Chapter 3

Relating changes in interval

slowness to residual slowness

3.1 Introduction and overview

The previous chapter provides a method for measuring residual slowness (or velocity)
which measures moveout or discrepancy in position versus offset of the images of reflectors
after prestack depth migration. To make these measurable residual slownesses useful for
interval-velocity analysis requires relating them to changes in an interval-slowness model.
This chapter develops an operator that relates the unknown but physically relevant interval
slownesses to residual slownesses that can be measured.

Loinger (1983) and Toldi (1985) described linear relations between laterally varying
interval slownesses and observed laterally varying stacking slownesses for horizontal reflec-
tors. Fowler (1988) extended Toldi’s work and derived a linear relation between prestack
time-migration slownesses or DMO-corrected stacking slownesses and interval slownesses
for arbitrary structure. I extend the previous work and build an operator that relates resid-
ual slowness, measured after prestack depth migration, to changes in the interval-slowness
model used for prestack depth migration. In the words of Fowler (1988) the operator
I build, like the aforementioned operators, is a filtered traveltime-tomography operator.
They are “tomography” operators because they involve a traveltime-tomography calcu-
lation. The “filter” converts the changes in traveltime to changes in stacking slowness,
prestack time-migration slowness, or residual slowness.

The advantage of using prestack depth migration and residual prestack migration for
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velocity analysis rather than ﬁsing DMO-corrected stacking slownesses or prestack time-
migration slownesses is two-fold. First, depth migration is needed to position events
properly. It is easier to compute the correct location of a migrated event as a residual
correction to a prestack depth-migrated image than find its location from a stacked im-
age or time-migrated image. More importantly, since the estimation process is iterative
and large changes to the interval-slowness model may accumulate, it is important to in-
corporate the effects of changes in the interval slowness into the background model as
the iterations proceed. Depth migration gives proper common-reflection-point gathering,
moveout correction, and event positioning in a laterally varying velocity model. Methods
that rely on NMO, NMO and DMO, or time migration can’t fully remove the effects of a
laterally varying background velocity model because they use constant-velocity kinematics
to focus and position events.

As discussed in Chapters 1 and 2, it is desirable to estimate residual slownesses for fixed
reflection events, rather than fixed points in depth. The tomography calculations carried
out to build the operator have to be performed for fixed points in depth. Therefore, the
operator is built in two parts. The first part (section 3.2) finds a relation between changes
in the :;iinterval-slowness model and changes in both the residual slowness and apparent
position of a fixed point in depth using traveltime tomography. The second part (section
3.3), takes the changes in residual slowness for fixed depth points and converts them to
changes in residual slowness for fixed events. To do this, I find the new depth locations
of all fixed events and interpolate their residual slownesses from the residual slownesses of
the underlying fixed depth points. This calculation employs the zero-offset part of residual

prestack migration saved from Chapter 2 to model the movement of reflection events.

3.2 Reflector tomography for fixed depth points

There are three components to the first part of the tomographic operator. First, using
traveltime tomography, I find the changes in traveltimes to fixed points in depth due to
changes in the interval-slowness model. Second, a change in the traveltime to a fixed depth
point implies that the image of any reflector present there must move. The implied reflec-
tor movement means that the fixed depth point displays the image of a different reflector.
Using the kinematics of residual migration from Chapter 2, compute the location of the

event that moves to the fixed depth point as the model changes. The different specular
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rays for each different migrated offset collect different traveltime perturbations, so the
reflector movements for each offset are computed independently. The points calculated
this way describe a “stacking trajectory” that collects the images of reflectors from dif-
ferent constant-offset sections, moves the images to the specified depth point, and stacks
the images together. Such a trajectory calculated for any given change in the slowness
model is a residual depth migration. Rather than using the calculated residual depth mi-
gration, I find the residual time migration that best approximates it using least squares.
The least-squares fit combined with the tomography calculation defines the operator that
relates changes in interval slowness to changes in the residual slowness. We could form
an approximate stacked image after residual depth migration of a fixed depth point by
finding the best fitting residual time migration and selecting the appropriate image from

the space of all residual time migrations computed with the method of Chapter 2.

