Chapter 4

Residual event migration

4.1 INTRODUCTION

In Chapter 2 I discussed the need for structural interpretation of migrated seismic data in
areas with complex geology. The interpreted data describe the depth of major reflectors
in several constant-offset sections. However, because the migration-velocity model is un-
known, these reflector depths are generally incorrect, and may vary from offset to offset.
The goal of the velocity-estimation method is to update the velocity model iteratively until
reflector depths match for all offsets. Re-migrating and re-interpreting the full data set
at each iteration is computationally expensive and time-consuming. I therefore residually
migrate only the picked horizons.

Horizon or map-migration methods have been used extensively in the migration of
stacked sections (Hubral, 1977). These conventional methods use so-called normal rays
to migrate events in the stacked data, which are assumed to be equivalent to reflection
events recorded in a zero-offset experiment. For each event point, a normal ray is traced
downward from the surface, where the take-off angle of the ray is determined by the stepout
of the data point. The normal ray travels through the velocity model until its traveltime
is half the arrival time of the data point; the endpoint of the ray gives the position of the
migrated data point. A normal ray thus models the ray path of a reflection event in a
zero-offset experiment, in which the shot ray (traveling from shot to reflector) is identical
to the receiver ray (traveling from reflector to receiver).

For non-zero-offset data, the concept of normal rays is much more complicated: there
are many combinations of take-off angles of source and geophone rays that yield the same

stepout in the data. Consequently, many rays have to be traced downward through the
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model, before the shot-geophone ray pair is found that not only shares a depth point, but
also has a combined traveltime equal to the arrival time of the data point. In complex
velocity models, finding this ray pair can be complicated.

In this chapter I discuss an efficient method for migrating events in constant-offset
sections. The method is based on the traveltime calculations described in the previous
chapter; because it does not use rays, it avoids the problem described above. The event
migration is fully general: no assumptions are made on the velocity model, or on the
movement of reflectors. The only inaccuracies come from picking errors made in the
interpretation, but because the computations are fast enough that migrations can be run
interactively, possible picking mistakes are easily corrected.

As mentioned at the beginning of this section, the velocity-estimation method requires
residual migration of events. Residual event migration starts with the result of a previous
migration: the reflectors in constant-offset depth sections. I formulate residual migration
as a two-stage process, in which I first recover reflection events by event modeling, and then
migrate them with the new velocity model. The event modeling also uses the traveltime
calculations of Chapter 3.

I begin this chapter by reviewing prestack depth migration, the major process I apply
to the data before interpretation. Then, I discuss event modeling and migration. Finally,
I describe residual event migration, first as a nonlinear operator, applicable to general
changes in the velocity model, and then as a linear one, which linearly relates changes in
the reflectors to model perturbations. This latter operator plays an important role in the
next chapter, in which I discuss the inverse problem of determining model perturbations
from discrepancies in the horizons. I illustrate the several operators with a field data

example.

4.2 PRESTACK DEPTH MIGRATION

In Chapter 2 I introduced migration as a process that corrects for the wave propagation
that often distorts the recorded seismic data. In the last decades, numerous migration
methods have been developed (see Gardner, 1985, for a collection of papers). The differ-
ent methods can roughly be divided into finite-difference, frequency-domain, and integral
(Kirchhoff) techniques. Each technique has certain advantages and disadvantages with
respect to computational speed and capability to handle irregular geometries or strong
variations in velocity (Claerbout, 1985, p.38; Yilmaz, 1987, p.246).
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I use a Kirchhoff depth-migration method. Depth-migration methods (Schultz and
Sherwood, 1980) are well-suited for migrating data recorded in areas with complex struc-
ture and strong lateral velocity variation, as opposed to time-migration methods, which
can be applied only in areas with mild lateral velocity variations (Hatton et al., 1981). My
reasons for choosing a Kirchhoff method are twofold. First, Kirchhoff methods have the
advantage that they allow partial imaging of the subsurface, which is useful if only win-
dows in the data need to be migrated (see section 6.2). Second, the Green’s functions used
in Kirchhoff migration can efficiently be calculated with the finite-difference traveltime
method.

