Chapter 2

Ray-theoretic vs. wave-theoretic

tomography: equations

2.1 Ray-theoretic tomography

Seismic tomography in its ray-theoretic form is traveltime inversion. In this application the
illuminating energy is acoustic and the tomographic integrals are line integrals measured
as traveltimes along raypaths. The four steps of ray-theoretic tomography correspond to:
the picking of traveltimes for each source-geophone experiment; the calculation of expected
traveltimes by tracing rays through an assumed background velocity field; the development
of a linear theory relating the resulting traveltime delays to possible velocity perturbations;
and the production of an updated velocity field by projecting the traveltime delays back
through the medium—along raypaths.

2.1.1 Step one: traveltime picks

Because ray-theoretic tomography relies on the high frequency approximation of ray the-
ory, its traveltime picks must represent ray arrivals. Where traveltimes are picked from
bandlimited wavelets, this requires either that the wavelet peaks are undistorted (that
phase delay is linear with frequency) or that Fermat-path first breaks can be determined.
In practical applications these requirements are often unmet. Where the velocity field
varies quickly on the scale of the source wavelength, wavelets are distorted by geometrical

frequency dispersion; where events overlap and signal level is low, first breaks are difficult
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to pick. The implications of these assumptions will be returned to in the next chapter.

2.1.2 Steps two and three: traveltime delays and linear theory

Given the preceding assumptions, the source-geophone traveltime integrals of ray-theoretic

tomography are:
t(gls) = / w(r)L [r]s, g, w(r)] dr. 2.1)

Here the source-geophone pair is indicated by 8,g; w is inverse velocity or slowness; and

L is the raypath from s to g through w. (I have transformed the usual line integral into

a space integral by making L a function of r and nonzero only along the raypath.)
Following equation 2.1, the expected source-geophone traveltime integrals, calculated

by ray-tracing though the first-guess background slowness field, are:
to(gls) = / wo(r) Lo [r]s, g, wo(r)] dr. (2.2)

Here wy is the background slowness field and Ly the raypath through that field. Because
L is a function of w, the acoustic tomography problem is nonlinear: instead of a linear

relation between At and Aw, simple subtraction of ¢ty from ¢ creates:
At(gls) = [ {wr)L[xls, 8, wx)] - wol) Lo [rls,g, wo(r)]} dr. (2.3)

To create a linear relation, ray theory invokes Fermat’s principle and approximates L by

Lo, producing

At(gls) = /Aw(r)Lo(r|s,g)dr. (2.4)

2.1.3 Step four: backprojection

The fourth, backprojection step of ray-theoretic tomography involves the solution of the
system of linear equations resulting from consideration of a number of source-geophone

pairs:

LoAw = At. (2.5)



For seismic experiments sampled evenly in space, this step may be performed analytically:
in either the time-space domain as a generalized inverse Radon transform (Beylkin, 1982;
Fawcett and Clayton, 1984), or in the time-wavenumber domain using the projection slice
theorem (Mersereau and Oppenheim, 1974). However, given the irregular spatial coverage
of the typical seismic experiment, most traveltime inversion is performed numerically in
time-space, using an algebraic approach and iterative least squares (Dines and Lytle, 1979;
Stork, 1988). Ray-theoretic tomography in this form is most often referred to as ray-trace
tomography. Because ray-trace tomography retains the strongest physical connection with
raypaths, it is the algorithm of choice in this thesis. (See Kak (1985) for a detailed survey
of tomography in general and Worthington (1984) for a brief summary of geophysical
tomography in particular.)

The nonlinear part of the acoustic tomography problem is attacked iteratively, with

steps two through four being repeated for successively updated background velocity fields.

2.2 Wave-theoretic tomography

Seismic tomography in its wave-theoretic form is full waveform inversion. In this appli-
cation the traveltimes measured as line integrals along raypaths in ray-trace tomography
are replaced by scattered wavefields—measured as surface (2-d) or volume (3-d) integrals
over wave-propagation paths. The four steps of wave-theoretic tomography correspond to:
the recording of full wavefields as seismic traces for each source-geophone experiment; the
calculation of expected wavefields by forward modeling though an assumed background
velocity field; the development of a linear theory relating the resulting scattered wave-
fields to possible velocity perturbations; and the production of an updated velocity field
by propagating the scattered wavefields back through the medium.

2.2.1 Step one: wavefield measurements

Because wave-theoretic tomography is full waveform inversion, it makes no assumptions
about the characterization of an event by a single traveltime pick. However, it does assume
both that the source is sufficiently well known for calculation of a background wavefield
and that the recorded seismic traces are complete and free of noise. The implications of

this latter assumption will be returned to in the next chapter.



2.2.2 Steps two and three: wavefield perturbations and linear theory

The wave-theoretic equivalent of equation 2.4 may be generated in two ways: corresponding
to linearization of the scalar wave equation with either the first-order Born or the first-

order Rytov approximation.

Born

While ray-trace tomography creates a linear relation between velocity and traveltime per-
turbations, the first-order Born approximation creates a linear relation between velocity
and wavefield-amplitude perturbations: A¥(w) = ¥(w) — ¥o(w). These are complex am-
plitudes (¥ = Ae*?), measured in the temporal-frequency domain for source-geophone
pairs. ¥(w) is the full monochromatic wavefield; ¥o(w) is the background monochromatic

wavefield.

