Chapter 1

Introduction

The determination of seismic interval velocity is one of the main goals of exploration geo-
physicists when they are analyzing seismic data. The information about interval velocity
can directly help the geological interpretation of seismic data, but its most important use
is in the migration of the data. Migration needs an accurate velocity model to position
correctly the geological interfaces and to focus the reflections. The goal of this thesis is to
present a method for estimating interval velocities in cases in which conventional methods
fail; that is, when there are dipping reflectors and the velocity varies rapidly in the lateral
direction.

The proposed method uses the seismic data transformed by a local stacking operator,

which I name “beam stack”. The velocity model is estimated from the beam-stacked data

by use of a tomographic procedure.

1.1 VELOCITY ESTIMATION FROM REFLECTION SEISMIC
DATA

The goal of velocity analysis is to determine a velocity model to be used for migrating
seismic data. Migration images the geological interfaces in the earth’s interior by remov-
ing the effects of wave propagation from the data. To focus properly the reflectors at the
original positions, migration needs a velocity function that predicts accurately the prop-
agation effects of velocity on the recorded reflections. Only the primary reflections are
usually imaged by migration, and thus the velocity function needs to model accurately
only the transmission of the propagating waves, and not their back scattering. The trans-

mission of seismic waves is most strongly influenced by the low-wavenumber components
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of the velocity model; thus the solution of the velocity-estimation problem is a model that
accurately matches the low-wavenumber components of the actual earth velocity. The
higher wavenumbers of the velocity are subsequently determined by migration. The result
of migration is a map of reflectivity in the subsurface (Claerbout, 1984).

The low-wavenumber components of velocity mostly affect the traveltimes of the re-
flections, which are integral measures of the velocity function. Therefore traveltimes, more
than amplitudes, are used for estimating velocity. In particular, the moveouts of the reflec-
tions, that is, the traveltimes as a function of offset, are the key elements in determining
interval velocities. The conventional velocity analysis is based on the assumption of layered
medium and consequent hyperbolic moveouts, but, as I will discuss in the next section,

more general methods are needed with complicated earth models.

1.2 CONVENTIONAL VELOCITY ANALYSIS

The conventional methods for estimating seismic velocity are based on the measurements of
stacking velocities. Stacking velocities are determined by measurements of the coherency
of the data, sorted in common-midpoint (CMP) gathers, along hyperbolic trajectories
in offset and time (Taner and Koehler, 1969). When the earth is layered and velocity
is varying with depth, interval velocity can be approximately determined from stacking
velocity by use of Dix formula (Dix, 1955), which assumes the equivalence of stacking
velocities to root-mean-square (RMS) velocities. But when velocity varies laterally, and
there are dipping reflectors, stacking velocities cannot be equated to RMS velocities and
interval velocity cannot be estimated with the Dix formula.

When there are dipping reflectors the measured stacking velocities must be corrected
by a factor equal to the cosine of the dip (Levin, 1971). If the dips are not known, or
if there are conflicting dips in the data, the data must be corrected before stacking by
use of the dip-moveout process (Bolondi et al., 1982; Hale, 1984). Unfortunately, even
after the application of dip moveout, stacking velocity can be a multivalued function of
zero-offset time: reflections with different dips are originated at different depths and thus
they propagate through layers with different velocities. In these cases the contradictory
information on interval velocity provided by stacking velocities can be unscrambled only
by taking into account the angles of propagation of the reflections.

When velocity changes considerably within the span of a cable length, the moveouts

of the reflections in a CMP gather are not hyperbolic. The non-hyperbolic moveouts can
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still be fitted with hyperbolic trajectories, but the simple, one-dimensional model assumed
by the Dix’s formula is not valid. The interpretation of stacking velocity as RMS velocity
would lead to gross errors in the determination of interval velocity.

In areas in which dipping reflectors or rapid lateral variations in velocity cause the
layered-earth assumption to break down, the relation between the kinematics of the re-
flections and interval velocity must be modeled by ray tracing instead of the simple Dix’s
formula. Ray tracing can be analytical in the simplest cases, or numerical when the ve-
locity model is complicated. The velocity model is reconstructed by back projecting along
the raypaths the discrepancies between the kinematics of the reflections measured from
the data and the results of ray tracing. This procedure is similar to classical tomography,
as it is used in medical imaging or cross-well seismic (Bois et al., 1972; Ivansson, 1985),
and can be considered as “reflection tomography”.

Figure 1.1 shows an example of a data set recorded in the Adriatic Sea and requiring a
tomographic velocity estimation (Harlan, 1989; Leger et al., 1989). In the stacked section
the time pull-down of the reflections around the midpoint location at 5.5 km is caused by
a low-velocity anomaly. The anomaly is narrower than the cable length and thus stacking
velocity analysis cannot be used for estimating the migration velocity. At best, stacking
velocity can be used to estimate a velocity model that slowly varies in the lateral direction.
Figure 1.2 shows the result of migrating the stack with such a velocity. The reflectors have
been approximately focused, but the effects of the anomaly on the positioning of the

reflectors have not been corrected.

