391

Interface for system independent plotting

Jon F. Claerbout

ABSTRACT

I define a graphics coordinate interface (GI) to bridge the gap between
application programs and various plotting systems such as vplot, Sunview, X
and Postscript. The principal activity is coordinate management. Users declare
windows and coordinate systems at the beginning. This eases portability across
systems and it helps merging plots. Pictures expand tsotropically to a bounding
rectangle whereas plots expand differentially to fill a rectangle of any aspect
ratio. A drawing for landscape mode is well displayed in portrait mode and
vice versa. A tutorial program illustrates Fortran in an interactive environment
adjusting travel time plots under Sunview and outputting hardcopy under Vplot.

PREFACE

This could have been an internal document at SEP, but the software is more
portable than typical of times past. Even for those groups with neither Sunview
nor vplot, the bulk of the software described herein is coordinate management and
is available in about 600 lines of Ratfor. (Ratfor is a public domain preprocessor
to Fortran). For those with Sun or Convex computers, large parts should work
without change because Sunview is a Sun product and Vplot is a Stanford product.
An aspect of limited portability is that the test programs and vplot initialization
use our local SEP parameter data basing (seplib) which we have not found to be as
portable as we wish. Rick Ottolini began the Xwindows platform and Jean Claude
Dulac finished it.

INTRODUCTION

I am interested in writing plot code with a fair degree of permanence. This is
because of my interest in maintaining lecture notes and books, and my interest in

SEP-60



Claerbout 392 GI graphies interface

maintaining SEP plot code over several generations of students. I find that plot
code is hard to maintain when it has built into it the orientation and size of some
prescribed coordinate set, such as that of the hardware and plotting systems in use
when the software was written.

Boring review of my previous plot utility work

An earlier software project called suplot [Claerbout, 1987|, directed outputs of
three big software projects (Balloon, ed1D, Zplane) interactively to Sunview and to
a file for vplot hardcopy. Compared to the usual screen dump, svplot retains full
resolution, which on a screen is about one megapixel and in hardcopy is about six
megapixels. Further, vector information is stored in vector format, so the files are
much smaller than raster files, and they can be kept on line indefinitely. And, the
Sunview end of svplot handles raster well enough for movies.

Svplot encompasses both vector and raster for both interaction and hard copy.
This makes it more complete than either Sunview or vplot. But svplot is so complex
that I never used it for plotting simple figures from Fortran which is unfortunate
because many figures have adjustable parameters and could recompute and readjust
in seconds, and so are especially suitable for education.

If the difficulty of preparing interactive plots cannot be greatly reduced, then
they won’t be used much in research.

Claim

To try to overcome the forementioned difficulties I wrote a graphics coordinate
interface and embedded in it access to two local plotting systems, vplot and Sunview.

GI, a graphics coordinate interface

GI is intended to be a graphics coordinate interface to simplify plotting, espe-
cially

e portability over plotting systems
e suitable for simple Fortran jobs

e cut and paste diverse plotting programs.
The characteristics of GI are:

1. GI requires coordinate declarations at the outset, and then derives all coordi-
nate transformation information from the declarations.

2. Gl is a switchboard between application programs and plotting systems.

3. GI pushes system and device coordinates to the background and recognizes
that users need page coordinates as well as user-world coordinates.

SEP-60



Claerbout 393 GI graphics interface

4. GI defaults to filling a rectangular page window with a rectangular user win-
dow regardless of the ratio of aspect angles. So the default is to plot a circle
as an ellipse. A switch allows preservation of isotropy.

5. GI allows a simple switch between landscape mode (video screen) and portrait
mode (paper page).

DESIGN PRINCIPLES

I will avoid using the terms z-axis and y-axis which cause confusion because
they seem to link the algebraic 1-axis and 2-axis with the geometric horizontal
and vertical axes. Programmers use the 1-axis and the 2-axis, and hardware and
system suppliers specify horizontal and vertical directions and lengths. There is a
distressing disparity of ways to link algebra with geometry.

Although mathematical coordinate systems generally have the origin at the cen-
ter or the lower left, there are many important coordinate systems with the origin
at the upper left, such as written European languages, mathematical matrices, tele-
vision, and the many related video display systems.

Three points or six numbers determine a coordinate system in a plane. These
three points are the vectors to the coordinate origin o, to the tip of the horizontal
axis i-z:, and to the tip of the vertical axis ¥. Requiring the coordinate system to be
orthogonal drops the number of parameters from six to five because (h—3) - (¥—3) =
0. Unfortunately, it is an oversimplification to suppose that forcing the coordinate
system to be aligned vertically and horizontally drops the number of free parameters
to four. Since four would be more intuitive than five, let us see why four parameters
are not enough: Any corner of a rectangle is specified by giving the values of its
1-axis and its 2-axis. Choose diagonally opposite corners, say the bottom left corner
specified by (bl1,bl2), and the top right corner by (¢r1,¢r2). In almost all cases the
top left corner is (bi1,tr2) (and the bottom right is (¢r1,5/2)). The exceptions are
when the 1-axis is vertical. Three such exceptions are (1) matrices in mathematics,
(2) seismograms, and (3) plotting a landscape style figure on a portrait style device,
or vice versa.

