Appendix A
The equivalence of velocity-space DMO
and Hale’s DMO

In this appendix I prove the formal equivalence of the velocity-space DMO algo-
rithm to the DMO method of Hale (1984). I first write the velocity-space algorithm in
terms of its action on each dip component of the data. I then show how to recast
Hale’s algorithm in terms of dip decomposed data. This second part is based on the
papers by Hale (1984) and Jakubowicz (1984). The formal difference between the

methods then reduces to a change of order of two integrals.

The velocity-space algorithm can be summarized by the following sequence of
steps: normal moveout (NMO) and stack over a range of velocities, dip decomposi-
tion of the stacks by two dimensional Fourier transformation, correction of the velo-
cities by the cosine of the appropriate dip by shifting data between stacks, and
inverse Fourier transformation. For medium of constant velocity v, the stacked,
DMO-corrected image is found in the v stack after the velocity corrections are
applied. Call this image gpppo (t,y,v ), where ¢t is time, y is midpoint, and v is the
medium velocity. Before inverse transforming back to time and midpoint, the data
is given by gppo (wo,ky ,v ), where the subscript on the frequency wjy is used to desig-
nate a zero offset frequency, for consistency with Hale’s notation. Define a dip vari-
able D by

2sind
= Al
! (A1)

D

[
sl

where 0 is the physical dip of an event. Also define an ideal narrow band dip filter

operator Fp to select a specified dip component of the data:

q (w01ky U ) if ky - wOD
Fp [‘I (wo,ky V) ] =Yoo if k, 5% weD - (A2)

The entire image can be recomposed by the superposition of all such dip components:

apmo (wo,ky v ) = f dD Fp [QDMO (Wo:kyyv)]- (A.3)
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In the velocity-space DMO algorithm, each dip component of the DMO-
corrected image is extracted from an appropriate constant-velocity stack, with the
stacking velocity related to the medium velocity by equation (2.4), which in terms of

D becomes

5 5 V12
Vg= 1 [1— D4v J . (A.4)

Call the data before this DMO correction ¢y, - Then

4pmo (wo.ky ,v) = f dD Fp [qstaclc (wo,ky ,v ) ] (A5)

Transforming wy back to zero offset time ¢,

dpao (wo,ky ,v) de Fp [fdt e Gurack (Losky v ) J (A.6)

The stacked data gy, (0,ky ,v4) is just an integral over offset A of NMO-corrected

data, with a moveout velocity of vy, , so in terms of the original data ¢ (t ,k, ),

[t et [ an q(t—— 2 14h2/vd W2k, h] (A7)

apmo (woky ,v) f dD Fp

Hale’s algorithm acts on transformed constant offset sections. In the notation

of this chapter his algorithm is given by

_ zA ¢
dpMO (WO; y fdh fdt A ! vo q (tn )ky :h) ) (As)

where ¢, is the NMO-corrected time

2
ty2 = t%- % (A.9)
and
h2k 2 /
1 .
d [ 5] o

The outer integral over offset A is just the usual stack, so Hale’s algorithm reduces
to performing NMO, evaluating the indicated integral over t,, and stacking over
offset. The ¢, integral represents the DMO operator; leaving out this step gives the

ordinary processing sequence of NMO and stack.

Hale’s algorithm can also be decomposed in terms of its operation on individual

dip components of the input data. Let D and Fj be defined as above, and write



-163-

equation (A.8) as

aomo (woky) = [dD Fp | [dn [at, A7e™ " (b, k,,0) | (A1)
where now
A:[1+hD2] . (A.12)

The change of variables from ¢, to ¢y with

té =t,>+ hD? (A.13)
has Jacobian
dt 2p2 /2
n [y 4 2D = A . (A.14)
dt g t,?