3.2.1 Relating changes in interval slowness to changes in migrated

‘position
At due to Aw(z,z)

Jéonsider the reflector shown in Figure 3.1. For a given reflector point and a given dip
6, the family of specular rays, rays that obey Snell’s law: angle of incidence = angle of
reflection at the reflector point, are the rays along which most reflected energy travels. If
the interval-slowness model w(z, z) is perturbed by adding Aw(z, z), the traveltime of any
ray passing through the perturbation will change. Write the traveltime calculated along

a specular ray from source to a subsurface point to receiver as

t,.a,,=/ w(z,z) ds ; (3.1)
ray

where s is arc length.
Fermat’s principle states that traveltime is stationary with respect to ray path. For
small perturbations to the interval-slowness model, Aw(z, z), calculate the change in trav-

eltime from a source to a reflector to a receiver with
At = / Aw(z,z) ds . (3.2)
ray

Thus, Fermat’s principle implies we can find the change in traveltime by integration of
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FIG. 3.1. Specular rays for a dipping reflector. If the specular ray for a given offset goes
through the slowness anomaly, the position of the reflector will be perturbed.

the anomalous slowness along the unperturbed ray.

Ao, due to At

A change in traveltime along a specular ray caused by a change in interval slowness causes
reflector images to move. We wish to find the reflector image that moves to a fixed depth
point of interest. In effect this requires calculating a residual depth migration. Since the
next part of the operator calculation would fit the residual depth migration with a residual
time migration, I use this opportunity to make a simplifying approximation. Rather than
calculating reflector positions based on residual depth migration which requires extensive
ray-tracing or other traveltime computations, I directly convert the change in traveltime

to an effective residual time migration for each offset.

¢ = w[\/(z—E—-h)2+z2+\/(z—£+h)2+z2] : (3.3)

t+At = w'[\/(x—f—h)2+z2+\/(:c—£+h)2+z2] . (3.4)

The two equations above state that an accumulated change in traveltime At can be
interpreted as an effective residual slowness, o), = (At + t)/t, where t is the original total

traveltime along the specular rays from source to depth point to receiver. Equations (3.3)
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and (3.4) are just a restatements of equations (2.6) and (2.8) keeping the depth point fixed
rather than the traveltime fixed.

Equations (3.3) and (3.4) imply that a change in traveltime is accounted for with
reflector movement along a time-migration trajectory in a medium with the average of the
slownesses encountered along the original rays. In reality, the traveltime is accounted for
with motion along a depth-migration trajectory in the true interval-slowness model. The
approximation in equations (3.3) and (3.4) can be improved by computing the traveltime
change along the same time-migration trajectory but in the true interval-slowness model.

The preceding discussion assumes that the interval velocity is “smooth” within the
range of motion of reflectors to our point of interest. If the assumption is true, residual
time migration locally resembles residual depth migration. When the assumption is not
true, the mapping between original migrated position and original migrated dip to new
migrated position and new migrated dip can change rapidly and will not resemble the
constant-velocity derived map. Then, residual depth migration is necessary. However, if
residual depth migration is necessary for the individual offsets and cannot be approximated
with residual time migration, it is unlikely that fitting the residual migration of each
independent offset with the kinematics of one overall residual slowness (done in the next
:’slection) will be meaningful; nor is it likely that a coherent event will show up in a stacked

section at this location.

3.2.2 Relating changes in migrated position to changes in residual
slowness for a fixed depth point

The stacking trajectory computed in the previous section is composed of the independent
movements of the different constant-offset sections; an image of a depth point can be
formed by stacking over that trajectory. Rather than just stacking with that trajectory, it
is more efficient to use the space of all possible residual time migrations to find the stacked
image of the point of interest. This requires finding the single residual time migration
that best fits the independent residual constant-offset migrations. Recall that residual
prestack migration has three parts: residual NMO, residual DMO, and residual zero-offset
migration. To fit the computed stacking trajectory we may be required to use different
amounts of correction from each part (e.g., a different residual NMO velocity than zero-
offset residual-migration velocity). Rather than fitting all three corrections separately, I

force the residual-DMO correction to be consistent with the residual-NMO correction and
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I only use information from the NMO component and the zero-offset residual-migration
component. If residual time migration fits the stacking trajectory perfectly, the residual-
NMO and residual-DMO parts are consistent. As long as the interval slowness is smooth,
there will only be slight deviations of the fit from the true stacking trajectory, so fitting
the residual-NMO part of residual NMO+DMO is all that is necessary.