Rectangles

We will discuss only two rectangles which I call the frame f and the window
w. The frame is defined to be the outer bound of the drawable area. Users define
rectangles on the frame called windows.

Windows are the vehicle for setting margins, cutting and pasting plots into
matrices, and combining cooperating interactive programs. (At present GI does
not support windows in windows which is a theoretical limitation for compounding
software efforts.)

SEP-60



Claerbout 394 GI graphics interface

Coordinate types

There are three coordinate types for the three essential aspects of plotting.

d The manufacturer imposes coordinates on the frame f in its own device units d.
Likewise many software plotting systems have an intrinsic coordinate system,
that we also call device coordinates.

p You the user prescribe coordinates for the frame f using your page coordinates p.
To give the location of any window w in the frame f you also use your page
coordinates. For page units, I like percentage points. Postscript encourages
typesetters points or inches or cm.

u Each user’s application uses the coordinates of its own world. More often than
not, the physical units differ between the 1-axis and the 2-axis. Some people
call such coordinates world coordinates. Since the letter ‘w’ is the initial letter
of both “world” and “window” I call such coordinates user coordinates, u.

The general principal is this: For each rectangle, two declarations are required, one
giving corner positions in interior coordinates, and the other giving corner positions
in exterior coordinates. So the frame needs to be given in both d and p units and the
window needs to be given in both p and u units. Looking to the future, one more
rectangle, a square in device units, is declared to allow for nonisotropic devices.
Rectangle bounds are named as follows:

sd an upright square in device coordinates.

fd the limits of the viewable frame in device coordinates.
fp the frame in user’s page coordinates.

wp the window rectangle in user’s page coordinates.

wu the window rectangle in the user-world coordinates

Ordinarily you draw on the frame using page coordinates and on the window in
user coordinates. You should never draw with device coordinates.

PROGRAM LANGUAGE

The first thing a user program does is call the routine gi_setframe(). (The
underscore character in the name gets absorbed by the Fortran compiler.) This
subroutine declares sd and fd and it also declares my favorite defaults for fp, wp,
and wu which are percent of full page (0.0 to 100.0) measured from the lower left
corner. To override these defaults, you can specify your coordinates either as a
coordinate triad, or by the five parameter method.

SEP-60



Claerbout 395 GI graphics interface

Definition of coordinate triad

A coordinate triad ties together the algebraic concept of coordinates with the
geometrical concept. A coordinate triad is defined by three geometrical points, the
top left corner ¢, the bottom left corner &, and the bottom right corner 7. Although
I have found it convenient to name the bottom left point o, there is no presumption
that o is the origin. The origin could be anywhere inside or outside the rectangle.
To specify a coordinate triad, each of these corners must be given in algebraic
coordinates, i.e. a value must be given for the corner’s 1-axis and another value for
the corner’s 2-axis. The arguments to the triad setting program gi_triad() are
first the triad name (such as "wu’) and then the six values (t1,t2,01,02,r1,r2).

Five parameter coordinate specification

An alternate means of providing coordinate definition is the five parameter
method used by the routine gi_axes(). Its first argument is the triad name, next
is an integer flag called hiv2 which if nonzero specifies that the 1-axis is horizon-
tal and the 2-axis is vertical, and finally the range on the 1-axis (bl1l, tr1) and
the range on the 2-axis (bl12, tr2). Mnemonically, bl means bottom left and tr
means top right. Here are some examples:

gi_axes('fd’, 1, 0., 13.65, 0., 10.24) # vplot

gi_axes('fp’', 1, 0., 100., 0., 100.) # frame percentage
gi_axes('wp', 1,.05, .95, .05, .95) # b) page margins.
gi_axes('wu’, 1,-1., 1., -1., 1.) # math quadrants.
gi_axes('fd’, 1, 0., ni-1., n2-1., O0.) # sunview (note floating point)
gi_axes('wp’, 1, 1., 80., 24., 1.) # video screen characters.

An axis range can be negative as illustrated by the 2-axis of a video screen.

Any time you call an axis or triad routine, all the coordinate transformations
are recomputed.

Isotropic plots

The coordinate system building routines need to know if the user is displaying
a plot or a picture. I define a picture to be anything which resizes isotropically,
i.e. vertical and horizontal expand and compress in a constant proportion. The
aspect ratio, i.e. the diagonal across the picture, must be kept at a constant angle.
I define a plot to be anything that expands differentially to fill space. Since pictures
do not necessarily fill space, it is the job of the transformation generating programs
to arrange for empty space either on the sides, or else above and below. So the
picture slides either up and down or side to side in the available space. (Some
house windows slide up and down while others slide sideways). The coordinate
transformation generation programs need to know whether you want to center the

SEP-60



Claerbout 396 GI graphics interface

picture, or slide it towards the coordinate system origin. The default is an area
filling plot, and if you choose a picture, the default is that it is centered.