This change of variables converts the integral in equation (A.11) into a Fourier

transform over ¢ :

aosro (woky) = [aD Fp [fdh [dtge ™ qote=(t,>+h* D22k, k) |  (A.15)

where
qO(tOZ(tn2+h D 2)1/2)ky :h) = dNMO ( ) y h) (A'lﬁ)

Here the data with normal moveout applied at the medium velocity v is written as

gqnmo and the data with the dip-corrected moveout velocity is written as ¢, To

express ¢ in terms of the original recorded data ¢, note that

2
t2=t2+4—h2— (A.17)
v
2.:02 2
_ [t02 _ 4h s;n 0] n 4h2 (A.18)
v v
2 4h?
=ty + cosd (A.19)
2
=t + 4"2 : (A.20)
Vg

Thus for a fixed dip component 6

Goltoky )= t=(ts +4h%/v i /2 k, b)) . (A.21)
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Equation (A.15) then can be rewritten as

(A.22)

aomo (woky ,v) = [dDFy [fdh [atg e ( t=(t& +4h%/ v} )1/2,ky,h]

Written this way, the only formal difference between the Hale algorithm, equation
(A.22), and the velocity-space formulation, equation (A.7), is the interchange of order
of the integral over offset h (stacking) and the Fourier transform over t,. Clearly,

the two steps commute, so the methods are formally equivalent.



Appendix B
Computing the effective offset ratio ~

at zero offset

In section 3.4, I define the variable 4 to be equal to the surface offset £ divided
by the effective subsurface offset u(z, ). At zero offset, both A and g become zero, so
~ is indeterminate. However, the limit of v is well behaved as offset goes to zero, so
~ can be set equal to this limit without problem. This limit can always be evaluated
numerically. In this appendix I derive an explicit expression for the case of vertically

stratified media.

The simplest way to evaluate an indeterminate limit is to apply I'Hopital’s rule,
which states that the limit of a ratio is equal to the limit of the ratio of the deriva-
tives of the numerator and denominator. Here I take the derivatives with respect to
the ray parameter p. Consider the zero-offset ray from the subsurface point
d=(z;,2;) to the surface, passing through the the anomaly point a=(z,,z,). Let
6(z ) be the angle between the ray and vertical, so that p =s (z ) sinf(z ), where s (2)
is the slowness at depth z. Then the lateral position z along a ray is given by

F4

T = f dz tanf(z) (B.1)
S [ a— (B2)

2 V(s¥z)-p?

Differentiating with respect to p gives

_ [ d pdz
? _f dap [ \/.92(;:)—p2 ] (B3)

24

dz
dp

_ f s%(z2)dz (B.4)
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The value of p corresponding to the zero-offset ray will be known from ray tracing.

Then h =z (2 =0) and p=z (2 =2, ), so

dz
h_ dp '*7°
d_p z2=2z,

This value can be readily evaluated numerically.

The computation becomes even simpler for a constant slowness background. In
that case the integrand in equation (B.4) is a constant that can be pulled outside the
integrals and will cancel in the numerator and denominator of equation (B.5). So for

constant slowness,
0
fdz
24

= —
fdz
24

as used in equation (3.32) in the main text. Note that for constant slowness, the

h

1)

24

a=2) (B.6)

value of h /u is independent of p and depends only on the reflector and anomaly

depths.



Appendix C
Decomposing the traveltime pyramid

into dip components

In this appendix I show how to decompose the traveltime pyramid into dip
components. Suppose the reflecting point (z;,2; ) lies on a bed a bed with dip 6. Fig-
ure 3.5 shows the geometry of rays reflecting off such a dipping bed. Let z be the
point where the normal ray intersects the surface; in general 2 will not coincide with
the midpoint y. Let t, be the traveltime along the left leg of the ray, and ¢, the

traveltime along the right leg. From the law of sines one has

T s £y
prmm— C:l
sing¢ sin(m/2-0) (G-1)

and

g—s to

sing  sin(m/2+06) (C:2)

where s =y —h is the shot location and ¢ =y +h is the geophone location, and ¢ is
the incident angle of the rays at the bed, measured from the normal. But

sin(7/2-0)=sin(7/2+68)=cosf, so equations (C.1) and (C.2) yield

z—8 gz
== . C3
0 0 (C.3)
It follows that
t+st
_Sarets (C.4)
t1+t,

and

g\/s2tz2 + s \/g2ra?