Kirchhoff migration can readily be applied to different subsets, or gathers, of seismic
data. Migration-velocity analysis methods often use shot-profile migration (Al-Yahya, 1987;
Cox et al., 1988), mainly because shot-record migration can easily be applied to data
recorded with irregular shot geometry. Nonetheless, I prefer migrating constant-offset sec-
tions because these sections are easy to interpret, as I discussed in Chapter 2, and because
events recorded at different offsets remain separated after migration, simplifying the veloc-
ity analysis (shot-profile migration collapses events along the offset direction). (The latter
point is also important if one wants to study amplitude-versus-offset (AVO) effects in the

migrated data.)

(x,2)

FIG. 4.1. Migration maps a data point recorded at time ¢t with shot at zg and geophone
at zg onto a semi-ellipse in depth. The shape of the ellipse is determined by the migra-
tion-velocity model.

Assuming constant velocity, prestack depth migration maps a time sample recorded at

time t and shot-receiver pair (zg,zg) onto a semi-ellipse in depth (Figure 4.1), where the
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foci of the ellipse are determined by shot and geophone position. The depth points (z, z)
on the ellipse satisfy

ts(z,2) + tg(z,2) = t(zs,za), (4.1)

with tg and tg the traveltimes from depth point to source and geophone, respectively. For
nonconstant velocity, the ellipse becomes distorted; equation (4.1) then describes a general

curve in the subsurface.

4.3 EVENT MODELING

Fermat’s principle states that a ray will travel along a path for which the traveltime is
stationary with respect to minor variations of the raypath. In most situations, this means
that the raypath between two points is the least-time path, that is, of all the possible
raypaths between the points, the ray will take the one requiring the least traveltime.
Fermat’s principle provides a straightforward way of modeling events with the traveltime
calculations of Chapter 3. Suppose traveltime maps ts(z, z) are calculated for regularly

spaced surface sources S, to yield a set of maps
ts(z,z), S =1tAS for § = $min, tmax, (4.2)

with AS the source spacing (Figure 4.2a).

Now consider a reflector whose position (z, z) is determined by the parametric repre-

sentation

(z(r), 2(r)), re[o,1]. (4.3)

The parameter r distinguishes the different points on the reflector, and its range is conve-
niently defined as [0,1]. A schematic example of this reflector representation is shown in
the right plot of Figure 4.2a. The traveltimes tgg of all possible rays traveling from source
S to geophone G and reflecting at the reflector are simply found by the summing of shot

and geophone traveltimes along the reflector:

tsa(r) = ts(z(r),2(r)) +to(z(r),2(r)), re0,1). (4.4)
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FIG. 4.2. Event modeling. (a) Input: a set of traveltime maps for a range of surface sources
(dots in left plot), and a horizon, the coordinates of which are described by (z(r), z(r))
(right plot). (b) Fermat’s principle: the left two plots show the traveltime maps for
shot S and geophone G, respectively, with the reflector superimposed on them. Summed
traveltimes along the reflector form a curve tsg(r) (right plot). The stationary points
Te1,Te,2, and r. g are the points where Fermat’s principle is satisfied, and the traveltime at
these points are the time of reflections recorded at S and G. (c) Output of event modeling:
a constant-offset section. The dashed line is drawn at the midpoint of S and G, and the
times of the three dots correspond to the traveltimes found in fb)
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FIG. 4.3. Reflection events in a constant-offset section computed for reflectors in the model
of Figure 3.1. The offset is 1 km.

Applying Fermat’s principle, the time of the reflection event at source-receiver pair SG

is given by the stationary points
tsg(re), with thg(r.) = 0. (4.5)

r. determines the reflector point(s) R where Snell’s law is satisfied. Snell’s law can be
derived from Fermat’s principle (Aki and Richards, 1980, Ch.4), and says that at the
reflector the angle of the incident ray equals the angle of the reflected ray, where angles

are measured with respect to the normal at the reflector. The coordinates of R are

(zr,2¢) = (z(re),2(re))- (4.6)

The above procedure is repeated for several shot-geophone pairs to model the events
in a complete survey, as is demonstrated in Figure 4.2c. Figure 4.3 shows an example of

a thus modeled constant-offset section for the reflectors and velocity model of Figure 3.1.