Az, due to Aoy,

Although the reflector point of interest may have arbitrary dip, interpret the independent
residual slownesses, o, computed by the previous step, as if the reflector we were trying
to image has zero dip. Doing this assumes we have correctly applied residual DMO; since
after residual DMO, we can treat all reflectors at a given depth as if they had zero dip.
Write the hypothetical zero-dip stacking trajectory as

zp = \/a;‘:zg + (o — 1)h2 . (3.5)

Equation (3.5) is just a form of residual NMO plus residual depth conversion. Figure 3.2
shows :gf’acking trajectories made with this equation. As residual slowness o) changes,
both the curvature and the zero-offset intercept of the stacking trajectory change.

Equation (3.5) converts the problem of finding a best fitting stacking trajectory im-
plied by residual prestack migration to one implied by residual NMO and residual depth
conversion. Converting the dipping reflectors to flat reflectors is valid as long as the DMO
correction implied by the single residual slowness we get after fitting adequately describes
the DMO needed by the individual offsets.

A« and A7 due to Az,

Equation (3.5) is a residual-NMO equation, but it explicitly couples residual zero-offset
migration (for zero-dip, residual depth conversion) and residual NMO. When the reflector
movement of all offsets is described by one best fitting residual-moveout curve, it is nec-
essary to separate residual NMO and residual zero-offset migration. Rather than having
one residual slowness for each offset, we will have only one residual slowness for the NMO

correction 7y and one position of the reflector after residual zero-offset migration r. From
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FIG. 3.2. Stacking trajectories for residual NMO with residual zero-offset migration left

equation (3.5), substitute ¥ = o and then 7 = 2y to obtain

2=/t + (y2 - 1)h? . (3.6)

Figure 3.3 shows stacking trajectories for equation (3.6). The zero-offset intercept of
each trajectory stays at a fixed r. Letting r and 7 be independent uncouples the residual
NMO from the residual zero-offset migration. If the required residual migration is exactly
a time migration, then the information obtained from either 7 or ~ is the same. When
the residual migration is a depth migration, 7 and « contain independent information.
Since it is the smallest correction of the three, the residual-DMO correction implied by
v will often be adequate even when the residual-NMO and zero-offset residual-migration
components are not consistent with residual time migration (Deregowski, 1990) (also see
Figure 2.7).

Now fit the movement of the hypothetical zero-dip reflectors on each constant-offset
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FIG. 3.3. Stacking trajectories for residual NMO alone. These are now stacking trajecto-
ries for afixed event.

section, Az, computed in the last sections, with changes in the residual NMO curve
computed using equation (3.6). Equation (3.6) is nonlinear in the variables 4 and r; so
linearize it about particular values of v and 7 by finding the derivatives of z;, with respect
to v and 7 and expressing a small change in z) as a linear combination of small changes

in v and 7.

ALY YN (3.7)

Azy = ay ar

The expressions for the derivatives 8z,/9v and 3z,/dr are

33_:1 _ 7h2/\/r2+(72— )h?; (3.8)
%ﬁrlg — T/\/Tz +(v2-1)h? . (3.9)

Immediately following prestack depth migration before the slowness model is changed, we

linearize about the 4 and r that produce no residual moveout, namely y =1 and 7 = 2.
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As the slowness model is perturbed the reference values used for linearization change.

Convert small movements of the different hypothetical zero-dip reflectors Az, com-
puted in the last sections to changes in the residual-NMO curve computed using equa-
tion (3.7) by minimizing in the least-squares sense

hmcs
E= Z(Azh—f’ﬁA a""A ) . (3.10)

hmtn

Write the normal equations that follow as

9z az,, Bz;. dzp
E (5 h)z 2 (5 E (5, )A%
Axy h
N hmsg a a A = hmln a . (3.11)
max z z mas zh T max zh
2 Gy )5 2 G 2 (Gan
Th;solution to the least-squares problem of equation (3.11), Ay and Ar, gives changes

in the residual-moveout curve that best fits the changes in stacking trajectories for a fixed

&iai)th point. Symbolically write this solution as the operator L where

[i:] = [i:] Az, . | (3.12)