tanf = -2 = . (C.5)
“d 24 [\/s 22+ g 2+zd2)

Substituting y =(g +s)/2 and h =(g —s)/2 gives a relation for 8, but it is awkward

to solve for y or A. A simpler relation can be found using double angles.
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Referring to Figure 3.5 again, one has

c=0-p=2¢-0 (C.6)
SO
6= 5 (v+9¢) (c7)
and
tan(20) = tan( ¥ + ¢ ) (C.8)
__ tany+tang ‘ (C.9)
1-tanytane
Substituting
tany = m (C.10)
Zd
and
tang = m (C.11)
24
gives
tan(26) — ZdZZ (_yx d_‘;g l — (C.12)
This can be rewritten as
(y—z4 :Zd200t20)2 ~ 2}, 22 1 (C.13)
24°csc20 24 csc”20
This can be recognized as the equation for a hyperbola with asymptotes
+h = y-z; +cot20 (C.14)
and foci
(h,y) = (0, z;+2; (cot20+v2csc26) ) . (C.15)
One can solve equation (C.13) for A& in terms of y and 6 to get
hé(y) = (y -4 +24 cot20)? — 2,%csc?20 (C.16)
= (y-24 )% + 224 (y x4 )cot260 — z,;% . (C.17)

One could as well solve for y to get

yoh) = 2424 cot20 &+ \/h*+2,%csc?20 (C.18)
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where the choice of sign will depend on whether 8>>0 or §<<0. Note that §=0 must
be considered separately; A may then take on any value, but y must always equal

z;; the two branches of the hyperbola collapse to one straight line.

These equations tell which y and A correspond to rays reflected off the dipping
bed at the particular point (z;,z;). This is the desired decomposition of the

pyramid into contributions from different dips.

Only one of these rays will pass through a particular anomaly point (2, ,z, ).
The delta functions defined in equations (3.13) and (3.14) also give relations between
allowable values of y and h. Solving equation (C.17) and the appropriate one of
these equations simultaneously will give the needed intersection point. The geometry
of rays for the constant velocity case is analyzed in section 3.6. From equations

(3.32) and (3.33) of that section, one has
h = |y-zs-Azs—24) | (C.19)
where v—=z; /(24 -2, ), and so
h? = (y-24)* - 27(2q —24 Ny —24) + 72 ~24 * . (C.20)
From this and equation (C.17) one gets
224 (y —24 )cot20 — 2" = — 24(e, 24 )(y 24 ) + V(224 )" - (C.21)

Solving for y gives

2 2 2
24+ T,
y T d ’7(0 d)

. C.2
4 2[4 cot204+~(z, —z4 )] (C.22)

(Note that =0 is treated correctly as the limiting case of equation (C.22).) This
gives y, and h can then be found from equation (C.19):

24"+ (5, 4 )’
2[z4 cot20+~(z, —z,4))

h = -z, -zz) |- (C.23)

I note that the values of &, y, and 6 which can be used in these equations are res-
tricted. Both legs of the travel time path must be above the horizontal and must
have equal incident angles; from this limitation one can show that, for positive 6, one

must have cot20>(z; -2, )/(24 -2, ) and for negative 0, cot20<(z4 -z, )/(24 -2, ).
In the text I discuss using 90/8y and J¢/dh as weighting functions. The first
of these is obtained by implicit differentiation of equation (C.12) to get

80 _ 2q (2*+(y~z4)*+h?)
9y [ 2%~y 24 )+ Prdz,5(y -2, )*

(C.24)
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2g (282 Hy —z4 )*+h %)

= . C.25
[ 2y —24 )+h * |*~4(y 24 )°h® (©25)

To get the second, note that
=5 (6-v) (0.26)

and
tan(2¢) = tan( ¢ — ¢ ) (C.27)
__ _tang-tany (C.28)
1+tangtanty ’

— 22 . (C.29)

24"y 24 )*-h*

Interchanging the roles of & and (y-z;) in this last equation yields exactly equation

(C.12), so 9¢/0h is exactly equal to 80/0y as given in equation (C.24).



