Chapter 4

Ray-trace vs. wave-equation

tomography: inversion

To continue the comparison of ray-theoretic and wave-theoretic tomography, this chapter
demonstrates ray-trace and wave-equation tomography in the space domain, contrasting
their apparent resolving powers by inverting a synthetic data set. The example is limited
to wave-equation tomography under the Rytov approximation, as Rytov’s phase delays
are both more similar than Born’s scattered amplitudes to the traveltime delays of ray
theory and more appropriate for the transmission geometry of the test experiment. (The
example is worked for the Born approximation in Appendix A.) The chapter is organized

into two sections: forward modeling and inversion.

4.1 Forward modeling

This section provides a qualitative analysis of a finite-difference generated seismic exper-
iment, consisting of one shot and multiple geophones in a transmission geometry. The
purpose of the section is both to examine the complex data used in wave-equation tomog-
raphy and to emphasize the conceptual simplicity with which wavepaths forward model
the data. The section is divided into two subsections. The first describes the experiment,

the second the data.
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4.1.1 The experiment

Figure 4.1a shows the velocity field used for the two-dimensional experiment: an anomalous
circular region 500 m in diameter and 5% slower than a 2000 m/s background field. A
single shot was positioned on the surface directly above the anomaly; multiple geophones
were positioned at a depth of 2000 m, up to an offset of 2000 m on either side. The source
wavelet was the second derivative of a Gaussian, bandlimited from approximately 5 to
30 Hz. Figures 4.1b and 4.1c show shot profiles generated by finite-difference modeling
through the constant background field and the full field, respectively. The recording time

was long enough that infinite time windows and monochromatic data could be assumed.

4.1.2 The data
Rytov

Figure 4.2 shows the data used by Rytov wave-equation tomography for three traces of
Figure 4.1 (offsets 0, 360 and 1060 m). The left panel plots phase delay as a function
of frequency; the right panel plots log amplitude-ratio as a function of frequency. The
phase delays are presented as time delays, having been normalized by frequency. Because
the phase delays are small, phase unwrapping was not the problem it sometimes becomes
in more complicated applications (Tribolet, 1977; Kaveh et al., 1984; Soumekh, 1988).
In the interest of brevity, this discussion is confined to analysis of the phase plots—and
consequently of the imaginary part of the Rytov wavepaths. Parallel arguments could be
presented for the log amplitude-ratio plots—and the real part of the Rytov wavepaths.
Since the real and imaginary parts of the wavepaths are 90 degrees out of phase, the log
amplitude-ratio plots resemble the derivatives of the phase plots before normalization.
Figures 4.3 and 4.4 illustrate the physical meaning of wavepaths as forward-modeling
tools. Figure 4.3 superimposes 5, 10, 15, 20, 25 and 30 Hz first-Fresnel zones on the circular
anomaly for the three different offsets of Figure 4.2. Given that Fresnel-zone boundaries
are equivalent to imaginary Rytov-wavepath zero crossings, the absolute maxima in Fig-
ure 4.2 can be predicted by inspection of these diagrams: for each offset, they occur at
that frequency for which the first Fresnel zone just encompasses the anomaly. When the
anomaly protrudes into the second Fresnel zone, it underlies a negative portion of the
wavepath and contributes to a phase perturbation of opposite sign. The 1060 m offset is

particularly interesting in that it predicts a phase advance. For this offset, the anomaly
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FIG. 4.1. 2-d transmission experiment. (a) Velocity field for the finite-difference modeled
synthetic. (b) Shot profile through a constant-velocity background field. (c) Shot profile
through the full velocity field of (a). Because the data were severely clipped to empha-
size scattered energy, side-boundary artifacts appear in the lower corners. The modeling
program was courtesy of John Etgen.
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FIG. 4.2. Left panel: the phase delay between the perturbed and unperturbed shot profiles,
normalized by frequency, expressed in seconds and plotted as a function of frequency. Right
panel: In(|¥(w)|) — ln(tlr\llo(w)p, plotted as a function of frequency. The solid, dashed and
dotted lines indicate offsets of 0, 360 and 1060 m, respectively.
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FIG. 4.3. First-Fresnel zones for 5, 10, 15, 20 and 25 Hz are shown superimposed on a