All the plotting systems I have seen seem to assume the user wants to plot
pictures, not plots. But in geophysics I find we have ten times as many plots as
pictures. So the default is area-filling plots. To override this, see gi_isotropic().
The GI plot utility assumes this small but irritating burden of scaling incommen-
surate physical units into isotropic device units. The significance is that GI forces
you to declare your intentions at the beginning of your code, and then prevents
you from device or system dependent activity deep in your code. This enhances
maintainability and encourages patching together various plot programs written at
different times by different people.

You can center an isotropic page of any aspect ratio on the frame. You can center
an isotropic user space of any aspect ratio in any window. Or you can uncenter
either of them and they slide towards the origin of the coordinate axes. To override
the centering assumption, see gi_center().

Ordinarily clipping of output is done at the boundary of a window. To override
this, see gi_clip().

SAVING WINDOWS

The graphics interface GI keeps the coordinate systems in a private block of
labeled common. The reason for privacy is to simplify the programs of users who
do not wish the wealth of detail that is available. As soon as you call gi_setframe()
this all gets initialized and transformations are built among the device, page, and
user systems. After that you can override defaults and begin drawing with such
routines as gi_vector( al, bi, a2, b2). The units default to user units. If you
reset a frame triad, the units switch to page units. Setting a window triad changes
back to user units. You can manually switch units with gi_select(). For batch-
oriented plotting, you may never feel the need to save and restore transformations.
It is easy enough simply to recompute them. Matters are different with interactive
computing.

Windows in interactive computing

In interactive computing, an operator has a pointing device, generally a mouse,
and moves a pointer over the plotted page, crossing windows, and finally selecting
one on which to click a button. The writer of an interactive program writes a sub-
routine called an event procedure that is called by the system to report pushbutton
activity as well as the location of the cursor. The first thing the event procedure
generally does is check to see which window the cursor is in. The system automat-
ically restores the coordinate transformations (if any) when the cursor enters the
window.

SEP-60



Claerbout 397 GI graphics interface

An interesting philosophical question is how overlapping windows should be
handled. One philosophy is to forbid them. Another philosophy is to pile them
on top of each other like paper on a desk top. Still another philosophy which
accommodates windows in windows, ad infinitum is for the system to restore the
window of smallest area. I have ignored window ambiguity and will promise you
only that if two windows overlap, events will not randomly jump from one to the
other, they remain on a window until you move the pointer off.

What are the components of a window?

A window is made up of the wp and wu triads as well as a collection of flags about
clipping, isotropy and centering. You save it by invoking the routine gi_savewin()
which saves all the parameters relevant to the current transformations. You can
get a window number by n = gi_savewin() or you can just use the fact that
the numbers are assigned consecutively from 1. To restore a window you call
gi_restorewin( n ). To set the number of saved windows to zero, see gi forgetwin().

STRUCTURE OF AN INTERACTIVE PROGRAM

The user generally provides four programs, the main, and three subroutines
which must be named mywrapup(), myrepaint(), myevent(). They communi-
cate via common, usually labeled common.

Main
In pseudo Ratfor, the main program looks like
common /mystuff/this,that/
# Fetch parameters and data here.
call gi_setframe()
# Set up and save some windows here.

call gi_run() # Never return
end

mywrapup()

Here the user outputs data or parameters that are judged to be of later use.

myrepaint()

Here the user just draws whatever he/she wants. It is almost like a batch
program, but not quite. This program may be invoked many times. Thus, if it
changes a parameter or a coordinate system halfway through, it should be prepared
for the change to be already made before the beginning of the second time through.

SEP-60



Claerbout 398 GI graphics interface

myevent()

Writing an event routine will be a new experience for batch-oriented program-
mers. The user’s event procedure is called by the system when it detects mouse
motion, keyboard activity, etc. The simplest event procedure would then change a
parameter, erase the screen (with gi_erase() ) and then call myrepaint(). The
user-prepared event procedure must have the six arguments

myevent( iwind, ievent, ul,u2, p1,p2)

The window number iwind refers to the location of the mouse pointer. It will
be zero if the pointer is on the frame outside all windows. Besides user coordi-
nates (ul,u2) and page coordinates (p1,p2) are an event number ievent. Your
event procedure may compare ievent to the constants defined in the include file in
/usr/include/event.com

#define WARNING!!!! Source for this file is /sep/jon/taal/gci/event.com
#define GI_MOVE 267
#define GI_DRAG 268

#define GI_FRAMEENTER 269
#define GI_FRAMEEXIT 280

#define GI_LEFT_UP 261
#define GI_LEFT_DOWN 262
#define GI_MIDD_UP 263
#define GI_MIDD_DOWN 264
#define GI_WINEXIT 266
#define GI_WINENTER 266

The meanings of these events are perhaps obvious, but I mention that DRAG
means to move the mouse while any button is down. UP and DOWN refers to
pressing a mouse button down or releasing it up. Although we have a three button
mouse, at present we omit the RIGHT button, thereby reserving it for system use.
Event numbers not in the table above refer to ASCII codes of keystrokes, for example
‘A’ is 65, and backspace is 8. Finally, the FRAME events will not be detectable
by users because they are internally converted to window events often on window
number zero.