Appendix D
Comparing two methods for least-squares

fitting of hyperbolas

In section 3.8 I derive Toldi’s (1985) flat-dip operator as a special case of my
more general operator. To do so, I used a particular set of weights in the fitting of a
hyperbola to a set of traveltime data. In this appendix I show that this choice of
weights is a consequence of the different approaches used to finding a best least
squares fit. Suppose one is given a set of traveltimes that are perturbed away from
an exact moveout hyperbola. There are two ways of setting up the problem of relat-

ing the change in the new best fitting hyperbola to the traveltime perturbations.

The first method is to use a ¢~z 2 linearizing parametrization, as Toldi (1985)
does. The data to be fitted will be traveltimes ¢ (z ) that will depend on the offset A .
Write the equation for a hyperbola as

t? = Ptsz? (D.1)

where the slowness s and the zero-offset traveltime 7 are the fitting parameters to be
found. In terms of the squared variables, equation (D.1) is a linear equation, and the

best fitting values of 7 and s 2 are given (e.g., Strang, 1980) by
A
2 ), 2
3 (=*7)y
s?—= 121 (D.2)

2 [%2—?)2

i=1

and

#=1= . (D.3)
3(7)

j=1

where 27 and z 7 are the second and fourth moments of the data defined by
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NI
P o PR (D.4)
N, &
and
N,
R (D.5)
N, =

Perturb the values of ¢;, s and 7 and drop all higher order terms to get

NZ‘
1 j=1
5 N,

As = 5 - Z (D.6)
3 (7
and
N,
[F—xﬁx_f]t]mj
1 ;=1
AT = = N = . (D.7)
% (7

Another approach is to expand around the original hyperbola and solve a set of
linear equations in the perturbations. This is the approach I used in this disserta-
tion, because no linearizing parametrization is available for the double-square-root

equation (3.7). In this method one writes the set of linearized approximate equations

At ath atjA D.8
777 s s+?r. (D8)

The least squares solution to these equations is given in equations (3.49) to (3.52).
To compare these values with equations {D.6) and (D.7) one needs to evaluate each
of the inner products in the equations from chapter 3. Start with equation (3.46) for

the partial derivatives of ¢ (dropping the ubiquitous subscript d ):

2sh ? sz?
i, = = D9
SVE VT R ()
and
t . =T (D.10)

T 2\/72/4+s2h2 t

where I have changed from the half offset A to the full offset z =2h to agree with
the notation of equations (D.6) and (D.7). Let the weighting function
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a=z24h?=t%/4s% Then

=1
N,
B ; tj2 sxj2 ;
— 5 T
o148t b
N,
T 2
= — xT.s
J
4s =1
Nx'ra?f
o 4s
Similarly,
N2
tyt, = ;2 T T
=1L 48T b
N, z?%
T4
and
N,
i t]2 sz]2 szj2
t,’t,z Z 2 t t
=1 4% Y j
N, 7
4s?
Then one has
As = A At

alm) | (4t () - (bt)t o) | At

ji=1 (ts'ts)(tr.tf) - (t’s't‘r)2

N t]2 Nsz S.'L'j2
_2 45 4s% t;

j=1 NxIL'TNsz

4 4s°

(D.11)

(D.12)

(D.13)

(D.14)

(D.15)

(D.16)

(D.17)

(D.18)

(D.19)

(D.20)

(D.21)

(D.22)
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Similarly,
A= A, At (D.23)
N aa) [ (ttda) - (bett () | A
= 5 (D.24)
j=1 (t’s'ts)(tr'tr) - (ts°t'r)
t:2 N, z* , N, r z? s 2
N = T S2° | At
2 452 4 ¢ 4s ¢ I (D.25)
= N,z N2 N,722 N,722 '
4 452 4s 4s

— 1= . (D.26)
. =

Equations D.22 and D.26 are identical to D.6 and D.7 except for the different

appearence of the denominators. However, they are really the same, as I now show.