contoured outline of the circular velocity anomaly, for offsets 0, 360 and 1060 m. The 5
Hz first-Fresnel zone is the widest; the 25 Hz zone the narrowest.
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FIG. 4.4. The boundaries of the first five Fresnel zones for several frequencies and offsets
are shown superimposed on the circular velocity anomaly.

is sensed more strongly by the second Fresnel zone (and negative part of the wavepath)
than by the first.

Several relative maxima and minima in Figure 4.2 can be predicted by inspection of
Figure 4.4. Here the boundaries of the first five Fresnel zones for several frequencies are
shown superimposed on the circular velocity anomaly. The sign of each wavepath alternates
from positive to negative, starting with a positive sign in the central zone. When the edge
of the anomaly just grazes the inside boundary of a negative oscillation, it produces a
relative minimum; when the edge grazes the inside boundary of a positive oscillation, it
produces a relative maximum. The plots illustrate relative minima and maxima at 11 and
17 Hz for the 360 m offset trace, and at 8 and 11 Hz for the 1060 m offset trace.

Figure 4.5 compares data forward modeled under the Rytov approximation with finite-
difference data for 5 and 10 Hz. The solid lines show the real data, the dotted lines the
modeled data. For this data set, full wave-equation modeling is well approximated by
linearization of the wave-equation under the Rytov approximation. Appendix A examines

the limitations of the Rytov and Born approximations with specific examples worked for
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FIG. 4.5. Accuracy of the Rytov approximation. Forward-modeled (dotted) and measured
(solid) data for 5 and 10 Hz.

this single-source, circular-anomaly experiment.

Ray

Since Figure 4.2 demonstrated that the linear phase-delay assumption of ray theory is
somewhat violated by this data set, the ray inversion used perfect linear data traced
with straight rays. (The issue of event picking in the presence of geometrical frequency
dispersion is discussed by Wielandt, 1987.) Figure 4.6 shows the traveltime delays used as
data in the ray-trace inversion, along with a raypath diagram for a geophone at 1000 m

offset.

4.2 Inversion

This section inverts the data sets described in the last section, solving the systems of

equations LoAw = At and LoAv/v = A® for ray-trace and wave-equation tomography,
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FIG. 4.6. Left panel: traveltime delays (in seconds) used as ray-trace data for all offsets
of Figure 4.1. Right panel: raypath for a geophone at 1000 m offset. The plots have been
truncated at an offset of 1750 m.

respectively. For reasons of computational efficiency, the experiment described above was
subsampled. The geophone spacing was increased from 10 m to 40 m and the maximum
offset was reduced from 2000 m to 1480 m. This subsampling translates to 3700 model
parameters and 75 offsets. It also means that the wavepaths were truncated in space by
the dimensions of the model space. The top part of Figure 4.7 shows the abbreviated 10
Hz wavepaths for three different offsets; the lower part shows the spectra of the limited
patterns as they sweep over the (k;,k,) plane. Spectral coverage falls off before the 2kg
limit of Figure 3.7 because of the wavepaths’ truncation.

This section is divided into two subsections. The first uses singular-value decomposi-
tion to evaluate the number of degrees of freedom available in wave-equation tomography
and ray-trace tomography. In addition to a comparison between the two methods, three
questions are addressed: are phase delays and log-amplitude ratios independent; how finely
should the data be sampled in space; how finely should the data be sampled in frequency.
The second subsection compares ray-trace and wave-equation tomographic inversion re-

sults.

