Appendix A

A qualitative comparison of the
first-order Born and Rytov

approximations

A.1 Introduction

First-order Born and Rytov approximations are used to linearize the wave equation. The
Born approximation produces a linear relation between the monochromatic, scattered
wavefield A¥ and a perturbed velocity field expressed as the object function O (where
U= Ae®, AU =V — ¥y, and O = ko®(1 — vo%/v?)). It transforms

A¥(gls) = /O(r)Go(g —r){%o(r(s) + A¥[r|s,O(r)|}dr (A1)
into
AV(gls) = / O(r)Go(g — r)Wo(x|s)dr, (A.2)

by assuming A¥ << W¥;. Since this weak-scattering approximation can be translated
into into |AA/Ap| << 1 and |A¢| << 1, the method requires both the total amount of
scattering and the total change in phase to be small (Chernov, 1960).

The Rytov approximation produces a linear relation between the monochromatic scat-

tered complex phase A® and a perturbed velocity field (where A® = In ¥ — In¥,). It
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transforms
ae(gle) = [ CEZDHER 04+ (v(asks. 0@ (A9)
into
AD(gls) = / GO(g‘I; (rg)l\IsI;)(rls)O(r)dr, (A.4)

by assuming (V(A®))? << O. Since this smoothness assumption can be translated into
|V1In(A/Ap)/ko| << 1 and |[V(A¢)/ko| < 1, the method requires both the amount of
scattering per wavelength and the scattering angle to be small (Chernov, 1960).

In the weak-scattering limit the Born and Rytov approximations are equivalent; in the
very-short-wavelength limit, the Rytov approximation reduces to the ray approximation
(Devaney, 1981). Many papers have been written comparing the validity of the two ap-
proximations in the intermediate range. These papers fall into two groups. One group
evaluates the approximations mathematically, comparing Born- and Rytov-modeled data
with analytically modeled data (Keller, 1969; Oristaglio, 1987; Beydoun and Tarantola,
1987). The examples are limited to plane waves and plane interfaces. They demonstrate
four main conclusions. First: since the Born approximation yields a linear relation between
the scattered wavefield and the perturbed velocity model, it propagates energy with the
background velocity model. Consequently, it is good at modeling energy reflected from a
velocity perturbation that is small in magnitude, but it fails catastrophically at modeling
energy transmitted through a velocity perturbation that is large in size (i.e., where the
phase change through the object approaches a half wavelength). Second: because the
Rytov approximation yields a linear relation between the scattered complex phase and
the perturbed velocity model, it propagates energy with the perturbed velocity model.
Consequently, it is good at modeling energy transmitted through a velocity perturbation
that is small in magnitude, regardless of its size. Third: while the Rytov approximation
models reflected energy with an error that is on the same order as that of the Born, it is
inferior to the latter for this application. Rytov-modeled reflections equal Born-modeled
reflections—plus additional weak, spurious events. Fourth: both approximations decrease
in accuracy with increasing angle of incidence and/or velocity contrast.

The second group of papers evaluates the approximations by comparing the velocity

inversions that result from their use in diffraction tomography (Slaney et al., 1984; Lo
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et al., 1988). The examples are limited to localized anomalies in a constant background
field. They demonstrate two conclusions. First: the Born approximation is better than the
Rytov at determining the edges of a velocity anomaly (illuminated by reflected energy),
and poorer at determining the interior of a velocity anomaly (illuminated by transmitted
energy). Second: as the velocity perturbation increases and more and more energy is
reflected, the Rytov approximation proves inferior to the Born.

This appendix falls into the second category, evaluating the Born and Rytov approx-
imations by comparing their use in wave-equation tomography. The space-domain im-
plementation and geometry of the examples are as described in chapter 4. A circular,
two-dimensional anomaly is embedded in a homogeneous field, with a single source above
and a line of receivers below. The velocity contrast of the slow anomaly is examined at
2.5%, 5.0% and 7.5%. In addition to a direct comparison of the resulting velocity inver-
sions, the error terms in equations A.1 and A.3 are plotted for each example. While the
conclusions are the same as those previously cited, examination of the error terms permits

further insight into the differences between the Born and Rytov approximations.

A.2 Born Approximation

A.2.1 Velocity inversions

Figure A.la shows the Born data measured for the experimental geometry of chapter
4. From top to bottom the rows correspond to frequencies of 5, 10, 15, 20 and 25 Hz.
From left to right the columns correspond to slow velocity anomalies of magnitudes 2.5%,
5.0% and 7.5%. The solid and dashed lines show the imaginary and real parts of A¥,
as predicted by the Born approximation (equation A.2). The finely and coarsely dotted
lines show the corresponding quantities measured in the finite-difference modeled data
(equation A.1). Figure A.2a shows the Born-approximation velocity inversion produced
by applying wave-equation tomography to the data of Figure A.la. The rows and columns
are the same as in the data figure, with two extensions. An additional column has been
added on the left—the ideal inversion, generated by using data forward modeled with the
Born approximation (the solid and dashed curves of Figure A.la); an additional row has
been added at the bottom—the inversions resulting from solving for all five frequencies
simultaneously. The rows within each column are clipped at the maximum value of the

ideal, multifrequency inversion for that anomaly magnitude: .0116, .0237, .0365. Because
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FIG. A.1. (a) Born data: the solid and dashed lines correspond to the imaginary and real
parts of AW predicted by the Born approximation; the finely and coarsely dotted lines
correspond to the imaginary and real parts of AW in the finite-difference generated data.
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FIG. A.1. (b) Rytov data: the solid and dashed lines correspond to the imaginary and
real parts of AP predicted by the Rytov approximation; the finely and coarsely dotted
lines correspond to the imaginary and real parts of A® in the finite-difference generated

data.
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FIG. A.2. (a) Born-approximation velocity inversion.
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FIG. A.2. (b) Rytov-approximation velocity inversion.
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the finite aperture of the experiment has smeared the energy over a broad region, these
values are less than half the true anomaly magnitudes (.0256, .0526, .0811).