Figures 3.4 and 3.5 show the impulse response of the operators L, and L,. The
value of the operator as a function of offset is the change in 4 or r due to a unit change
Az in the stacking trajectory at that offset. Figures 3.6 and 3.7 show examples of best
fitting residual-moveout curves for perturbations to stacking trajectories at small and large
offsets. The effect of a perturbation to the stacking trajectory at small offsets is opposite
to the effect of a perturbation at large offsets. A positive perturbation to the stacking
trajectory at inner offsets leads to a negative change in the apparent residual slowness ~
and leads to a pull-down of the zero-offset of the best fitting residual-moveout curve. A
positive perturbation to the stacking trajectory at outer offsets leads to a positive change
in the apparent residual slowness v and leads to a pull-up of the zero-offset of the best

fitting residual-moveout curve.
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FIG. 3.4. Impulse response of L. The value at a given offset is the change in 4 caused
by a unit change in the 2 for that offset.

3.2.3 Building the filtered traveltime-tomography operator G

Equation (3.12) can be combined with the tomography and other calculations to write
one operator that relates changes in interval slowness to changes in the parameters that
describe the best fitting residual migration at a given point in space. dt/dw converts
changes in interval slowness to changes in traveltime; it is the tomography operator.
d01/8t converts changes in traveltime to changes in the residual time-migrated position
for the different offsets. 8zp/d0) converts the residual time migrations of each offset
into equivalent zero-dip reflector movement. Finally, the least-squares fit converts Az, to

changes in the parameters of the residual-moveout curve. Writing the operator in compact

notation,
A'Y Lq 8:;. 80;. at Gq

The linear operator G in equation (3.13) relates changes in the interval-slowness model

to changes in the best fitting residual-moveout curve at a fixed spatial location.
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FIG. 3.5. Impulse response of L,. The value at a given offset is the change in 7 caused by
arpnit change in the z;, for that offset.

Analyzing G

The best way to understand the operator G is to examine the effect of a local pertur-
bation to the interval-slowness model on a set of reflectors, and to examine the effect of
perturbations to the interval-slowness model as a whole on a single reflector point. These
correspond to examining a column or a row of the matrix G respectively. Plotting the
operator responses in (z,2) as we would plot the velocity model or the migrated image
helps to visualize the operator. Figure 3.8 shows a row of the G operator; the value plotted
(denoted by gray-scale intensity) is the effect of a unit perturbation in interval slowness
at that point on a single depth point on a horizontal reflector. The single reflector point
is at the end of the narrow part of the operator “cone.” The top plot gives the effect on v
and the bottom plot gives the effect on 7. Figure 3.9 shows a row of the G operator for a
dipping reflector. Now the operator cone is tilted, because the specular rays that illumi-
nate the depth point open out from the zero-offset ray that is normal to the reflector. The
gray background in all plots indicates no effect; a slowness anomaly here is not intersected

by a specular ray and does not change the residual slowness or position of the one event
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FIG. 3.6. Best fitting stacking trajectory for a change in zj, at an outer offset.

of interest. Lighter shades indicate a positive effect; a positive slowness anomaly in a light
area increases  or 7. Darker shades indicate a negative effect; a positive slowness anomaly
decreases y or 7. Figure 3.10 shows a column of the operator G. The values plotted are
the effects in v and 7 of a perturbation to the interval-slowness model on a depth point at
that location. In this figure all reflector points have zero-dip. The perturbation in interval
slowness is at the top of the operator cone. Figure 3.11 shows a column of operator G
when the reflectors are all dipping with the same 30 degree dip; again the slowness pertur-
bation is at the top of the cone. Now the gray background represents reflector points that
do not feel the presence of the anomaly; no specular ray that illuminates these reflector
points goes through the anomaly and is recorded by a 2 km long cable. Lightly shaded
areas denote reflector points that have a positive correlation between the sign of Aw and
A~ or Ar; dark shades denote reflector points that have negative correlation. The further
the shade is from the gray background, the stronger the effect.