1.3 REFLECTION TOMOGRAPHY FROM BEAM-STACKED
DATA

In conventional tomography the absolute errors in traveltimes of the direct arrivals can
be simply back projected along the raypaths, because the first breaks are easily detected
and the positions of the sources and receivers are exactly known. Reflection tomography
presents the additional difficulties that the reflections are not easy to detect, and the
reflectors’ positions are unknown. The way of solving these problems distinguishes the
many tomographic methods that have been proposed for estimating interval velocity in
complex areas.

The most straightforward adaptations of conventional tomography to the reflection
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FIG. 1.1. The stacked section of a data set that needs a tomographic velocity estimation.
A low velocity anomaly causes the time sag near the midpoint location of 5.5 km.
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FIG. 1.2. The result of migrating the stacked data using the best velocity model that
could be determined by conventional stacking velocity analysis.



experiment are the methods that are generally designated with the term “traveltimes
tomography” (Bishop et al., 1985; Stork, 1988). These methods estimate the velocity
model and the reflectors’ positions from traveltimes picked from prestack data and horizons
picked from migrated sections. The main drawback of these methods is that they require
that the traveltimes of the events to be picked. Picking not only is a time-consuming
procedure, but it is also subject to systematic errors that can seriously limit the reliability
of the results. Furthermore, only the reflections with amplitudes considerably above the
background noise can be picked reliably, and thus only part of the information contained
in the data is used for the estimation.

Indirect measures of the moveouts in the data, such as stacking velocities (Toldi, 1985;
Harlan, 1989) or prestack-migration velocities (Fowler, 1988), can be used instead of trav-
eltimes picked from the prestack data. These measures contain information on the travel-
times because they determine which are the stacking hyperbola, or the prestack-migration
diffraction curves, that best fit the moveouts in the data. The advantage of using these
imaging operators for extracting information on the traveltimes is that the resulting mea-
sures are more reliable than the picks of the single traveltimes because they are computed
by stacking together many seismic traces. Their limitation is that the moveouts of the re-
flections are described by only one parameter, stacking velocity or migration velocity. One
parameter is not sufficient to completely describe non-hyperbolic moveouts; consequently
some information on the traveltime is lost and the resolution of the velocity estimation is
decreased.

Figure 1.3 shows an example of non-hyperbolic moveouts caused by lateral velocity
variations. The CMP gather is from the Adriatic Sea data set and the non-hyperbolicity
is caused by the low-velocity anomaly. The raw data are shown on the left side, while
the same data after the application of a hyperbolic normal moveout with velocity of 2.79
km/s are shown on the right side. Residual time delays of about a quarter of a cycle of

the seismic wavelet are uncorrected by the hyperbolic normal moveout.

1.3.1 Measuring reflections’ moveouts by beam-stack

There is a trade-off between tomographic methods that use picked traveltimes, which
provide a complete, but uncertain, description of the moveouts of the reflections, and
the methods that use coherency measures, which contain more reliable, but incomplete,

information on the moveouts. The tomographic method presented in this thesis uses
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FIG. 1.3. A CMP gather from the Adriatic Sea survey containing non-hyperbolic moveouts
caused by the velocity anomaly. The data before (left) and after the application of an

hyperbolic normal moveout with velocity of 2.79 km/s (right).

measurements of the moveouts obtained by local coherency operators. Local stacks are
more reliable than picked traveltimes, and they provide more detailed information on the
moveouts in the data than imaging operators, which measure the coherency of the data
over the whole cable.

Sword (1987) presented a method for estimating velocity from data transformed with
local slant stack (Trorey, 1961; Hermont, 1979). The traveltimes and the ray parameters
of the transformed data are picked together with the surface locations by an automatic
procedure. Using an automatic procedure to pick the slant-stacked data is possible because
slant stacking enhances the reflections. After picking, the velocity model is fitted to the

picked values by a tomographic estimation procedure.

Instead of slant stack for transforming the data I use beam stack (Kostov and Biondi,



1987). Beam stack is a local stacking operator with curved stacking trajectories (hyperbolic
or parabolic). The curvature of the trajectories can be determined given the traveltime,
the offset, and the derivative of traveltime with respect to offset (Chapter 2). The use of
curved stacking trajectories, instead of the straight trajectories of slant stack, improves
the resolution of the transformation. The resolution of stacking operators is proportional
to their “effective” length, that is, the length of the trajectories on which reflections are
summed coherently (Appendix A). The curved stacking trajectories of beam stack well
approximate the hyperbolic moveouts in the data and thus their effective length is not
limited to the Fresnel zone of the reflections, as it is the length of local slant stack. The
trajectories’ length of beam stack can be adapted to the needs of the particular data set
at hand and thus beam stack is a flexible tool for extracting velocity information on the
moveouts of the data.