Before compilation, I use the C-preprocessor to convert these symbols to numeric
parameters. The Fortran preprocessor seems to differ on our various machines
whereas the C-preprocessor is a constant across machines. Also, by using the C-
preprocessor we maintain consistency across Fortran and C language applications.
Alternately, you could put the above numbers in Fortran parameter statements.

Using fp to merge plots

For simplicity, assume each plot program accepted the default page coordinate
frame ‘fp’ running from zero to one hundred percent (0,100). To put one plot
on the left side of a page, before calling it, you would reset the 1-axis of 'fp’ to
(0,200). Before calling the right side plot you would set *£p* to (-100,100).

SEP-60



Claerbout 399 GI graphics interface

A theoretical problem is that your final program manipulates 'fp°’, unlike the
components that you merged, so your final program could not be so simply merged
again. This is a problem of lack of closure. I am not ready to support windows in
windows ad infinitum, but I am ready to discuss it.

Using fp to merge window programs

Merging plots merges plot programs too, hence allowing new kinds of interaction.
Imagine a family of programs using gi that includes user programs, as well as GI
versions of familiar utilities like Wiggle, Thplot, Movie, and interactive programs
like ed1D and Zplane. The programs could share a block of labeled common that
would be the usual seplib n1,n2,n3, etc, as well as an area for a seplib float cube and
byte cube, and perhaps an input cube and an output cube. A little consideration
shows the event procedures, of merged user programs and plot utilities would both
need to be called from a super event proc. This is all a bit theoretical, but seems

not impossible.

SELF DOCUMENTATION

The following was “awk”ed straight from the source code. Routines marked
“internal” are not intended for general use.

switch.r: routines that switch to the various graphics systems.

gi_setframe() # System dependent frame setup
vplot -filep{output), hclose,axes
sunview -Open main screen window.
gi_initecolor()
initialize the color table with ‘‘good’’ defaults
the experts will call gi_setcolortable to set their own colors
gi_setcolortable(rescol,colid)
set the color table with user preferences
colid is the color file names or a identifier as I, F(flag)
rescol is the number of vplot reserved color

gi_run()
vplot alone -- call myrepaint() and gi_wrapup()
sunview -- go to window_main_loop() never return
gi_wrapup() # internal

first call my_wrapup() and then:

vplot -- Close plot file.

sunview -- destroy the base frame.
gi_hardcopy() # internal

When both sunview and vplot are defined (libgisv.a)

this routine makes vplot dumps of sunview screen.
gi_move( x, y)

Move the hypothetical pen location to (x,y)
gi_draw( x, y)

Draw a line from current position to (x,y)
gi_nodraw( )

Raise the pen so that the subsequent gi_draw() becomes a move.
gi_vector( xt, yi1, x2, y2)

Draw a line from (xi,y1) to (x2,y2)
gi_polyline(n,x,y)

Draw a polyline
gi_text( x, y, size, degrees, text)

like vp_text(float,float,int,int, *string’)

gi_area()
area fill command not yet installed
gi_setclip( xmin, ymin, xmax, ymax) # internal

SEP-60



Claerbout 400 GI graphics interface

invoke vp_clip(), no sunview equivalent.

arguments are in device units!
gi_erase( irect)

erase page or current window

irect = {1,2} = {page,window}

vplot method: area fill with color=0, then set color=7
gi_see( message)

Sunview: Put a message in the message window.

Vplot: Ignore message.
gi_color( n)

Set color, now=vplot, later = Dttolini color standard.
gi_setcolor (name)

set the current drawing color to name
gi_rubberlines(n,x,y)

draw a rubber polyline

n : number of vertex (max=100)

x,y : vertex coordinates
gi_rubberdelete()

delete the last rubber polyline created
gi_float2bytes(ni,n2,array,raster)

transform float to bytes

nil,n2 are the dimension of the data array

raster is the rasterized data
gi_raster( x0,y0, xi,y1, x2,y2, nl,n2, 80,81,82, ras)

plot raster

ras(il, 1),i1=1,nl1 plots from (x0,y0) to (x1,y1)

ras( 1,i2),i2=1,n2 plots from (x0,y0) to (x2,y2)

ras(il1,i2) = ras( 1 + 80 + (i1-1)*s1 +(i2-1)*82)
gi_button(code,button,feedback)

generate a new button

code : character code (q,v,p are system reserved)

button : icon character string

feedback : help message

get the button code corresponding to the button event
gi_wiggle( x0,y0, x1,y1, x2,y2, nl,n2, 80,81,82, ras, dir)

wiggle trace

ras(it, 1),i1=1,ni plots from (x0,y0) to (x1,yl)

ras( 1,i2),i2=1,n2 plots from (x0,y0) to (x2,y2)

ras(il1,i2) = ras( it + 80 + (i1-1)*s1 +(i2-1)+*82)

if( dir == 1 ) wiggle traces run on 1-axis.

if( dir == 2 ) wiggle traces run on 2-axis.
gc_ordinate( x0,y0,x1,y1,x2,y2, ni,n2, 80,81,82) # internal
Tumble raster pointers until axes run positively.
gi_outerbd( bot, x ,top) # internal

Set x at either bot or top depending on which is closer.