4.2.1 Singular value decomposition

Singular-value decomposition factors an nxm data kernel G into three matrices of dimen-

sion nxn, nxm and mxm:

G =UAVT. (4.1)
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FIG. 4.7. 10 Hz wavepaths in the space and wavenumber domains. The top two rows
show the abbreviated imaginary and real parts of the 10 Hz monochromatic wavepath, for
offsets of 1480, 760 and 0 m. The bottom row shows the spatial-amplitude spectrum of
each wavepath.

U and V are eigenvector matrices, their columns spanning the data and model spaces,
respectively; A is a diagonal eigenvalue matrix, its nonnegative diagonal elements called
singular values (Menke, 1984a). The number of nonzero singular values in A corresponds
to the number of model eigenvectors solved for in the problem—the number of degrees of
freedom in the solution. For a fully resolved problem, the number of degrees of freedom
equals the number of model parameters. Figure 4.8 shows the singular values resulting
from factorizations of Lg and Lo for different subsets of the data. The calculations were
performed using the SVD subroutine of LINPACK (Dongarra et al., 1979). Panel (a)
compares ray-trace tomography to monochromatic, wave-equation tomography at three

different frequencies (5, 7.5 and 10 Hz). Ray-trace tomography has 75 significant singular
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FIG. 4.8. (a) Singular values for ray-theoretic tomography (solid line) and monochromatic
5 (dashed), 7.5 (dotted) and 10 (dot-dashed) Hz wave-equation tomography. (b) Singu-
lar values of (a) overlain by singular values for multifrequency inversions: 5 and 10 Hz
(dashed); 5, 7.5 and 10 Hz (dotted); 5, 6, 7, 8, 9, 10 Hz (dot-dashed).

values, one for each offset (or equivalently, one for each equation). While each of the wave-
equation tomographic inversions has 150 equations (2 equations for each offset), their
number of significant singular values varies by frequency: 5, 7.5 and 10 Hz have from 30
to 60, 45 to 90 and 60 to 120 significant singular values, respectively. These numbers
translate to 4 to 8 degrees of freedom per wavelength, instead of the usual 2. In this
case the extra degrees of freedom come both from the independence of the amplitude and
phase measurements!, and from the fact that monochromatic wavepath spectra contain
information up to twice the source wavenumber. While not shown here, subsampling in
space and omitting either the phase or log amplitude-ratio equations produced results
supporting these conclusions.

Panel (b) addresses the question of how finely the data should be sampled in temporal
frequency, given the .0005 and .0003 cycles/m sampling in k, and k,. It reproduces the
singular-value curves from panel (a) as faint lines, overlain by singular-value curves for
multifrequency inversions as dark lines. The multifrequency experiments were run for:
5 and 10 Hz (300 equations); 5, 7.5 and 10 Hz (450 equations); and 5, 6, 7, 8, 9, and
10 Hz (900 equations). Because a 1 Hz change in frequency corresponds to a .0005 to

.001 cycles/m increase in the radius of spectral coverage, the figure shows substantial

!Wengrovitz and Oppenheim (1987) show that phase and amplitude are not independent for one-
dimensional even or two-dimensional circularly symmetric signals.
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increases in independent information for each experiment. The general equation relating

temporal-frequency domain sampling to spatial-frequency domain sampling is:

Af > ”°2Ak. (4.2)

4.2.2 Results

Figure 4.9 shows the inversion results for the data described in the previous section. They
were computed with LSQR: the conjugate gradient, linear system solver of Paige and
Saunders (1982). (Other iterative schemes commonly used for solving tomographic matrix
problems are ART and SIRT. See Kak (1985), Van der Sluis and Van der Horst (1987),
and Spakman and Nolet (1988) for comparisons of the various methods.) The top two
panels show the model and the ray inversion. The poor ray result arises not only from the
large size of the null space or unresolved eigenvectors in the ray-theoretic problem, but also
from its structure: the ray interrogates a very limited region of the model. Figure 4.10
shows the twelve model-space eigenvectors (columns of V') corresponding to the twelve
largest singular values of Lo: many more shots would be required to fully reconstruct the
anomaly.

