Chapter 4

Interval-velocity estimation for

2-D prestack depth migration

4.1 Velocity analysis: an optimization problem

I pose interval-velocity estimation as an optimization problem and try to find the interval-
y;éldcity model that gives the best prestack-depth-migrated image of a data set. As dis-
cussed in Chapter 1, there are many possible definitions of “best image.” I define the best
image to be the one whose events stack most coherently after prestack depth migration.

The relation between an interval-slowness model and the images of events after prestack
depth migration with that slowness model is complicated and nonlinear. Rather than op-
timizing the interval slowness directly by varying images with prestack depth migration, I
migrate constant-offset sections with an initial interval-slowness model w,. I then measure
residual moveout using residual NMO+DMO described in Chapter 2. Governed by the
theory of Chapter 3, I solve an optimization problem to find a change to the interval-
slowness model Aw that explains the measured residual slownesses.

This update to the interval-slowness model can be combined with the initial slowness
model and used to depth-migrate the data again. Since residual prestack time migration
and the relations between interval slowness and residual slowness I use are approxima-
tions to residual prestack depth migration, the new interval-slowness model might not
be optimal when used to migrate the data. As long as the new model is closer to the
correct model, the process can be iterated because the various approximations become

more accurate.
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4.1.1 Objective function

Data component

Residual-NMO+DMO correction after prestack depth migration builds a velocity-analysis
cube consisting of semblance versus residual slowness for all events. The value of residual
slowness that has the maximum semblance for a given event describes the kinematics of
a residual-migration operator that best fits the event’s residual moveout. One possible
approach to formulating an optimization problem is to pick the peaks of the semblance
for each event. The optimal change to the interval slowness is the one that best predicts
the picked residual slownesses using the operator G from Chapter 3. The goodness or
badness of a change to the interval-slowness model is evaluated by the distance between
the peaks it predicts and the picked peaks; this gives a least-squares objective function.

As discussed in Chapter 1, I prefer not to pick, either moveout or peaks of semblance.
Toldi (1985) showed that the semblance function itself is a more robust objective function
than measuring distance from picks for two reasons. First, the pick itself is uncertain and
requires a judgment call. Second, once far enough away from a peak, the semblance values
approach zero and do not “feel” the peak. The quadratic function fit through the peak
implied by a least-squares objective function feels the peak infinitely far away. The effect
of a bad or inconsistent pick can never be ignored in a least-squares algorithm, but it is
easily ignored using semblance itself as an objective function.

Build the data component of the objective function by finding the residual slowness
for each event given a change in interval slowness (using G) and summing the semblance

values at the appropriate residual slowness for all events.

Qa(w)=D_S(v(&nw),&n) . (4.1)
&n

S is the semblance at a given location ({,n) in the data space for a given v, and v at a
particular event (£, n) is a function of the interval-slowness model w.

Rather than using all possible locations in the migrated image, it is possible to se-
lect the most prominent events and only sum the semblance for those events. Using only
prominent events saves time and storage when computing the operators of Chapter 3. Fur-
thermore, by avoiding multiples or other undesired events, the velocity information of the

objective function is more consistent with the primary-reflection model used by prestack
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FIG. 4.1. The objective function is evaluated by summing semblance along a trajectory
of v vs. reflector. Summing along the curved line will give a higher value than summing
along the straight line. The maximum possible value of the objective function is cbtained
when « vs. reflector lies on the peaks of the semblance panel.

depth migration. Parameterize £ and 7 as functions of picked reflector r, £(r), n(r).

Qa(w)= D_  S((&(r),n(r); w), &(r),n(r)) - (4.2)

r=reflectors

Figure 4.1 shows semblance versus residual slowness extracted along a single reflector.
The dark curves are the 4’s predicted by G for two different changes to the interval-
slowness model. Changes to the interval-slowness model that predict residual slownesses
near the peaks of the semblance (curved line) will give a large value for the sum in equa-
tion (4.1). Changes that predict residual slownesses away from the peaks (straight line)
give smaller values for @4. The maximum value of Q4 occurs when the curve of predicted
~’s lies exactly along the peaks of the semblance.

Semblance versus residual slowness can be sharply peaked when velocity resolution in

the migrated data is good; other more sophisticated velocity measures (Key and Smithson,
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1990) can have even higher resolution than semblance. If the initial velocity model does
not put the peaks of semblance (or other coherency measure) near v = 1, it may be
difficult for an optimization method to find the peaks. This problem is easily solved by
smoothing the semblance over 4 until the optimization method finds the peaks. After the

peaks are found, the smoothing can be removed in pursuit of higher resolution.

