z0w1/ p/ K — p?)]; (2.10)
which results in the following equations for separation of the two wavefields:

é(p, 20, w)

u\ P> <0, - ; = s 2.11
$u(p 20,0) 1 — exp(i2zwy/p/ K — p?) ( )
¢(p7 ZO»W)
s <0 - ; = = 2.12
94(p, 70,) 1 — exp(—i2zow/p/ K — p?) ( )
2.2.3 Calculating the pressure gradient in the w-x, domain
It is easy to obtain the horizontal component of the gradient in the w-x, domain
J
53;05(37, 20, w) T ik (K, 20,w). (2.13)

To obtain the vertical component however, it is necessary to uncouple the downgoing and
upcoming components. Taking the vertical derivative of equation (2.5), moving to the

w-ky domain, and using the relations in (2.7), we get

0 . , :
(.;—7¢(Kz,20,w) = Tl Ry ¢u(KzaZO’w) + 1K, gbd(ﬂxv 307w)- (214)

Finally, equations (2.11) and (2.12) can be substituted into equation (2.14) to give

%qﬁ(nz,zo,w) = K, cot(2oK,) ¢(Ke, 20,w). (2.15)

A first glance at equation (2.15) shows that it has a set of singular hyperbolic strings

in the w-x, plane, which are defined by

o) = J (Y [(Z) v

: (2.16)
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and which correspond to vertical wavelengths of ;;?Q For waves with these wavelengths,
the downgoing and upcoming fields cancel each other at the cable depth (assuming perfect
reflection at the water’s surface), and the result is a zero in the recorded wavefield. Nev-
ertheless, neither the cancellation of the wavefield, nor the singularities in the operator
restrict the complete recovery of the displacement field because, fortunately the product
of the singular operator by the null wavefield has a definite limit that can be found using
L’Hospital’s rule.

In the neighborhood of these strings, the vertical component of the pressure gradient
is given by

w 0

_ d
wﬂ.]:}l:%nx) % H(Ky,y 20,w) = o A Kes 20, w). (2.17)

2.2.4 The vectorizer operator

Using the partial derivatives defined by equations (2.15), (2.17), and (2.13), we can express

equation (2.4) as a simple linear operation in the w-x, domain:
u(ky, 20,w) = z(ﬁx,zo,w) A Ky, 20, W), (2.18)

~
where & is the vectorizer operator, whose components are

Keg = ;;—2‘ Kz, (2.19)
(2.20)
——1—2 cot(z0k,) K, for  w # w,(ky)
p = (2.21)
2K n? 0 _
gl Yim for w=uw,(K;).

The horizontal and vertical components of the operator represented in equations (2.19)
and (2.21), are illustrated in Figure 2.1 in both the frequency-wavenumber and the space-
time domains. It is important to realize that while Figures 2.1a and 2.1c multiply the
Fourier-transformed pressure field, 2.1e multiplies the frequency-derivative of the same
transformed field. Therefore, while 2.1b and 2.1d should be convolved with the pressure
field, 2.1f should be convolved with the time-scaled pressure field (which is, in practice,
equivalent to convolving it with the wavefield corrected for 2-D divergence). Only the
non-zero parts of the operator are represented in the figure, that is, the imaginary parts

in 2.1a and 2.1f and the real parts in the other four images.
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FIG. 2.1. Wavefield vectorizer operator. (a) K, in w-k,; domain. (b) K, in z-f domain.
(¢) Kz in w-K; domain (for w # wr(Ky)). (d) £, in z-t domain (for w # w,(k;)). (e) K, in
w-ke domain (for w = wp(ky)). (f) £; in z-t domain (for w # wy,(ky)).
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It is interesting to observe that the impulse response of K, in the space-time domain
clearly resembles the convolution of a second derivative in time (with reversed sign) with
a first derivative in space. Inverse theory tell us that the first approximation to the inverse
is the conjugate operator, and in this case we find that the double time integration coming

from the 1/w? term resembles the negative second time derivative in the time domain.

2.3 Application of the method to synthetic and real data

To test the resolution of the method I generated a synthetic dataset using the elastic
finite differences algorithm described in chapter 3. The pressure wavefield is obtained at
each time step from the displacement field by taking the divergence of the displacement
field and multiplying by the bulk modulus (Equation (2.2)). Both the displacement and
pressure wavefields were “recorded” at the gridpoints associated with the recording ca-
ble. Figure 2.2a shows the structurally complex model used to generate the data and
Figure 2.2b shows the recorded pressure field corresponding to a shot gather which has
a diversity of events which include non-hyperbolic reflections, diffractions, and converted

modes.