As discussed in Chapter 2 (section 2.2.3), a reflection event in a constant-offset section

is defined not only by its arrival time ¢, but also by its stepout p,. Stepout p, of the event
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point is modeled as the sum of source and geophone stepout, ps and pg,
py(xSaxG) = pS(znzr) + PG(zr,zr) (47)

(Claerbout, 1985). ps and pg are easily calculated from the traveltime maps with a finite-

difference approximation. For example,

tS+1(x) z) — ts—l(:t; Z)
o~ . 4.8

ps (m’ Z) 2AS ( )

ps is the stepout in traveltime for a ray traveling from a depth point (z, z) to the source

at . S — 1 and S + 1 denote the shots to the left and right of S, respectively.

4.3.1 Triplications

Reflection events are often multi-valued for curved reflectors (triplications). The algo-
rithm described above models triplications by finding more than one stationary point in
equation (4.5), as is demonstrated in Figure 4.2b. The modeled constant-offset section in
Figure 4.3 shows a triplication for the deep reflector.

Many applications—including the event-migration method described in the next section—
require that consecutive data points in the reflection events correspond to neighboring
depth points on the reflector. The above algorithm does not meet this requirement; it
models event points as a function of recording geometry. The two ordering schemes can
be quite different when events triplicate: rather than modeling the several branches of
the reflection event in sequence, the algorithm finds points on separate branches for each
particular shot-geophone pair. However, because depth points are known for each event
point (equation (4.6)), one can easily reorder event points. I simply create an additional
array with the same dimension as the one containing the reflectors points, and each time
I find an event point, I store its traveltime in the array at the index of the corresponding

depth point. “Gaps” in the array can be filled by interpolation.

4.3.2 Operator notation

For a particular shot-receiver pair, the event-modeling algorithm models event or data

points d = (t,p,) from depth or reflector points, r = (z,, 2,), and can therefore be written
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(t,py) = (t(z,,z,; m), py(z,,z-; m) ) (4.9

The modeled events depend of course on m, the parameters that describe the velocity
model. These parameters can be velocity values at discrete grid points in the model, or
spline coefficients modeling a smooth velocity function. I discuss the model parametriza-

tion in the next chapter (section 5.2).

For easy reference, I denote the modeling algorithm by an operator M, and write

equation (4.9) as
d = M(zs,zq; m)(r). (4.10)

Apart from its aforementioned dependence on the velocity model, M is a function of the
source and geophone positions, zg and zg. Note that the depth point also depends on
these positions: there is a depth point for every data point at a particular source-receiver
pair. In general, the modeling of a data point d from a depth point r is unique: strong
lateral velocity variation is needed for rays, originating from the same shot location and
reflecting at two different reflector points, to arrive at the same geophone location with
identical traveltime and stepout. From here on, I assume that M is a one-to-one operator.
Even if it is not, in practice M can always be made unique by restricting the algorithm to
find only one depth point. (Remember that M is not an analytical operator; it is just a

convenient notation for a modeling algorithm.)

Depending on the choice of shot and geophone positions, equation (4.10) can model
both shot gathers and constant-offset sections. Therefore (and for conciseness), I will
drop the dependence on recording geometry in subsequent equations, and write the above

equation as
d = Mm(r). (4.11)

Here My, is a short notation for M(m).
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4.4 EVENT MIGRATION

The inverse operator of event modeling is event migration, which maps a data point to a
depth point. Similar to modeling, event migration involves the evaluation of arrival time
and stepout of events from the traveltime maps. However, the computations are slightly
more complicated than they are in modeling, because reflector positions are not known.
Nonetheless, I show in this section that event migration can be done for approximately

the same cost as modeling.

(a) (b)

«z
e
{7
.
«t

X - y -

FIG. 4.4. Migration ellipses and reflection event for a dipping reflector. Figure a shows
migration ellipses for data points on a constant-offset event (Figure b) reflecting off of a
dipping reflector. Data points and corresponding depth points are denoted by asterisks.
At each depth point, the dipping reflector segment (the fat line in Figure a) is tangent to
the corresponding migration ellipse.

As displayed in Figure 4.1, migration maps a time sample recorded at a given shot-
receiver pair onto an ellipse in the subsurface. In event migration, the extra stepout
information constrains the mapping of an event sample to a point instead of an ellipse, as
is illustrated in Figure 4.4. The figure shows migra..tion ellipses for several data points in
an unmigrated constant-offset section, where the data points are part of a reflection off of a
dipping layer. The superposition of the migration ellipses shows constructive interference
at a linear segment in the subsurface that coincides with the reflector. Note that if the
wrong velocity were used in the migration, the reflector segment would have been wrongly
positioned and curved.