The lateral-wavenumber spectrum of the operators G, and G, describe how slowness
anomalies with different wavelengths cause different changes in the curvature and output

position of the residual-migration operator used to make the stacked image of migrated
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FIG. 3.7. Best fitting stacking trajectory for a change in z), at an inner offset.

events. Figure 3.12 shows the spectrum of G., computed for a point on a flat reflector, a
2 km cable, and for slowness anomalies near the surface of the model. The DC component
(wavenumber= 0) shows the change in 7 for a laterally constant change to the interval-
slowness model near the surface. The greatest response of the operator spectrum occurs
at a wavenumber (wavenumber = .45) approximately equal to the distance across the ray
fan at the anomaly depth (called the effective cable length). The spectrum has a zero
and small values near DC. Slowness anomalies at these combinations of reflector depth,
cable length, and anomaly depth cause little or no change to 7 of the best fitting residual-
moveout curve because the change in the curvature of the residual-moveout curve caused
by the inner offsets is canceled by the change caused by the outer offsets. Figure 3.13
shows the spectrum of G, for the same 2 km cable and for slowness anomalies near the
surface. Long-wavelength anomalies that do not affect « are effective at creating pull-up
or push-down. Where there is a zero of the spectrum, a slowness anomaly with that
wavenumber has no effect on time-to-depth conversion. The different spectra of G, and
G reinforce the qualitative feeling that the velocity information contained in moveout is

different from the velocity information contained in reflector positioning.
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FIG. 3.8. A row of the operator G for a point on a horizontal reflector. The reflector
point is at the bottom of the operator cone.
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FIG. 3.9. A row of the operator G for a point on a dipping reflector. The reflector point
is at the bottom of the operator cone.
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FIG. 3.10. A column of the operator G. All reflector points are on horizontal reflectors.
The slowness anomaly is at the top of the cone.
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FIG. 3.11. A column of the operator G. All reflector points are on 30 degree dipping
reflectors. The slowness anomaly is at the top of the cone.
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FIG. 3.12. Amplitude spectrum of G, vs. lateral wavenumber for shallow slowness anoma-
lies. The greatest response occurs for wavenumbers approximately the same as the cable
length. DC and long-wavelength anomalies affect the residual moveout only slightly.

3.3 Reflector tomography for a fixed event

The interval-slowness model and the linear operator just described are evaluated at fixed
spatial locations. However, we need to find an operator that relates changes in interval
slowness to changes in the residual slowness for fixed events. Since the images of events
move as the interval slowness changes, the event that is displayed at a fixed depth point

changes as interval slowness changes.

Denote true spatial locations with coordinate pairs (z, z). The traveltime-tomography
calculations are carried out in this domain; the interval-slowness model is specified in this
domain, and the true migrated positions of events are specified in (z,z). The positions
of events after the initial prestack depth migration will be denoted by (¢,5). When
we perform residual NMO+DMO for a range of residual slownesses, the image of any
given event stays fixed in (£, n); because residual NMO+DMO omits the repositioning

of reflectors controlled by residual zero-offset migration. Implicitly, the residual-slowness
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FIG. 3.13. Amplitude spectrum of G, vs. lateral wavenumber for shallow slowness anoma-
lfes. The greatest response occurs for wavenumbers near DC, these anomalies are effective
in creating pull-up or push-down. Shorter-wavelength anomalies cause less pull-up or
push-down.

value tells the time-migrated position of reflector since we could apply residual zero-offset
migration after residual NMO+DMO.

Initially, just after prestack depth migration and before the interval-slowness model
changes, the (£, ) location of a given event is also its (z, z) location. Somewhat confus-
ingly, both of these domains are “depth” domains; however, the (¢,n) coordinates only
give the correct location of the image when there is no change to the interval-slowness
model. As the interval slowness changes, the (£, n) coordinates of an event need zero-offset

residual event migration to convert them to (z, z).

3.3.1 Nonlinear forward modeling with G

G, the operator for a fixed depth point, is a linear operator; changes in 4 and r are
linearly related to changes in the interval-slowness model. We want the operator that

relates changes in interval slowness to changes in residual slowness for fixed events. To
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FIG. 3.14. Possible locations of an event (£, ) initially at (z, z) after different amounts of
residual;time migration. The residual time-migrated locations approximate the location
of the event after residual depth migration.

follow movement of events, or the change in where a fixed event is displayed in depth, the

operator will become nonlinear.