Figure 2.3 compares the true (computed by the modeling algorithm) horizontal compo-
nent of the displacement field with the horizontal component retrieved from the pressure
field using the vectorizer operator. The same comparison for the vertical component is
shown in Figure 2.4. The result from subtracting the true from the retrieved fields is
shown in Figure 2.5. The differences are larger at the near and far offsets because of the
missing information associated with the finite aperture of the data. The direct wave, as
well as other events with similar stepout, are also not correctly retrieved because of the
taper that needs to be applied near the boundary with the evanescent region (k, = w/v).
This taper is important not only because of the evanescent region but also because the
direct wave is not correctly handled by Equation (2.18) since the source in this synthetic
case (and also in the field data example) is located above the cable. As one would expect,
the fit between the true and retrieved wavefields is better for the horizontal component
because it is much easier to compute the spatial derivative along the direction in which

the data is collected than orthogonally to that direction.

Figure 2.6 shows the time-spectra of a near and far offset of the retrieved and true
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FIG. 2.2. (a) P-wave velocity component of the elastic model used to generate the synthetic
data. (b) Pressure field at depth 12.5 meters, corresponding to a common shot gather
generated by an elastic modeling algorithm using the model shown in (a).
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vertical components. This figure shows that the frequencies where the zeros of the spec-
trum are located were correctly estimated, but their amplitudes (i.e., how far they are
from the unit circle) are slightly different from the correct ones. Also visible is the fact
that the spectrum of the estimated component is slightly more red (more low frequency
content) than the spectrum of the true component. This is not surprising since the ver-
tical component of the vectorizer operator clearly favors the low-frequency part of the

spectrum.

The method was also tested on an offshore dataset from Brazil, which was recorded
in an area with an irregular ocean floor, and with slightly structured subsurface geology.
According to the observer’s report, the cable depth ranged from 8 to 12 meters, with an
average of 10 meters. Moderately strong winds were also reported resulting in a non-
stationary level of the sea surface. Figure 2.7a shows the common shot gather used in the

tests and Figure 2.7b shows low frequency version of the same gather.

Figure 2.8 shows the resulting displacement vector field obtained with the method
described in this chapter. A first glance at this figure reveals a striking similarity between
the the horizontal component and the unfiltered pressure field in Figure 2.7a and between
the vertical component and the filtered pressure field in 2.7b. There are however important
differences in the amplitude and phase of these “similar” wavefields. Low dip events which
are visible in the unfiltered pressure field are absent or largely attenuated in the horizontal
component. Most of the energy in the horizontal component is concentrated at the far
offsets. The first sea floor multiple is more continuous (at the far offsets) and has a
different phase in the horizontal component than in the pressure field. Most events have
better lateral continuity in the vertical component than in the filtered pressure field. The
strong reflection that lies just below the sea floor reflection at the longest offset of the
filtered pressure field has the same phase as the horizontal component at the far offsets
and the same phase as the vertical component at intermediate and near offsets. Finally,
we notice that as a side-effect, the gap of two traces in the original pressure field has been

filled in the components of the displacement field.

To understand why the dominant frequency is lower in the vertical component than
in the horizontal component it is important first to make a distinction between the zeroes
in the spectrum of the pressure field and the zeroes in the spectrum of the horizontal and
vertical components of the displacement field. The zeroes in the spectrum of the pressure

field coincide with the zeroes in the spectrum of the horizontal component and correspond
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FIG. 2.3. (a) Horizontal component of the displacement field generated by an elastic
modeling algorithm. The pressure field in Figure 2.2 was obtained from this component
and the vertical component shown in Figure 2.4a by a divergence operation. (b) Horizontal
component retrieved from the pressure field using the vectorizer operator.
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FIG. 2.4. (a) Vertical component of the displacement field generated by an elastic modeling

algorithm. (b) Vertical component retrieved from the pressure field using the vectorizer
operator.
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FIG. 2.5. (a) Difference between the true and retrieved horizontal components shown in

Figure 2.3. (b) Difference between the true and retrieved vertical components shown in
Figure 2.4.