Now consider the central data point in the reflection event, and assume that its stepout
is known and equal to p,. Event migration images this data point at a depth point in the

middle of the reflector segment. Of all the possible depth points on the migration ellipse,
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this depth point is the only point for which the sum of stepouts at the source and geophone
equals the observed stepout. In other words, given a data point with arrival time ¢ and
stepout p,, event migration selects one depth point (z,, 2,) on the ellipse where, in addition

to equation 4.1, the following condition is met:

PS(xr,zr) + PG’(xr,zr) = Py(xSaxG’)- (4°12)

The tangent to the migration ellipse at the depth point corresponds to the dip of the
reflector segment in the migrated section.
The mapping of a data point d to a depth point r is again assumed to be unique, and

I will write the mapping operator as M~1:
r = Mz (d). (4.13)

Just like M, M~! depends on m, the velocity model, and on the source and geophone

positions of the data point.

4.4.1 Algorithm

Equations (4.1) and (4.12) serve as the basis for the event-migration algorithm. As before,
traveltime maps tg(z, z) are available for a range of source positions S (equation (4.2)),
and stepout is calculated with equation (4.8). Then, given a data point d at source-receiver
pair S — G, a depth point must be found that meets criteria (4.1) and (4.12). Because the
traveltime functions are discrete, these criteria are hardly ever met exactly, so instead I

use

[ts(z,2z) + te(z,2) — t(zs,ze)l < €
: (4.14)

Ips(z,z) + PG’(Z,Z) - pv(xs,:ta)l < €,

where ¢; and ¢, are some appropriate small numbers. The choice of these parameters
determines the resolution of the migration (see below).

In principle, one could search the whole subsurface model (all (z,z)-pairs) for the
desired depth point, but this would be prohibitively expensive, and, as it turns out, un-

necessary. Because a (continuous) reflection event is caused by a continuous reflector,
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the depth points of neighboring data points on an event must lie in each other’s vicinity.
Therefore only depth points around a previously found depth point have to be scanned
in the verification of conditions (4.14). Only if this limited scan fails is a more elaborate

search necessary, as is also the case for the first data point on the event.

The constants ¢; and €, are normally set to the errors expected to be made in pick-
ing traveltime and stepout, respectively. When no depth point is initially found, one can
increase the values of ¢; and ¢,, and thereby lower the resolution of the migration. Alter-
natively, the sampling interval in the traveltime functions can be decreased. The result is
that more depth points will be scanned, and thus the chance of finding the desired depth
point will increase. Of course, the latter approach increases the computational expense
of the algorithm, and in general some trade-off must be made between cost and accuracy.
Overall, the cost of migration is of same order as that of modeling: the computations are
similar, and are done for approximately the same number of depth points (for modeling,
equal to the number of points on the reflector; for migration, equal to the number of points

around the previously found depth point).

4.5 RESIDUAL EVENT MIGRATION

After an initial event migration, an additional migration with a different velocity model
is often necessary. For example, in the velocity-estimation method, the velocity model is
updated at every iteration, and each time new reflector positions have to be determined
for the updated velocity model. Also, data is interpreted after migration, so the input
to the velocity analysis is a set of migrated reflectors as a function of depth, rather than
events in time. Although reflection events are therefore not directly available, they can
easily be modeled for the migrated reflectors, and then migrated as described above with

the new migration model.

Residual event migration is thus simply defined as
r = M (Mm(r)), (4.15)

with r' the residually migrated depth point, m' the new velocity model, and m and r the

orignal velocity model and depth point, respectively.
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FIG. 4.5. Detail of constant-offset section (offset 1.75 km), migrated with a laterally
invariant velocity model. The right figure plots the picked steeply dipping reflectors on
top of the same image.