Model component

If reflectors are sparse, it is possible for several different interval-slowness models to predict
the same residual slownesses (caused by the null space of G,; see Figure 3.12). The
objective function given by equation (4.2) has no way to discriminate between two different
changes to the interval-slowness model if they produce the same residual slowness. We
can add terms to the objective function that prefer some types of interval-slowness models
over others. To favor smooth interval-slowness models add terms to penalize to the norm

of the z and z derivatives of the slowness model.

Qm(w) =€, 3—:’“ : (4.3)

ol
oz €

Fi

|||] implies integration of the norm over the whole model. Take ¢, and ¢, to be negative to
decrease the objective function when the norms are non-zero. It is important to penalize
the entire slowness model w = w, + Aw and not just the change to the slowness model,
otherwise the total slowness model may not be smooth if the penalty only applies to the
change to the interval slowness. To keep the interval-slowness model near an a priori
model, add a term that penalizes the distance of the computed model from the a priori

model.
Qm(w) = Qm + €flw — wy|| . (4.4)

As above, ¢, is negative to decrease the objective function as the computed model deviates
from the a priori model.

Different constraints are appropriate for different a priori information about the ve-
locity model for a given data set. Equation (4.3) would be more appropriate when little
is known about the velocity or the velocity information in the data is incomplete or self-
conflicting. Equation (4.4) is appropriate for including information from check shots or

well logs.
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The total objective function to be maximized is obtained by adding the data component

and model component.
Q(w) = Qa(w) + @m(w) . (4.5)

The strengths of the constraints relative to each other and to the data component of the
objective function are modified by varying the sizes of ¢, and ¢, in equation (4.3) and ¢, in

equation (4.4). The values of the various €’s can be made a function of position if desired.

4.1.2 Model parameterization

Computations can be performed in terms of slowness or velocity. Although I often refer
to the computations or to the entire thesis as “velocity analysis,” I use slowness in compu-
tations since the traveltime-tomography calculations at the heart of the method are more
nearly linear when slowness is used to describe the medium (see equation (3.2)).

_Velocity or slowness models are often represented on a fine grid of points with the same
sampling interval as the output sampling intervals of migration programs or other process-
ing programs. Although this parameterization allows almost any model to be described, it
iéldiﬁicult to use for interval-velocity estimation. The migration algorithms I use are based
on high-frequency assumptions, so the effects on wave transmission of high wavenumbers
in the velocity model are neglected. Furthermore, since I assume the movement of reflec-
tors caused by changes in the interval-velocity model can be approximated by a residual
time migration, high wavenumbers in the update to the interval-slowness model will not be
accounted for properly. Finally, a smooth parameterization of the interval-slowness model
results in fewer unknowns to estimate. This makes solving the optimization problem less
expensive and better conditioned than using a fine-grid representation of the model.

Cubic splines are a convenient parameterization for the model. If a point (z, z) in the
model falls between nodes ¢ and ¢ + 1 in the z direction and between j and 5 + 1 in the
z direction, the slowness at the point can be evaluated as a linear combination of the 16
surrounding nodes.

2 2
w(z,z) = Z D" Ci(z — 2:)Ch(z ~ 2z;)Wisr e - (4.6)
I=—1k=~1

The slowness model is described by a vector of node values w, where a single node is
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denoted w; ;. C; and Cj, are the spline coefficients and are a function of distance between
nodes in z and z.

Smooth parameterizations imply that “blocky” velocity models, the kind often used as
interpreted models, can’t be described; because they explicitly couple both high and low-
wavenumber information about the velocity model. Although smooth velocity models may
not look like geologic interpretations, they can contain most of the traveltime information
that can be resolved from seismic reflection data. High-wavenumber information such as
locations of formation boundaries or sharp changes in interval velocity do not affect the

traveltime of waves transmitted through those features.

4.2 Updating the interval-slowness model

Nonlinear optimization problems like the one posed in the previous section can be at-
tacked with a variety of methods such as gradient-ascent methods or simulated-annealing
methods (Rothman, 1985). I chose to use a gradient-ascent method rather than simulated
annealmg because nonlinear forward modeling using the operator of Chapter 3 is expen-
sive and gradient-ascent methods usually require fewer function evaluations and often give

worthwhile partial results.