24

Te)
o
+ .
v
o
v v
T 0 e
oo b0
Rl =<
E‘*Lg 2o
g E —
© ctS
© _\ T — ?’_A— © _( T - ? —
0 20 40 0 20 40
frequency(Hz) frequency(Hz)

FIG. 2.6. Comparison between the time-spectra of the true and retrieved vertical compo-
nents shown in Figure 2.4 for (a) the fifth offset and (b) the 80th offset.

to wavelengths which are submultiples of twice the cable depth (i.e. nA = 2z, ). On the
other hand, the zeroes of the vertical component are associated with vertical wavelengths
that obey the equation (n 4 1/2)A = 2z, . For these particular field data (29 = 10
meters, v = 1500 m/s), and for vertical incidence, the first zero of the vertical component
is located at f = v/(42p) = 37.5 Hz, while the first zero of the horizontal component
and of the pressure field (after the zero frequency) is located at f = 75 Hz. For non-
vertical incidence, these notch frequencies increase with the secant of the incidence angle.
Figure 2.9 shows the smoothed spectra of the pressure field and the two components of
the displacement field for a near-offset trace and a far-offset trace. Because of the zero at
37.5 Hz the vertical component has a lower bandwidth and a lower fundamental frequency
than the horizontal component and the pressure data. A comparison between the near
and far traces shows that the colors of the three wavefields become more similar as the
propagation angle increases. As expected the vertical component has a pole at 75 Hz,
where the horizontal component vanishes. This high-frequency part of the spectrum was
filtered out of the field data examples for several reasons: some high-dip events become
spatially aliased at these frequencies; the signal-to-noise ratio is lower in this part of the
spectrum; and keeping this isolated pick in the spectrum introduces a monochromatic
pattern in the data.

Although a direct comparison with the true vector field is not possible in this field data
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FIG. 2.7. (a) Common shot point gather from Brazil. The average depth of the cable is
10 meters. (b) The same gather shown in (a) after the application of a high-cut filter.
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FIG. 2.8. (a) Horizontal and (b) vertical components of the displacement field retrieved
from the pressure field shown in Figure 2.7.
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FIG. 2.9. Smoothed spectra of the pressure field (continuous line) , the horizontal
component (dashed line) and the vertical component (dotted line) for ( a) a near offset

trace and (b) a far offset trace.
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example, there are some tests that can show at least the self-consistency of the results.
One test involves the sensitivity of the method to errors in the correct depth of the cable.

” at the same time an

In the space-time domain each point of the cable will “see
upcoming wavefield arriving at an angle 6,, and a downgoing wavefield arriving at an
angle 045, If the subsurface has some degree of lateral smoothing, then 6,, ~ —84,un
and the amplitude of the downgoing wave will be a delayed version of the amplitude of the
incident wave with reversed polarity. The resulting superposition will have an apparent
arrival angle (as measured by the displacement field direction) that covers the full range
from —8 to 8. In addition the total wavefield will have maximum amplitude at the apparent
angle 8 = 0.

Figure 2.10 shows the absolute apparent angle panels generated from the elastic wave-
fields estimated from the data in Figure 2.7 using six different values of cable depth. The
first two panels are predominantly dark with a few white sparks, which indicates very
small apparent angles, that is, almost vertical arrivals. The last panel starts to became
dark again and lose lateral coherence, which indicates random apparent angles. The three
panels corresponding to cable depths of 10, 14, and 18 meters give the more coherent

images, which is consistent with the values reported in the field observer’s log (14 & 2).

2.4 Summary

To allow the implementation of the elastic reverse-time migration algorithm for marine
datasets it is necessary to convert the recorded pressure field into a vector displacement
field. Although the two wavefields are related by a very simple equation (the displacement
field is proportional to the gradient of the pressure field), it is not possible in practice to
directly apply this equation to most real cases. The reason for this practical difficulty is
that vertical component of the gradient cannot be directly computed in the space domain
because the typical marine geometry comprises a single horizontal line of receivers. How-
ever, with very few assumptions it is possible to separate the upcoming and downgoing
compornents of the wavefield and obtain an operator in the frequency-horizontal wavenum-
ber domain that can effectively compute the pressure gradient. Results with synthetic and

real data demonstrate the applicability of the method.
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FIG. 2.10. Apparent-angle coherence analysis of the data shown in Figure 2.7. Each panel

corresponds to an arriving angle panel for the elastic wavefield obtained with different

values of cable depth.
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