4.6 FIELD DATA EXAMPLE

To show an example of event modeling and migration, I residually migrate the two steeply
dipping reflectors that I discussed in Chapter 2. Figure 4.5 shows the picked reflectors
in a migrated constant-offset section at an offset o'f 1.75 km. The section is migrated
with the laterally invariant velocity model shown in Figure 6.1. The unmigrated reflection
events are first reconstructed by event modeling (Figure 4.6), and then migrated with a
new migration-velocity model. The velocity model incorporates the high velocity of the
salt body, and is discussed in more detail in Chapter 6 (see Figure 6.1). Figure 4.7 plots
both the residually migrated reflectors and the fully remigrated data.

The modeled events match events in the unmigrated data, although it is debatable
whether an interpretation based solely on the unmigrated data would find these events.
The residually migrated reflectors, on the other hand, c}osely follow the reflectors imaged

by a full remigration of the section with the new velocity model.



-47-

Midpoint (km)

FIG. 4.6. Events modeled for the reflectors in Figure 4.5, displayed on top of the unmi-
grated data. Figure 2.6 shows the same data without the modeled events.

4.7 RESIDUAL EVENT MIGRATION AS A LINEAR OPERATOR

The residual-event-migration operator M;nl, Mm of section 4.5 takes migrated reflectors and
calculates their new positions for an updated velocity model. The operator is nonlinear
with respect to the model parameters, and capable of handling large changes in velocity. In
this section I describe a linear residual-event-migration operator, which I use in the velocity
optimization described in the next chapter. Because the operator is linear, its application
is limited to moderate perturbations in velocity. Nevertheless, it can be calculated for any
background-velocity model, and is not restricted by any assumptions about the nature of
reflector movement. In particular, the operator is not based on an analytical description
of reflector movement in a constant-velocity medium (Rothman et al., 1985; Fowler, 1988;
Etgen, 1990).

Both the nonlinear and linear operator are derived from the same principle: the time

and stepout of an event point have to be conserved in residual migration. Suppose a depth
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FIG. 4.7. Same section as in Figure 4.5, but remigrated with the velocity model displayed
in Figure 6.1. The right plot shows the residually migrated reflectors.

point r on the migrated reflector is found by imaging the data point d with velocity model
m. The same data point will be imaged at a different position r + ér if the velocity model

is perturbed by ém. The equality can be written with the help of the modeling operator
M, as

d = Mm(r) = Mmism(r+ 6r). (4.16)

In the previous section, the new reflector position is simply found by applying the migration

operator .M;ll+6m, the inverse of the modeling operator, to both sides of the equation

(resulting in equation (4.15)).

Here, I first linearize the right-hand side of the equality:

oM
Mmi+sm(r +6r) = Mm(r) + m

8m+%

p or. (4.17)
(r;m)

(r,m)
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Then, equation (4.16) becomes

om or
(r,m)

ér, (4.18)

(r,m)

or, inserting the expressions for depth and data point, and substituting for the modeling

operation (t,py) = (¢(zr, 2-;m), py(2r, z-;m)) (equation (4.9)),

ot a o
om 9z 9=z bz,
0 = dm + (4.19)
9py apy, dpy | \ 6%
dm dzx Jz

The perturbations in the depth point can now be linearly related to the model perturba-
tions: the equation is multiplied with the inverse of the 2 X 2 matrix in the second term,
so that

-1

o a) (o

bz, dr Oz Jm
= - m = M,ém. (4.20)

§zr 9py 9y 9py

oz az om

The linear residual-migration operator M, is thus defined as:

-1
oz, o o\ ot
or dm dz 9z dm
M, = 3 = = - (4.21)
o Oz opy 9py py
dm dzx Oz dm

M, plays an important role in the gradient calculation discussed in the next chapter.

4.7.1 Calculating the linear residual-migration operator

I describe the calculation of the two types of derivatives in the right-hand side of equa-
tion (4.21)—that is, event derivatives with respect to changes in the reflector position

and derivatives with respect to model parameters—in Appendix A. The computations are
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straightforward with the use of the traveltime maps of the previous chapter. I calculate the
inverse of the 2 X 2 matrix analytically. (In implementing the residual-migration operator,
I experienced no problems in determining the inverse. I found one degenerate case: the
matrix is singular for a flat reflector in a constant-velocity medium (for which p, = 0).

However, M, can be determined analytically for constant-velocity media.)