------------- ge = graphic coordinate subroutines -------------------
coord.r: system INDEPENDENT routines
(but call aystem dependent routines in switch.r)

gi_axes( NAME, hiv2, bli, tri, bl2, tr2)
Import axes by stating a name and rectangle.
NAME is a string describing one of five rectangles. These are:
--- ’sd’ rectangle that in device coordinates should be square.
--- 'fd’ the viewable Frame in Device coordinates.
--- 'fp’ the viewable Frame in user chosen Page coordinates.
--- 'wp’ A Window in user chosen Page coordinates.
--- 'wu’ A Window in User chosen User’s world coordinates.
integer hiv2 > O if horiz axis is axis 1 and vert is 2.
“bl" is bottom left and "tr" is top right cornmer.
See also gi_triad()
gi_triad( NAME, t1,t2, o1,02, r1,r2)
Import axes by name and three vectors to rectangle corners.
NAME is a string describing one of five rectangles.
(t1,t2)=Top_left (o1,02)=bot_left (ri,r2)=bot_Right
See also gi_axes{)
gi_select( irect)
You select a coordinate system for move,draw,etc commands.
irect = {0,1,2} = {device, page, user}
Writes in device or page coordinates access the full screen.
Writes in user coordinates access the current °wp’ window.
gi_clip( iyesno)
iyesno = {0,1} = {no,yes} clip at window edges.
Default is to clip.

SEP-60



Claerbout 401 GI graphics interface

gi_isotropic( irect, iyesno)
irect = {1,2} = {frame, window} rectangle i.e. {page,user} coords.
iyesno = {0,1} = {fill_area,isotropic}
gi_center( irect, iyesno)
irect = {1,2} = {frame, window} rectangle i.e. {page,user} coords.
iyesno = {0,1} = {don’t center, do} isotropic {window,page}.
gi_user2page( ut,u2, pi,p2) # user vector to page vector
gi_savewin()
Save the present window
gi_restorewin( iwind)
Restore a saved window
gi_forgetwin( )
Set number of saved windows to zero

------- internal routines below --------------cecescoomooooooooo

ge_initwin( ) # internal. Set default window states.
Turn off isotropy and on clip and centering.
ge_inittri( ) # internal. Set default triads.

Called by everything, but will run only the first time.
Default fp, wp, and wu to squares with sides ranging from O to 100
Default fd to vplot and sd to upright unit square.

ge_output( upl,up2, d1,d2) # Transform output vector
ge_input( di,d42, p1,p2, ul,u2) # Transform input vector
ge_decode( hiv2, bli, tri, bl2, tr2, tri) # Decode hiv2
gc_emplace( name, tri) # Copy given triad to named one.
gc_maketran() # Make all transformations.

ge_load( ) # Install transform and clip values.

gc_doclip( triad)

invoke clip commands at periphery of triad window.
gc_whereclip( triad, xmin,ymin, xmax,ymax)

Given a triad, find clip boundaries in device units.
ge_pair( p, q, p2q) # Get transform from 2 triads
gc_image( xx, tt, uu) # Transform a triad.

ge_tan( tri, tangent) # Get tangent of triad diagonal.
ge_puff( p, scale, middle, q) # Differential scale up to enclose.
gc_cade( a, b, ¢) # Cascade transforms y=cx=(ba)x
ge_portrait( idir)

ge_sideways( tri, idir) # internal

tip a triad 90 degrees, direction idir={+1,-1}
ge_chooser( event, xd, yd)

Choose which window mouse is in and whether

to change MOVE or DRAG event to ENTER or EXIT

FRAMEENTER and FRAMEEXIT changed to WINENTER and WINEXIT

ge_reclip()
reset clip for all stored windows.

Source code

The code of GI is in Fortran (actually Ratfor, which translates to Fortran).
The vplot interpretation is in Fortran. Fortran allows (1) use with the Convex
vectorizing Fortran compiler, and (2) transportability for graduating students and
to sponsors. The Sunview interpretation is partly in C.

MATHEMATICAL BASIS

Here we examine some of the theory and design considerations, and internal
details.

SEP-60



Claerbout 402 GI graphics interface

The transformation

All the coordinate (z,y) pairs you plan to plot must go through the following

transformation:
u Azz Azy z Sz
= + 1
[”] [sz Avu][y] [su] ®

Much new hardware and software has this transformation built in. In any case,
a big chore for the applications programmer is relieved by the GI package keeping
track of the transformation itself.

Homogeneous equations

The basic transformation can be rewritten in homogeneous form.

u Azz Ay S2 T
v = Ayz Ayy Sy y (2)
1 0 0 1 1

Notice that products of matrices of the above form retain that form. Thus you can
see that a cascade of transformations can be done sequentially or combined into a
single transformation i.e. A(Bz) = (AB)z.