Since I use the reflector positions implied by residual time migration, all possible
locations of a single event (defined by a single location and migrated dip) lie along a
curvilinear path in (z, z) rather than at arbitrary spatial locations, which would be the case
if I used residual depth migration. This time-migration path, shown in Figure 3.14, gives
the possible locations of a single reflector with a given dip for all possible residual time-
migration slownesses. This curve describes movement in true depth (z,z). Conversely,
Figure 3.15 shows all possible event locations that a fixed depth point and dip maps to
for various residual slownesses. This curve describes the apparent movement of a fixed
depth point in pseudo-depth (£,n). These two curves describe a mapping and its inverse
from event space to depth space and vice-versa. The middle reflector on Figures 3.14 and
3.15 at (£&,n) = (z,2) shows the initial state of the mapping just after prestack depth

migration.
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FIG. 3.15. A change in interval slowness causes the event that maps to a fixed (z, z) to
change. Range of possible events (¢’,n') that can migrate to a fixed (z, z). Initially this

(2, z) maps to (&, 7).

Making a change in the interval-slowness model and applying G changes ¥(z, z) and
alters the mapping from (z,2) to (£,n). As shown in Figure 3.16, to find « for a fixed
(¢,n), find the new true-depth coordinates (z', z') that map to the event of interest and
find its updated value of 4. In practice, apply G to find A~ the change in curvature, and
Ar, the change in the zero-offset intercept of the stacking trajectory for several positions
along the curve of possible locations for each event. Then find the spatial location that
now displays the fixed event of interest (£, n) by inverse interpolation. The updated ~ for
this location is the v for the event of interest and can be found by interpolation of the

updated +’s along the curve of reflector positions.

3.3.2 Linear forward modeling with G

There are several reasons why it is worthwhile to linearize the process of finding ~ for fixed
events described in the previous section. First, a linear operator can be precomputed and

stored; thus, it can be used for many different Aw without recalculation. Second, the
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Nonlinear forward modeling

y(&m)=y(x",2’)

FIG. 3.16. Mapping between a range of fixed depth points on the right, and fixed events
on the left.

behavij}c;r of a linear operator is easier to analyze than a nonlinear one. In the next chapter
we will use the operator of this chapter to estimate changes to the interval-slowness model
using the residual slowness measured from migrated data. To get interval slowness from
residual slowness we have to invert the relation between interval slowness and residual
slowness. The linearized forward operator and its adjoint or transpose are needed by the
iterative inversion algorithm presented in the next chapter.

Recall that the operator G evaluated for a fixed depth point is linear, and that only the
movement of images causes the operator to be nonlinear. Therefore, G, can be relabeled
as 87(z, z) /0w and G, can be relabeled as 37(z, 2)/dw. This relabeling makes sense when
we write Taylor series for 4 and 7 as a function of the slowness model w as in equations

(3.14) and (3.15).

N ) 9v(z, z; w)

1(z, z; w) = y(z, z; w,) + /mOdel £ Awdz dz . (3.14)
N . or(z, z; w)

7(z, z; w) = 7(z, z; w,) + /r'nodel 30 Awdz dz . (3.15)
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Linear forward modeling

y(&.n)=y(&,m°)=0v/dT AT

FIG. 3.17. For smali perturbations to the interval-slowness model, v(£, ) can be calcu-
lated to first order from v(¢',n’), the change in event location Ar and 6v/67. .

= /' '

The above equations calculate the change in the parameters describing the stacking
trajectory for a fixed depth point. As before, we want the parameters of a stacking
trajectory for a fixed event. Since the family of events that can map to a fixed depth
point and dip lie along a one-dimensional trajectory in (£,7), I use r to measure position
along that one-dimensional trajectory. Parameterize the positions of different events that
originate at (z,z) with £ = £(r) and n = n(r). Through equation (3.15), 7 is a function
of the interval-slowness model, so write the curvature 4 in terms of event locations rather

than fixed depth location and as a function of the interval-slowness model.