Being local coherency operators beam stacks can provide information on non-hyperbolic
moveouts in the data, such as the reflections shown in Figure 1.3. Figure 1.4 shows beam
stacks’ semblance as a function of offset and ray parameter for the reflection shown at
3.12 s in Figure 1.3. The black line superimposed onto the semblance plot shows what
the offsets would be as a function of the ray parameter if the moveout were perfectly
hyperbolic. The non-hyperbolicity of the moveout is evident from the beam stacks; it
is actually more evident in the beam stacked data than in the data shown in the usual
time-offset domain (Figure 1.3).

When beam stacks are applied to non-hyperbolic moveouts, the shorter are the stacking
trajectories, the more accurate are the measurements of the moveouts. However, accuracy
comes at the expense of the reliability of the information. Chapter 5 describes a new
method for estimating local coherency spectra that has higher resolution than conventional
methods. The trade-off between resolution and accuracy of the measurements obtained by
beam stack could be further improved if the new coherency criterion was used in measuring

the moveouts in the data.

1.3.2 Model-driven detection of primary reflections

Beam stack transforms the coherent energy in the prestack data into semblance peaks. The
tomographic estimation should fit the kinematics of the peaks corresponding to primary
reflections, and should not be influenced by the peaks corresponding to multiples, or

other coherent noise. Discerning among the legitimate peaks and the spurious peaks is
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an important step for any tomographic method because it has great influence on the
quality of the results. To solve this detection problem, I maximize semblance in the
beam-stacked data, with a technique similar to the one used by Toldi in his thesis (1985).
This procedure corresponds to a model-driven detection of events because, at a given
iteration, the semblance peaks that influence the estimation process are determined by the
current velocity model. The model-driven detection has the advantages, with respect to
conventional picking algorithm, of being fully automatic and of allowing the setting of a
priori constraints directly in the model space. On the other hand, a preliminary picking of
the data dramatically reduces the size of the data, saving storage space and computational

efforts.

1.3.3 Velocity model and reflectors’ geometry

In reflection tomography the velocity estimation and the imaging problems are interrelated.
An estimate of the reflectors’ geometry is needed for tomography, but, at the same time,
the determination of the reflectors’ positions from the data depends on the velocity model.
The two problems should be solved simultaneously, but usually they are solved iteratively

in an alternative fashion (Stork, 1988). First an estimate of the reflectors’ positions is
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obtained assuming a velocity model, and then the estimated reflectors’ geometry is used
for improving the velocity model.

In the velocity estimation presented in this thesis, the reflectors’ geometry is deter-
mined by imaging the beam-stacked data by use of ray tracing. Because of the simplicity
of the imaging principle, it is possible to take into account the movement of the reflec-
tors when evaluating the tomographic operators that relates perturbations in the velocity
model to perturbations in the kinematics of the data (Chapter 3). But, even if properly
included in the linearization of the problem, the movements of the reflectors caused by
velocity variations make the estimation process highly non-linear. Therefore many iter-
ations of the imaging-tomography loop may be required before a satisfactory solution to
the estimation problem can be reached. When estimating velocity from beam-stacked data
it is possible to reimage the reflectors many times because the imaging of the reflectors
from beam-stacked data is a much cheaper process than the prestack migration of the
original data. This possibility is the main advantage of transforming unmigrated data, as
opposed to migrated data. On the other hand, after migration with an approximately cor-
rect velocity, the reflectors are generally well imaged, although not in the correct position.
Therefore the detection of the events in the migrated data is easier than in the unmigrated
data. For this reason the many methods that have been proposed for estimating residual
migration velocity (Gardner et al., 1974; Faye and Jeannot, 1986; Al-Yahya, 1989; Etgen,
1989) could have some advantages when the data are noisy or the structure is particularly
complicated. When the residual velocity model varies rapidly in the lateral direction, the
residual moveouts after depth migration are non-hyperbolic. In these cases one of the basic
ideas of this thesis, that is, the measurements of reflections’ moveout by local coherency
operators, should be applied to measure the residual moveouts (Sword, 1988; van Trier,

1989).

1.4 ASSUMPTIONS AND LIMITATIONS

The development of the theory in this thesis assumes the Earth to be a two-dimensional
acoustic and isotropic medium. The application of the theory to a three-dimensional
medium should be straightforward but computational and storage requirements would
challenge present computer technology.

The generalization of the theory to an anisotropic elastic medium is instead far more

complicated. However the capability of local stacking operators to describe non-hyperbolic
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moveouts could be applied to the estimation of an anisotropic velocity model.
The derivation of beam stacks presented in Chapter 2 is based on the assumption that
the moveouts of the reflections are approximately hyperbolic. The basic idea for extending

beam stacks to more general moveouts is also presented in Chapter 2, but it is untested

yet.



