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ABSTRACT

Seismic tomography reconstructs velocity fields from integrals over paths through the
fields. Tomography is most familiar in its ray-theoretic form as traveltime inversion, where
the integrals are traveltimes over raypaths. In this formulation, traveltimes are measured
for each source-receiver experiment, and expected traveltimes are calculated by ray tracing
through an assumed background velocity field. An updated velocity field is produced by
projecting the differences between the measured and expected traveltimes (the traveltime
delays) back through the medium over the traced raypaths.

Ray-trace tomography works well when two requirements are met. First, because the
method relies on the high-frequency assumption of ray theory, the velocity field being
examined must vary slowly on the scale of the source wavelengths. In this case, there is
no scattering: phase delay is linear with frequency and the source wavelet is not distorted.
Second, because without scattering rays sample very narrow regions in space, the source-
receiver geometry must provide many view angles through the medium. When these
requirements are not met, wave-theoretic tomography provides a better image.

Wave-theoretic tomography accommodates scattering by replacing traveltime delays
with scattered wavefields. The wavefields are backpropagated through the medium, using
a Born or Rytov linearization of the scalar wave equation. Wave-theoretic tomography
is usually formulated in the frequency-wavenumber domain, under the title of diffraction
tomography. This thesis reformulates the method in the frequency-space domain, under
the title of wave-equation tomography. Wave-equation tomography is shown to project
monochromatic, scattered wavefields back over source-receiver wavepaths, just as ray-trace
tomography projects traveltime delays back over source-receiver raypaths.

I have two purposes in reformulating diffraction tomography in the space domain.

First, the method becomes more flexible in dealing with irregularly sampled surveys and
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inhomogeneous background media. Second, and more importantly, a comparison of sin-
gle source-receiver wavepath and raypath backprojection patterns clarifies the relation
between wave-theoretic and ray-theoretic techniques. The comparison shows that wave-
theoretic tomography is closely related to migration under the Born approximation, and
to ray-theoretic transmission tomography under the Rytov approximation. Examined un-
der the linear-phase-delay assumption of ray theory, Rytov wavepaths are identified as
monochromatic raypaths, and traditional raypaths as wavepaths averaged over an infi-
nite bandwidth. Bandltmited raypaths are introduced as wavepaths averaged over a finite

bandwidth, graphically linking rays and waves through the uncertainty relation.
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