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ABSTRACT

Migration and inversion of marine seismic data using the elastic wave equation requires
the transformation of the recorded pressure data into a vector particle-displacement field.
This can be done easily when the recording geometry samples the wavefield both horizon-
tally and vertically. However, only experimental surveys have cables located at different
depths. Using a few assumptions, I derive a method for performing this transformation,
which is applicable to standard surveys. The assumptions are: smooth water surface, cable
nearly parallel to water surface, and perfect seismic-reflection at the water surface. Results
in a realistic example, where these assumptions are only partially fulfilled, demonstrate
that the method is robust.

Elastic, reverse-time migration/inversion schemes in the space-time domain are usu-
ally implemented by finite-difference or finite-element methods. When imaging beyond
structures, a dynamically accurate scheme must be used. For models characterized by
layers with sharp boundaries traditional finite-difference methods fail to correctly describe
the dynamics of the propagation process. Failure comes from the lack of distinction be-
tween model and field variables; the same difference operator is applied to discontinuous
(model) and continuous (wavefield) components. The problem is solved with a modified
finite-difference scheme (dual-operator), which uses long operators for wavefields, short
operators for elastic parameters, Shoenberg-Muir (1989) equivalence relations and a mod-
ified Virieux (1984) staggered grid scheme. Tests show that the the dual-operator is
dynamically more accurate than traditional finite-difference schemes and comparable to
Haskell-Thomson schemes.

In structurally complex media, accurate recovery of angle-dependent reflectivities re-
quires elastic prestack migration. Mode separation can be done before or after depth
extrapolation. Though more complex, the latter is more complete because it images mode-

converted waves. Standard depth-extrapolation and imaging approaches are unsuitable



for true-reflectivity recovery. I introduce an extrapolation method which properly com-
pensates for transmission/conversion losses. This method is combined with an imaging
condition that performs the plane-wave decomposition of the downward extrapolated data
to define the plane-wave-response (PWD) migration. The four image-cubes generated by
the PWD migration correspond to the plane-wave angle-dependent reflectivities for PP,
PS, SP, and SS modes, and directly relate to the Zoeppritz equations because they repre-

sent the in-depth plane-wave response of the medium.
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