4.7.2 Example

I illustrate the linear residual-migration operator M, with a simple example of a dipping
reflector in a constant-velocity medium, which turns out to be already quite complicated.
In this example, I migrate reflection data first with a migration-velocity model m, the result
of which I residually migrate with a perturbed model m + ém. Next, I model reflection
data for the residually migrated reflector, and compare these data with the true reflection
event. If both are the same, the residual operator is correct: the operator should conserve
time and stepout of the data. The reason for choosing a constant-velocity example is that
reflection data can be calculated analytically in a constant-velocity medium, so that a fair
comparison can be made.

The dashed line in Figure 4.8a shows this analytically calculated constant-offset reflec-
tion event, and the dashed line in Figure 4.8b shows the dipping reflector after migration
with the constant-velocity model m, which has the correct velocity. The points on the
reflector are now residually migrated with a perturbed model m + ém, where the model
perturbation ém is given by a two-dimensional spline function (see section 5.2). The spline
coefficients that describe this function are all zero, except for one; the result is a “blob”
perturbation (shown by the contour lines in Figure 4.8b). The horizontal width of the
spline cells is larger than the vertical one; this condition explains the elliptical shape of
the blob. The solid line in Figure 4.8b displays the residually migrated reflector; the solid
line in Figure 4.8a shows the corresponding constant-offset reflection event, modeled with
the modeling operator My +sm- As can be seen in these figures, the events are virtually
identical, which proves that the residual-migration operator is accurate for this example.

Because the velocity in the perturbed model is lower (up to 25%) than the original
velocity of 2 km/s, the reflector is overcorrected and moves upward. However, examining
individual reflector points reveals a more complicated behavior than just this upward
movement: depending on the position of the reflector point with respect to the blob,

the point moves to the left or right after residual migration. This complex movement
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FIG. 4.8. Linear residual migration of a constant-offset reflection event from a dipping
reflector (offset 1 km). The original migration-velocity model has a constant velocity of
2 km(s. The linear residual-migration operator migrates the reflector for a perturbed
model, which is found by perturbing the constant-velocity model by a 2-D spline function
that has one non-zero spline coefficient. The perturbed model is shown by a contour plot
(contour interval .1 km/s); the center contour denotes a velocity of 1.5 km/s. The fat line
in figure (b) displays the residually migrated reflector. Ray pairs are shown for 3 data
points, recorded at midpoints 1.5, 2.0, and 2.5 km. Figure (a) shows reflection events for
background and perturbed model (dashed and solid line, respectively).
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is needed to preserve traveltime and stepout, and accommodates for ray-bending effects
caused by the velocity anomaly. These ray-bending effects are shown in the figure for ray
pairs constructed for several data points before (dashed rays) and after residual migration
(solid rays). Note that no elaborate ray-tracing scheme is needed in the calculation of
the residual-migration operator; the rays in Figure 4.8b are shown merely for illustration,
and are found simply by following time gradients in various shot and geophone traveltime
maps.

Although this example shows the operator for a local velocity anomaly, the method
handles large-scale velocity perturbations just as well. (Section 5.4.2 shows an example in
which the operator is calculated for a constant shift in velocity.) Similarly, the operator
is not restricted to a constant-velocity background model, but can be calculated for any
velocity model.

A question raised by this example is how one can verify that the migration output is
correct. Both migration results (with velocity m and m + ém) are valid, but only one
accurately shows the dipping reflector. The only way to know which result is correct is by
comparing the position of the migrated reflector at several offsets. This is exactly what
I do in the next chapter, where the linear residual-migration operator is used to predict

velocity anomalies from discrepancies in migration results at different offsets.

4.8 SUMMARY

The operators M and M~! are not analytical operators that can be calculated directly
from a velocity model; instead, the velocity model is used for computing traveltime maps,
which are then manipulated in the event modeling and migration. As a result, neither the
modeling nor migration operator makes assumptions on velocity model and reflector shape.
The same applies to the nonlinear residual-migration operator, which is just a cascade of M
and M1, Other residual-migration operators are commonly derived for constant-velocity
media. The applicability of the method to all types of velocity models and reflectors is an
important advantage in dealing with data recorded in structurally complex areas, where
velocities can change rapidly both vertically and horizontally, and structural interfaces can
be elaborate. The same consideration is taken into account in the derivation of the linear
operator: although the linear operator can handle only moderate changes in velocity, its
application is not limited by any assumption about the background velocity model or the

shape of the reflectors.