Fortran encoding the transform in a vector

The transformation equation (1) has six adjustable numbers. I encode the num-
bers in the matrix of (2) into a Fortran vector as follows:

t(1) £(8) %(5)
t(2) t(4) t(6) (3)
0 0 i
Need for floats
On video screens, it is tempting to work with integers. But integers are a trap.
They lose precision that is needed for hard copy.
How routine gi_pair() works

We saw that the coordinate transformation took six numbers to specify and
that the coordinate triad is also specified by six numbers. Given two triads (twelve
numbers) we now see how to find a transform. Take the transpose of equation (1)

Azz Ayz
[u v] = [X y 1] Azy Ay (4)
Sz 8y

SEP-60



Claerbout 403 GI graphics interface

Stacking the row vectors in (4) on top of each other for three (z,y) and (u,v)
pairs gives two sets of 3 X 3 equations solvable for the transformation, namely for

(Azzy Azy,sz) and for (Ayz, Ay, sy). These equations are:

u v T N1 1 Azz Auz
Uz U2 = T3 y2 1 Az Ay (5)
Ug Vs T3 Y3 1 Sz Sy

Now that I have imposed the horizontal and plumb constraint on the transforma-
tions, I guess I should solve these systems analytically. It would be more elegant
and I could abandon the Gauss-Jordan solver. Since either the diagonals, or the
off diagonals should vanish, I chose to set to zero the smaller. This might speed
computation in machines that recognize that multiplying by zero is easy.

How isotropy can be forced

Isotropy is forced as follows: A picture is isotropic if the angle of the diagonal of
the window triad expressed in isotropic device coordinates equals the angle of the
window triad expressed in user units.

First the triad of the window expressed in page coordinates is transformed into
device coordinates as you would transform any three vectors. Now we have the
window’s rectangle expressed in both device coordinates and user coordinates. Next
we will examine and rectify the mismatch of the diagonal angles.

For each triad, we first define vertical and horizontal vectors, the vertical span
dv =t — @ and the horizontal span dh = ¥ — 3. The cross product dv x dh is the
product of the magnitudes. Dividing by the dot product dh - dh gives the tangent
of the diagonal angle, |dv|/|dh|.

When the diagonal angles of the two rectangles are dissimilar, the picture must
be shrunk in one direction (leaving white space in the new area). Shrinking the
picture means the triad must be expanded. So either dh or dv is scaled up to bring
magnitude ratios into agreement.

Landscape to portrait via fp

To tumble a page to the side and keep the usual benefits of area filling versus
isotropy, it is merely necessary to tumble fp. By this I mean you find the comple-
mentary corner ¢ to the rectangle by vector addition, ¢ = ¥+t — & and then you
cycle the four points (f, 0,7, ¢) to either (4,7,¢, Z) or for the other sense of rotation
to (&,2,3,7).

EXAMPLE

This example is a two page Fortran (actually Ratfor) program that enables the
operator to adjust three parameters of a simple seismic geometry to see the effect of

SEP-60



Claerbout 404 GI graphics interface

NMO on multiple reflection and ghost events. The operator uses a mouse to move
three letters on a plot. “F” adjusts the sea Floor depth. “G” adjusts the ghost
delay (w.r.t. the first arrival). “V” adjusts the velocity (or vertical exaggeration).

Here is the common block used to communicate between the main, the repaint,
the event, and the wrapup procedures.

#CCCCCCcccccecee seismo.com CCcceeceeeceececececceccecee
common /seismo/ velocity, ghost, floor
real velocity, ghost, floor

common /seismo/ xhot, thot
real xhot(3), thot(3)

common /seismo/ xmin,xmax, tmin,tmax

real xmin,xmax, tmin,tmax
#CCCCCCCCCCCCCCceeeceeceececcecececceccceccceceececcccceccecccceccecccceccceceee

The complete program source listing is below. The listing begins with the main
program which fetches initial values of the adjustable parameters. Next is the
wrapup routine that saves final values of the adjustable parameters. (These may
initial values on later runs). Next is the repaint program which is a lot like any
other batch plot program. Last is the subroutine myevent() which is of greatest
interest to Fortran programmers who are writing their first interactive program.

# Gather with adjustable velocity, sea floor and ghost.
integer getch
#include "seismo.com"

if ( getch(‘velocity’,’f’,velocity) == 0) velocity = 1.
it ( getch(’ghost’, ‘f’,ghost ) == 0) ghost = .1
it ( getch(’'floor’, 'f’,floor ) == 0) floor = .b
call gi_setframe();
xmin = 0.; xmax = 2.; tmin = .0; tmax = 2.5;
call gi_triad(’wu’, tmin, xmin, tmax, xmin, tmax, xmax)
call gi_exes (‘wp’, 1, 10.,40.,10.,80.)
call gi_savewin()
call gi_axes (’wp*', 1, 60.,90.,10.,90.)
call gi_savewin()
call gi_run();
end
subroutine mywrapup()
#include "seismo.com"
call auxputch( °velocity’,’f’', velocity, ‘mypar’)
call auxputch( °ghost’, 'f’, ghost, 'mypar’)
call auxputch( ‘floor’, ‘f’, floor, ‘mypar’)
return; end
subroutine myrepaint()
#include “seismo.com"
integer nmo
do nmo =0, 1 {
call mkplan( O., nmo)
;all mkplan( ghost, nmo)
return; end
subroutine mkplan( ghosty, nmo)
implicit character (a-z)
#include “seismo.com"
integer i, n, nmo
real radian, xx,tt, tau, ghosty, t, dt, arg
n = 20
call gi_restorewin( nmo + 1)
call gi_clip( 0) # turn off clip while drawing axes and labels