]
jw) = ; —Awdz dz ; 3.16
(7 w) = y(r0; wo) + s BwAvdzde (3.16)
where 7, = r(w,), r = 7(w), and 7(w) is calculated using equation (3.15). Equation (3.16)
is the same as equation (3.14), only the latter expresses 7 as a function of event location
rather than spatial location. Equation (3.16) gives « for the new slowness model w but at

a new event 7, rather than at the original event r, as desired. As shown in Figure 3.17,
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to first order, write « for the new slowness model w for the event at 7, as
201
v(ro; w) = 4(r — Aryw) = y(r; w) — 6_1'Ar . (3.17)

The A7 in equation (3.17) is the one implied by equation (3.15). §+/67 must be determined
from the previous 7’s of events along the residual-migration trajectory. In practice, find
84/6r by finite-differencing + at nearby event locations along the trajectory of event
motion. Now combining equations (3.15) and (3.17), solve for the change in v at a fixed
event at 7, for the change in the slowness model Aw .

dy by or

sw) = v(ro; A T A : 3.18
V(i w) = v(rswo) + | Fo— 5o g Aw dz dz (3.18)

Finally, reexpressing the derivatives above as the operators of equation (3.13) write

B(r) = [c;1 i”c,]Aw . (3.19)

T

3.4 Forward modeling example

The operator G can be used to predict the effect of a change in interval slowness on the
residual slowness of reflectors measured by the method of Chapter 2. Figure 3.18 shows
an interval-slowness model used to generate synthetic data with finite-difference acous-
tic modeling. Dark areas are high velocity and light areas are low velocity. To test the
operator, I migrated the constant-offset sections with an incorrect slowness model, a con-
stant slowness equal to the slowness above the first reflector away from any perturbations.
Figure 3.19 shows the migrated and stacked section. The effect of using the incorrect
slowness model is apparent; there is a long-wavelength pull-up on the lower reflector and
a short-wavelength push-down on both reflectors.

I applied residual NMO+DMO for a range of residual slownesses to the unstacked mi-
grated constant-offset sections and formed a residual-slowness semblance cube. Figure 3.20
shows horizon residual-slowness analyses for the two reflectors obtained by slicing through
the semblance cube along the reflector positions. The obvious “W” patterns of the peaks
of stack semblance are caused by the small anomaly. The lower reflector also shows a

long-wavelength trend in residual slowness. I calculated the operator G to relate changes



-79-

position (km)
0 3 6 9 12
(@) 1 1

1

2

depth (km)

FIG~. 3.18. Slowness model used to generate a synthetic data set with finite differences.

in interval slowness and changes in residual slowness for the two events in the image.
Applying G to the difference between the true slowness model and the slowness model
used for migration, the dark lines in Figure 3.20 show the predicted residual slowness ~.
The effect of the shallow “blob” anomaly on the upper reflector is predicted accurately.
The long-wavelength trend of the semblance peaks of the lower reflector is also predicted
accurately. The predicted 4’s do not lie on the peaks of the semblance where the lower
reflector is affected by the shallow anomaly; the predicted effect of the anomaly is less
than the observed effect.

There are two factors that contribute to the inaccurate prediction. First, the lower re-
flector is grossly mispositioned. If residual time migration does not predict all the reflector
movement caused by the anomalous slowness, the events will not feel the anomaly the way
the operator predicts. The error in the predicted residual positioning is partially caused
by using residual time migration instead of residual depth migration in the operator cal-
culation. Second, the changes in traveltime calculated by the operator do not incorporate

the effects of ray-bending caused by the anomalous slowness because the operator used
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FIG. 3.19. Migrated and stacked section obtained with the incorrect slowness model.

Fermat”sﬁprinciple. The ray-bending not only changes the amount of traveltime perturba-
tion for each given offset, but also rearranges the shape of the operator as it passes over
the anomaly. Both of these effects cause nonlinear interaction of the high-slowness local
anomaly and the low-slowness anomaly below the first reflector; as a result, G does not
predict 4 accurately where the effects combine.

The approximations made in the construction of G affect the estimation of large
changes to the interval-slowness model. The results indicate that long-wavelength anoma-
lies should be estimated and removed before estimating short-wavelength anomalies. Then,
after the reflector positions are nearly correct and the longest-wavelength components of
the interval-slowness model are known, the effects of short-wavelength anomalies will be

more accurately predicted by G, e.g., for the top reflector in Figures 3.19 and 3.20.
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FIG. 3.20. Horizon residual-slowness analyses for the two reflectors in the image of Fig-
ure 3.19. The upper and lower gray-scale plots show semblance versus position and residual
slowness « for the upper and lower reflector respectively. The overlying dark lines on the

semblance plots are the predicted values of «.