The Born approximation begins with the wave equation written as:
A¥(g|s) = /O(r)Go[g —r,vo(r)][{¥o|r|s, vo(r)] + AV [r|s,O(r)]}dr (2.6)

(Slaney et al., 1984). O is the object function, or the perturbed velocity field expressed

as:

o(r) = Kki(r)[1 - vd(x)/v2(x)]
~ 2k3(r)Av(r)/v(r). (2.7)

Gy is the Green’s function or impulse response for the background medium: for constant

velocity and three dimensions,

G eikoll‘|
0(1‘) - 47l'll‘| ’ (28)
for constant velocity and two dimensions,
)
Go(r) = ZHO (k0|r|) (2.9)

ko is the background wavenumber w/vg, and H(gl) is a zero-order Hankel function of the

first kind.



Equation 2.6 has a simple physical interpretation based on the principle of Huygens
construction. It says the anomalous wavefield at a specific geophone is generated by
superposition—that each point in the medium acts as a scatterer, emitting an impulse
response with a magnitude equal to the product of the full wavefield and the object function
at that point. In spite of this interpretation, the basic form of the equation remains
complex, bearing little resemblance to the simple tomographic integrals of ray theory
in the previous section. Equation 2.6 can be made to look much more tomographic by

regrouping terms and introducing the concept of a wavepath L:

a%(gly) = [ S8 Llrls, 0] e
£ [x]s, 8, (1)) = 2K()Go(g - 1) {¥olrls) + A¥ [rls,0()}.  (2.10)

With this rewriting, the equation says the scattered complex amplitudes of wave-theoretic
tomography correspond to integrals through the perturbed velocity field over monochro-
matic wavepaths £—just as the traveltime delays of ray-theoretic tomography correspond

to integrals through the perturbed velocity field over raypaths L.

As in the ray-trace application, £ (specifically A¥) is a function of Av, and the problem
is nonlinear. Under the Born approximation, the equation is linearized by assuming the
wavepath £ to be independent of the velocity perturbation (A¥ << ¥y), yielding the

monochromatic analog of equation 2.4:

Av(r)
v(r)

For a point source at 8, ¥y is the Green’s function for the background medium, and

AU(gls) = / Lo(r|s, g)dr. (2.11)

Lo(r|s, g) = 2k3(r)Go(g — r)Go(s ~ r). (2.12)
Rytov

The first-order Rytov approximation creates a linear relation between velocity and wavefield-
phase perturbations: A®(w) = In[¥(w)] — In[¥o(w)]. As with the Born approximation,

these complex phases are measured in the temporal-frequency domain for source-geophone



-10-

pairs. The Rytov approximation begins with the wave equation written as:

A®(gls) = / GO(g\I’Ig)I‘I;;’(r"*) {Iv(a@ls,0@)+0(x)}dr  (213)

(Slaney et al., 1984). This equation is more difficult to interpret physically than the Born
equivalent. However, under the Rytov approximation [V(A®)]? << O, and the equation

becomes

[ o Col& = D)¥olzls)
A®(gls) = / R (2.14)

This is just the Born equation with A¥ replaced by YoA®. (Indeed, the Rytov formula
reduces to the Born formula in the weak-scattering limit, where ¥gA® = AV (Devaney,
1981).) Following the Born development, equation 2.14 can be rewritten as:
Ad(g|s) = / AUIEI(.I)‘) Lo(r|s,g)dr
Go(g — r)¥o(rs)
Po(gs)

Lo(x]s, &) = 2KE(x) (2.15)
—and the scattered complex phases again viewed as integrals through the perturbed ve-
locity field over wavepaths Lo. For a point source at 8, Wy is the Green’s function for the

background medium and

Go(g —r)Go(s — 1)
Go(s—g8)

Lo(r|s,g) = 2k2(x) (2.16)

2.2.3 Step three: backprojection

Whereas ray-theoretic tomography forms a system of equations through consideration
of a number of sources and geophones, wave-theoretic tomography forms a system of

equations—
LoAv/v=A¥ (2.17)
or,

LoAv/v=AD (2.18)
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—through consideration of a number of sources, geophones and frequencies. The extra
dimension of information in wave-theoretic as compared to ray-theoretic tomography will
become apparent in subsequent chapters.

The backprojection step of wave-theoretic tomography is usually formulated in the
frequency-wavenumber domain, under the title of diffraction tomography. The method
solves the problem analytically, for plane-wave scattering and independent monochromatic
sources (Mueller et al., 1979; Mueller, 1980; Devaney, 1981, 1982, 1984; Slaney, 1984;
Wu and Toksoz, 1987). With its emphasis on wavepaths, this thesis solves the problem
numerically in the frequency-space domain—under the title of wave-equation tomography.
This reformulation not only facilitates the comparison of ray and wave propagation paths,
but also makes wave-theoretic tomography more flexible in dealing with irregularly sampled
surveys and inhomogeneous background media. As with ray-theoretic tomography, the
nonlinear part of the problem is attacked iteratively with steps two through four being
repeated for successively updated background velocity fields.

Full waveform acoustic and elastic inversion have also been formulated in the time-
space domain under the title of nonlinear inversion (Tarantola, 1984; Tarantola, 1987;
Mora, 1987). In contrast to tomography, these implementations do not take complete
linear steps between nonlinear iterations. The background wavefield is remodeled and the

data perturbations recalculated after each gradient step in the linear optimization problem.