SEP-60



Claerbout 405 GI graphics interface

if( nmo == 0 ) {
xhot (1) = xmax
thot (1) = xmax / velocity
call gi_text( thot(1), xhot(i), 6, 80, 'V’)

call gi_vector( 0., xmin, 0., xmax)
call gi_vector( 0., O., tmex, O.)
call gi_text( O., xmax+.06, 7, 90, °x’)
call gi_text( tmax+.1, O., 7, 90, °t")

if( nmo == )
call gi_text( -.1, xmin+.5, 10, 90, ’Raw’)
else
call gi_text( -.1, xmin+.56, 10, 90, 'NMOed’)
if( nmo ==
thot (2) = floor
xhot(2) = ~.156
call gi_text( thot (2), xhot(2), 6, 90, °F’)
xhot(3) = -.156

if( ghosty != 0.) {
thot (3) = thot(2) + ghosty
call gi_text( thot(3), xhot(3), 6, 90, °’G’)
}

}
call gi_clip( 1)
for( tau=0; tau < tmax; tau=tau+floor ) {
call gi_nodraw()
do i= 0, n-1 {
radian = 3.141692686 * (.B*i) / n
tt = tau / cos( radian)
xx = velocity * tt * sin( radian)
t = tt + ghosty
if( nmo > 0 ) {
arg = t*xt - xx*xx /(velocity*velocity)
if( arg > 0 )
dt = t - sqrt(arg)
else
dt =0
t=t - dt

}
call gi_draw( t, xx)
}

}
call gi_restorewin( 1) # Set up the event proc.
return; end

subroutine myevent( iwin, ievent, t, x, p1, p2)
implicit character (a-h, j-z)
integer iwin, ievent, imin, i
real t, x, pl,p2, dist, mindist
#include "seismo.com"
#include <event.com>
mindist = 1.e30
switch( ievent) {
case GI_LEFT_DOWN:
doi=1,3 {
dist = abs( x - xhot(i)) + abs( t - thot(i))
if( dist < mindist ) {
imin = i
?indist = dist

case GI_LEFT_UP:
call gi_see(’Repainting.’)
switch( imin) {

case 1:

velocity = x / ¢
case 2:

floor = ¢
case 3:

ghost = t - floor

}
call gi_erase(1)
call myrepaint ()

SEP-60



Claerbout 406 GI graphics interface

Raw NMOed

I
/

FIG. 1. Use of GI in a deconvolution tutorial. A simple two window plot.

SEP-60



d

NMOe

aw




Claerbout 408 GI graphics interface

return; end

TEST CASE

Below is the test program that I use for debugging. It is somewhat long winded,
but I include it anyway because it tests most of the features of g:. After the
program is the result of the test program plotted in hardcopy both before and after
the landscape-portrait toggle switch.

# Test area-filling and isotropic windows and frames.

if( getpar(’fiso’, ’i’,fiso )==0) fiso =0 # nonisotropic frame
it ( getpar(’'wiso’, ’i’,wiso )==0) wiso =0 # nonisotropic window
if ( getpar(’center’,’i’,center)==0) center=1 # vrs nocenter

call gi_setframe()

call gi_see (’starting plot ...°);

call gi_axes (’fp’,1, 0.,200., 0.,100.)# Two side by side 100% pages.
#call gi_triad(’fp’,200.,100.,0.,100.,0.,0.)# demo portrait.

call gi_isotropic( 1, fiso) # set frame isotropy

call gi_axes (‘wp’,1, 1., 99., 2., 98.)# window left page

call gi_triad(’wu’,0.,-2.,4.,-2.,4.,2.) # user coords, (sec,km)
call gi_axes (‘wu’,0, 4., O., -2., 2.)# user coords, (sec,km)
call gi_isotropic( 2, 0) # area fill.

call gi_savewin()

call gi_axes(*wu’,1, -1., 1., -1., 1
call gi_axes(’wp’,1,101.,149., 2., 98.
call gi_savewin()

.) # four quadrants.
) # left side of right page.

call gi_isotropic( 2, 1) # Set window coords to be isotropic.
call gi_center( 2, center) # on window, center={O=no,l=yes}
call gi_axes(‘wp’,1,151.,199., 2., 98.) # right side of right page.

call gi_axes(’wu’,1, -1., 1., O., 1.) # top two quadrants.