4.2.1 Gradient of the objective function

A key ingredient of all gradient-ascent methods is the gradient of the objective function
with respect to the model. In classical tomography problems this is called the back-
projection operator. For the optimization problem of the previous section, the gradient
has two components: the data component which comes from the semblance cube and the

model or penalty component.
VwQ = VwQa + VwQ,, . (4.7)

The gradient of the model component of the objective function can be calculated
analytically using the cubic-splines formula or by simple differencing formulas applied to

the node values. For example, the term involving penalties on the z derivative can be
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approximated with
V;iQm = =26, D}w; ; — 2¢, D7 Wi ; (4.8)

where D} and D are forward and backward differences in z.

Applying the chain rule, write the ¢, 5 component of the gradient of the data part of

the objective function with respect to the interval-slowness model.

3S(v,€,n) 35(v,&,n)8v(&n)
0. = oo\, 8,1) _ . 4.9
Vt »J Qd reﬂgon aw‘a nﬂ§°“ 6'7 aw‘,j ( )

€,n are functions of reflector position as in equation (4.2). Thus, there are two steps
involved in computing the gradient of the data component of the objective function. The
first deals only with the semblance data space S(v,&,n). Since we have precomputed
values of S for each £, n, and «, the derivative of the objective function with respect to v
can be calculated numerically, for example with a finite-difference formula.

si

a Y )
w= %7[5(7+A7,£,n)—5(7,£,n)] : (4.10)

Remember that « is a function of reflector position. The second step deals only with
the relation between interval slownesses and residual slownesses. Multiplying 6S/6v by
dv/0w; ; for all 1, 7 is equivalent to multiplying by the adjoint or transpose of the linearized

operator of Chapter 3.

Write the total gradient of the objective function with respect to the interval-slowness

model as

5
VwQ = [Gf - ﬁc’;’} VaQd+ VwQum - (4.11)

Since G and G, contain a tomography operator, the gradient of Q as written in equa-
tion (4.11) is a filtered tomographic back-projection (Fowler, 1988). The filter converts the
changes in stack semblance that improve the objective function into changes in traveltimes

and finally into an update for the interval-slowness model.
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4.2.2 Iterative velocity-analysis algorithm

The optimization problem posed in the previous section is nonlinear in several ways. First,
semblance versus residual slowness for each event and thus for the image as a whole is
non-quadratic. As discussed in the previous section, using semblance itself can be more
robust than trying to least-squares fit picked values of residual slowness; but the non-
quadratic nature of the objective function can lead to slow convergence of the solution to
the optimization problem if methods for strictly quadratic functions are applied. Second,
the relation between changes in interval slowness and residual slowness is nonlinear due
to the movement of reflectors and the change in ray paths when interval-slowness pertur-
bations accumulate. Finally, approximating residual depth migration with residual time
migration is only valid for a certain range of perturbation to the interval-slowness model.
When the interval-slowness model changes significantly it may be necessary to remigrate
the data.

Taking into account the hierarchy of nonlinear effects, the following algorithm finds
the interval-slowness model that minimizes residual moveout of prestack-depth-migrated
data.

-;7 Obtain initial slowness model wg, set { =0
Outer loop over interval-slowness models w; {

Migrate the data with w;

Check for convergence: no remaining residual moveout — done.

Apply residual NMO+DMO: compute S(v,7)

Pick important reflectors

Compute the operator G

Solve for Aw,; using conjugate-gradient method

Witl = Wi + Aw;

t=1+1
}

To solve for Aw;, the update to the interval-slowness model, I use the PARTAN variant
of the conjugate-gradient method discussed by Luenberger (1984).

Find gradient: VgQ =[G, - %—:‘G,]V.,Qd + VwQm
Line search for a that maximizes Q(aVwQ)
Awy = aVyQ

Loop over conjugate-gradient iterations: J=1{
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Find gradient VyQ =[G, — g—}G,]V.,Qd + VwQm

line search for a that maximizes Q(Aw;_; +aVwQ)

AW = Aw;_; + aVwQ

line search for § that maximizes Q(Aw;_;+8(AW'—Aw,_1))
Update Aw; = Aw;_; + (AW — Aw,;_;)