Two observations can be made about the figures. First, the error is larger for receivers
directly below the source (transmitted energy) than for receivers to the side (reflected
energy). In Figure A.2a this corresponds to the fact that the edges of the anomaly are
determined even in the worst inversion (7.5% and 25 Hz), while the interior disappears.
Second, the data error increases (and the inversions deteriorate) both with frequency and
with anomaly magnitude. For a similar cylindrical anomaly, Slaney et al. (1984) observed
that the Born approximation fails completely at describing transmission where the product
of the relative refractive index (Av/v) and the diameter of the cylinder exceeds .35A. This
limit is reached for the 7.5% anomaly at 20 Hz.

A.2.2 Error term

To facilitate comparison of Born and Rytov error terms, equation A.1 may be rewritten

as:

(A5)

o) = G-yt [or) + ST,

Figure A.3a plots the complex absolute value of the error term of equation A.5, normalized
by ko%:
OAVY
ko o

The rows and columns are as in Figure A.la. Each panel is plotted full scale (without

: (A.6)

clipping). Figure A.4a shows the maximum value for each error panel: the horizontal
axis is frequency; the solid, dashed and dotted lines correspond to 2.5%, 5.0% and 7.5%
anomalies, respectively. Inspection of the error terms explains the results of Figures A.la
and A.2a. First, the error term’s contribution to the integral in equation A.5 is confined
within the boundaries of the anomaly. Consequently, the Born approximation is least
accurate for the transmission experiment (when the source/receiver maxima of Go¥o—the
interrogating wavepath—are closest to the anomaly), and most accurate for the reflection
experiment (when the source/receiver maxima are far from the anomaly). Second, the
error increases strongly with both frequency and velocity contrast. The error increases

through the anomaly from top to bottom, as the phase difference between the background
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and transmitted wavefields accumulates.

A.3 Rytov Approximation

A.3.1 Velocity inversions

Figures A.1b, A.2b and A.3b show the Rytov-approximation equivalents to Figures A.la,
A.2a and A.3a. In contrast to the Born approximation, the data and inversion errors in
Figures A.1b and A.2b increase very slowly with anomaly magnitude (and reflectivity) and
almost imperceptibly with frequency. Because the Rytov-predicted data are marginally
more accurate for transmitted than reflected energy, the inverted images narrow marginally
with frequency and anomaly magnitude: as the Rytov approximation finds the transmit-

ting center and degrades the reflecting edges.

A.3.2 Error term

Figure A.3b is the Rytov approximation equivalent of Figure A.3a. It plots the complex

absolute value of the error term of equation A.3, normalized by ko:

. (A7)

[V(a®))”
ko

In contrast to the Born-approximation results, the error term contributes to the integral
in equation A.3 both inside and outside the anomaly. It is smallest inside the anomaly—
as expected from the Rytov approximation’s good transmission results. It is largest just
beyond the edges of the anomaly—where the gradients of log relative-amplitude and phase
delay are greatest. Figure A.4b is the Rytov equivalent of Figure A.4a. The maximum
error increases with both frequency and velocity contrast, but much more slowly than with
the Born approximation.

The morphology of the error term is reminiscent of the hyperbolas of Figure 3.10. A
hyperbola describes the locus of points the difference of whose distances from two foci is
constant. Since the anomaly acts as a secondary source (or focus), the striations in the
error term coincide with curves of constant scattered phase, and therefore with curves of
constant gradient in scattered phase. Note that for 5 and 10 Hz, where the anomaly is

almost a point scatterer, the hyperbolas persist through the anomaly. Elsewhere, they are
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FIG. A.3. (a) Complex absolute value of the Born error term, normalized by k?:
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FIG. A.3. (b) Complex absolute value of the Rytov error term, normalized by ko®:
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FIG. A.4. (a) Maximum value in Born error term: | ; (b) Maximum value in Rytov

error term: |£Z(—A—?Q)—I Solid, dashed and dotted lines correspond to anomaly magnitudes
of 2.5%, 5.0%, and 7.5% respectively.

confined to its exterior. The arms increase in relative magnitude and extent with frequency

and anomaly magnitude.

A.4 Conclusion

The superiority of the Rytov approximation for modeling transmitted energy assumes that
perturbations to just one wave (e.g. the direct wave) are examined at one time. When
perturbations to multiple waves (e.g. direct and reflected) are considered simultaneously,
the linear relation between phase delay and transmission velocity breaks down—and the
advantages of the Rytov over the Born approximation disappear (Keller, 1969). Conse-
quently, successful application of the Rytov approximation requires isolation of both a
single source wave and scattering from that wave. It should also be noted that application
of the Rytov approximation is more difficult than application of the Born, because phase

unwrapping must be performed.
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