call gi_savewin()
call gi_run(); end

subroutine mywrapup()
return; end

subroutine myrepaint()

character*1l traces(100,6)

integer i, i1, i2

call gi_restorewin(1)

do i2=1,B

do il1=1,100 {

i = 128 + 60% cos( .2%¥il - .B*i2 )
i = 2%(i/2)
call int2byte( i, traces(il,i2) )

call gi_raster(2.,1.,4.,1.,2.,2., 100,56, 0,1,100, traces)
call gi_setcolor (‘red’)
calligé_wiggle(o..o.,4.,0.,0.,2.. 100,6, 0,1,100, traces, 1)
v=1.
call gi_setcolor (’'green’)
for( tau = .2; tau < 4.; tau =tau+.5) {
call gi_nodraw() # signifies next draw is really a move.
for(x=-2.; x<8.; x=x+.2) { # draw outside window.
t = sqrt( tauxtau + x*x/(viv) )
;all gi_draw( t, x)

}

#call gi_erase(2)

call gi_restorewin(2)

call gi_nodraw()

for( theta=0.; theta <= 315.; theta=theta+10.) {
x = cos{ 2%3.1416 * theta/360.)
y = sin( 243.1416 * theta/360.)
call gi_draw( x, y)
}

SEP-60



Claerbout 409 GI graphics interface

call gi_restorewin(3)
call gi_text( 0., .2 , 7, 0, *SEP’)
call gi_nodraw()
for( theta=0.; theta <= 31b5.; theta=theta+10.) {
x = cos( 2%3.1416 * theta/360.)
y = sin( 2%3.1416 * theta/360.)
call gi_draw( x, y)
} call gi_move( 1., O. # Box the window
call gi_draw(-1., 0.); call gi_draw(-1., 1
call gi_draw( 1., 1.); call gi_draw( 1., .5);
call gi_color( 6); call gi_select( 1) # select page coordinates.
call gi_move(100.,60.); # Square box at upper right
call gi_draw(60.,60.); call gi_draw(60.,100.);
call gi_draw(100.,100.);call gi_draw(100.,76.);
return; end

Here is the diagnostic test program for interactivity that I used during debug-
ging:

subroutine myevent( iwind, ievent, ul,u2, p1,p2)

#0 event procedure to diagnose window coordinate handling.
#include "event.com"

integer iwind, ievent, unit
#ifndef VPLOT

unit = 6

switch( ievent ) {
case GI_MOVE: write( unit, “(°GI_MOVE’)")
case GI_DRAG: write( unit, “(°GI_DRAG’)")
case GI_FRAMEENTER: write( unit, " (°GI_FRAMEENTER’)")
case GI_FRAMEEXIT: write( unit, *(*GI_FRAMEXIT')")
case GI_WINENTER: write( unit, " (°GI_WINENTER’)*")
case GI_WINEXIT: write( unit, “(*GI_WINEXIT®)")
case GI_LEFT_UP: write( unit, "(°*GI_LEFT_UP’)")
case GI_LEFT_DOWN: write( unit, "("GI_LEFT_DOWN’)")
case GI_MIDD_UP: write( unit, "(°GI_MIDD_UP’)")
case GI_MIDD_DOWN: write( unit, " (’GI_MIDD_DOWN’)")
default:

write{( unit,20) ievent, ievent
20 format(’Numerical value of letter is =’, i12, a2)

call gi_see(’You typed a letter.’)

}
write( unit,10) iwind, ievent, ui,u2, pl,p2
10 format(2i6, 41£7.2)
#endif
return; end

COMPILING WITH LIBRARIES AT SEP

On the Convex the library -lgiv supports vplot. On the Suns, the library -lgivs
supports vplot and sunview. Also on the Suns is a library -Igis without vplot which
frees use of the standard output for other tasks. The X library is invoked by -lgix,
and the library outputs both vplot and X is -Igivx.

UNFINISHED BUSINESS

Just because GI is ready for general use does not mean there is not more to do.
Unfinished business is listed below along with the name of the local person with the
most expertise.

SEP-60



Claerbout 410 GI graphics interface

[ L

N

_-

FIG. 3. Test case for isotropic and nonisotropic windows and frames.

SEP-60



Claerbout 411 GI graphics interface

SEP

FIG. 4. Test case after portrait-landscape transformation.

SEP-60



Claerbout 412 GI graphics interface

e Need gi_interrupt() for compute intensive interruption. (JFC)

o Official SEP color manager (Rick or Dave)

e Vector clip subroutine to code from Foley and Van Dam’s pseudo Pascal.
(anyone at SEP) At present we just throw out vectors that have both ends

outside the window.
e extract crude area subroutine from svplot (JFC)
e Good quality area routine (Joe)
¢ Good quality text. (Jos or joe)

e Overlays—transient movable shapes like in svplot. This cannot be done ef-
fectively until Rick finishes the official SEP color table management system.
(JFC, Dave, Jclau)

REFERENCES

Claerbout J., 1988, Overlay plotting with svplot, SEP-57, p. 539-548.
Dellinger, J., 1989, Vplot, this report.
Foley and Van Dam, Fundamentals of Interactive Computer Graphics.

Nye, A., 1989, Xlib Programming Manual for Version 11, O’Reilly & Associates,
Inc.

Nye, A., 1989, Xlib Reference Manual, ibid.

Sunview programmers manual, Sun Microsystems Inc.

SEP-60