The middle two panels in Figure 4.9 show monochromatic 5 and 10 Hz wave-equation
inversions. Clearly, wave-equation tomography makes much fuller use of the information
in the seismic experiment than does ray-trace tomography: even though the monochro-
matic inversions have larger null spaces and fewer significant singular values than the
ray-trace inversion, they produce more informative images of the circular anomaly. They
are more successful because of the spatial coverage offered by the eigenvectors they solve
for. Figure 4.11 shows the four model-space eigenvectors corresponding to the twelve
largest singular values for both the 5 and 10 Hz inversions. With scattering included in
the problem, the region directly below the source (the region occupied by the anomaly) is
particularly well determined.

The bottom two panels of Figure 4.9 show multifrequency wave-equation tomographic
inversions: 5 and 10 Hz on the left; 5, 10, 15, 20 and 25 Hz on the right. The last was
run with a finer (20 m) sampling rate, and included offsets up to 1580 m. (There were
15800 model parameters. The problem was not run to convergence, but stopped after 50
iterations.) The multifrequency inversions provide sharper images of the velocity field and

move energy away from the the false anomaly at the source. The elongation of the inverted
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Model Ray

FIG. 4.9. Inversion results. From left to right, top to bottom: the model; a ray-theoretic
inversion; a monochromatic 5 Hz wave-equation inversion; a monochromatic 10 Hz inver-
sion; a multifrequency 5 and 10 Hz inversion; a multifrequency 5, 10, 15, 20 and 25 Hz
inversion.
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Model—space eigenvectors: ray

FIG. 4.10. From left to right, top to bottom: the twelve model-space eigenvectors corre-
sponding to the twelve largest singular values of the raypath matrix Lo. The panels are
clipped independently at the 99th percentile.

image in the z-direction arises from the familiar finite-aperture problem of tomography
(Menke, 1984b). Without horizontally-placed shots and geophones, the spectral patterns
of Figure 4.8 never sweep across the k, axis.

The upwards shift of the anomaly maximum with frequency is apparent here and in the
higher frequency examples of Appendix A. The shift results from the resolving power of
the inversion being greater at the bottom of the model (near the multiple geophones) than
at the top (near the single source). The top rows in Figures 4.12a and 4.12b compare 5 and
10 Hz model-resolution vectors for four model parameters (cells) selected from the central
column of the model. These model-resolution vectors are rows from the model-resolution

matrix R:
mPre = G—gdoba — G—g[Gmtrue] — [G—gG]mtrue — Rmtrue (4.3)

(Menke, 1984a). (Here mP"® represents the predicted or inversion-result model parame-
ters, G9 the generalized inversion applied, d°** the observed data, and m!™“¢ the true
model parameters.) Each model-resolution vector shows how well its corresponding model
parameter is resolved—how well that model parameter is distinguished from other model

parameters in the problem. The 5 Hz inversion positions the anomaly better than the
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a) Model-space eigenvectors: 5 Hz

b) Model-space eigenvectors: 10 Hz

FIG. 4.11. From left to right, top to bottom: the twelve model-space eigenvectors cor-
responding to the twelve largest singular values of the 5 Hz wavepath matrix Lo in (a)
and the 10 Hz wavepath matrix in (b). The panels are clipped independently at the 99th
percentile.
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a) Model-resolution vectors: 5 Hz
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FIG. 4.12. Top rows in (a) and (b): model-resolution vectors for 4 model parameters se-
lected from the central column of the model. Bottom rows in (a% and (b): model-resolution

vectors for 4 model parameters selected from a column to the left of center.

10 Hz inversion because its central resolution vector approximately matches the anomaly
in size. For the 10 Hz and higher frequency inversions, the central resolution vectors are
smaller than the anomaly. Because the resolution vectors are more elongated above than
below the anomaly, they preferentially smear the feature upwards. For comparison, the
lower rows in Figures 4.12a and 4.12b show 5 and 10 Hz model-resolution vectors for four

model parameters selected from a column to the left of center.
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