Update reflector position map z(r), z(r), 6v/67

Check for convergence VowQ ~0: Aw; = Aw; ; Break

Elgse j=75+1

4.3 Synthetic example

The synthetic data of Chapter 3, section 4 were migrated with a constant interval-slowness
model. We can use the algorithm presented above to solve for the interval-slowness model
that best migrates the data. Figure 4.2 is the same as Figure 3.19 and shows the initial
migrated and stacked image. The lower reflector has pull-up caused by ignoring the high
Vglocity beneath the first reflector and a push-down caused by the local anomaly above
the first reflector. The intensity plot shown in Figure 4.3 is the same as the intensity plot
of Figure 3.20 and‘shows horizon residual-slowness analyses for the two reflectors in the
initial image. These semblance panels serve as the data part of the objective function. I
ran the inner iterations of the velocity-analysis algorithm to find a change to the interval-
slowness model that predicts the v values of the peaks of semblance. The conjugate-
gradient method was run until the 4’s predicted by the change to the interval-velocity
model were on top of the peaks as shown by the dark line in Figure 4.3. Figure 4.4 shows
the new model obtained by adding the estimated Aw to the previous constant-slowness

model. This represents the result of one outer iteration of the velocity-analysis algorithm.

To verify the correctness of the new model, migrate the data with it. If the semblance
peaks do not line up at 4 = 1, further outer iterations are needed. Figure 4.5 shows the
migrated and stacked image obtained with the updated interval-slowness model after the
first iteration of velocity analysis. The new migrated reflector positions are closer to their
true positions than before but still not correct. There are places on both reflectors that

are still affected by the shallow anomaly, and there is long-wavelength structure on the
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FIG. 4.2. Migrated and stacked section obtained using a constant-velocity model. The
goal of welocity analysis is to estimate an interval-slowness model that migrates the data
correctly.

deeper reflector. To see if there is any more velocity information in the data, follow the
algorithm and build the residual-slowness analyses again. The intensity plot of Figure 4.6
shows horizon residual-slowness analyses for the two reflectors after migration with the new
slowness model. Much of the long-wavelength trend in 4 on the lower reflector has been
removed but both reflectors still have short-wavelength variations in 4 and in migrated
position.

Now that the reflectors are closer to their true positions we have a better chance for
estimating the short-wavelength anomaly. Since the updated model already predicts the
long-wavelength features of the interval-slowness model, there is less hope that further
iterations can move the lower reflector much closer to its true depth. The long-wavelength
(about 10 km) error most likely corresponds to the null space of G since its wavelength
is about the same as the zero of the spectrum G, shown in Figure 3.12. If there were
more reflectors, the effect of the null space of G., would be less dramatic since the 10 km

wavelength would fall in different regions of the spectra of the operators for other reflectors.
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FIG. 4.3. Horizon residual-slowness analyses for the first outer iteration. The line shows
the v vs. reflector predicted by the change to the interval-slowness model.
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FIG. 44 Change to the interval-slowness model Aw estimated from residual-slowness
analysis applied the reflectors of Figure 4.2

To remove the effect of the short-wavelength variations in v and to try to make the
bottom reflector flatter, I ran another outer iteration. Figure 4.7 shows the final interval-
slowness model obtained after two iterations of the velocity-analysis algorithm. The curves
overlaid on the semblances of Figure 4.6 show the 4’s predicted by the second outer
iteration of the velocity-analysis algorithm. Figure 4.8 shows the stacked section after
prestack depth migration using the new (final) interval-slowness model. Some of the long-
wavelength structure on the lower reflector is removed. The short-wavelength anomaly
has been estimated and its effects on the two reflectors removed. Figure 4.9 shows horizon
residual-slowness analyses after the final migration; the peaks of the semblance are almost
exactly at v = 1 indicating that the final model accounts for the velocity information that

can be resolved using moveout over offset.
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FIG. 4.5. Stacked image after prestack depth migration using the interval-slowness model
obtained by one outer iteration of velocity analysis.
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FIG. 4.6. Horizon residual-slowness analysis after migration with the first updated
model. Both reflectors only show short-wavelength departures from 4 = 1 indicating
the long-wavelength features of the slowness model are accounted for. The curve shows
the v’s predicted by the second outer iteration of velocity analysis.
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FIG. 4.7. Interval-slowness model obtained after two iterations of the velocity-analysis

algorithm. The dark values are low slowness or high velocity; the light values are high
slowness or low velocity.
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FIG. 4.8. Stacked section after prestack depth migration using the model obtained after
two iterations of the velocity-estimation algorithm. Some incorrect long-wavelength struc-
ture remains on the lower reflector; most of the short-wavelength effects on both reflectors
have been removed.
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FIG. 4.9. Horizon residual-slowness analyses of the two reflectors after the final iteration
of the velocity-analysis algorithm. The semblance peaks occur at v = 1 indicating that
all moveout information in the data is predicted by the final interval-slowness model.