N, . N,
2 (ij—T] = 2 [ ;- 21:]-21:_2——!— (z2)? ] (D.27)
i=1 j=1
= N,z - 2N, (z%? + N, (z?)? (D.28)
:N,[F—(PQJ. (D.29)

So the two denominators are the same, and the two least squares methods give the

same results with the particular weighting chosen.



Appendix E

An alternative algorithm for nonlinear inversion

In section 4.5 I present an algorithm for inverting migration slownesses for
interval slowness. That algorithm assumes that a grid of reflecting points d with
fixed locations (z;,2; ) was used throughout. For reasons discussed in that section, it
might be preferable to use a fixed grid (y;,7;) in the data and let the reflector loca-
tions (z;,24 ) that map to these data grid points vary with successive iterations. The
operator G, however, is defined relative to a fixed location (24,2z;). What one needs
is to know how the migration slowness s; changes for a fixed data location (y,4,74)
when the interval slowness model m is perturbed. Changing the model m causes a
given reflecting point to appear at a diﬂerent (y,7), so one needs to compute not just
how s; changes, but also which réﬁ'é(éting point it represents in the updated model.
Let primes indicate the perturbed model, so the reflecting point associated with
s(y,7) is associated with s/(y’,7”) for the new model. Let As=s'-s, Ay=y'-y,

and Ar=7-7. Also, let the partial derivatives of s relative to a fixed (y,r) be

denoted by ﬁ, etc and let the partial derivatives relative to a fixed reflecting loca-
m

tion (z,z) be indicated by the usual partial derivative notation —aa—"i-, etc. Then one
m

has

sy )~ s (y 1) + 28‘98

a a

Am, . (E.1)

Also to first order, one has,

!
2 o~ (B.2)
Y 1w Y lyn
and
bs'! §s
95 95 (E.3)
" Jyrwy O |

One can then write
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s'(y,n) =~ s'(y'-Ay 7 -Ar) (E.4)
! '
~s'(y' ) - % _ % At (E.5)
() (v',7)
0 ) )
~ s(y,m) + Ea * Am, - 6_8 Ay - —55 AT (E.6)
a CMa Yl (v.7)
ds bs oy bs or
~ Am, — = 24 == A E.7
slyn)+ Xa] om, s by %3 am, toér L om, o (ET)
Thus
68d o asd 6Sd aTd 58(1 8yd (E 8)
ém,  Om, 6ty Odm, by, Omy, '
—G,(da)- 2 Glaa) - 2 g, (da) (E.9)
A 614 ’ by, U
= H(d,a) . (E.10)

The function H as defined here provides the gradient direction needed for an itera-
tive inversion. The derivatives of s with respect to 7 and y can be evaluated by
finite differences. The second and third terms in equations (E.8) and (E.9) compen-
sate for the change in the particular reflecting point (z;,z;) that is being mapped
into the data space coordinates (yq4,7;) at each iteration. The magnitude of these
terms depends on the derivative of the slowness field. Against a constant slowness
background they are identically zero, and for any smooth slowness function, they will

be small.

The objective function @ is defined as in equation 4.3,
Q (S) = E E [sd (yd yTd ),3/.1 yTd ] . (Ell)
d

The gradient of @ with respect to the interval slowness model m is now given by

9Q bsq

_ 0@ __
(Va@)s = 5. —Ed]asd o (E.12)

or

VmQ :HTVSQ . (E13)

The derivatives of  with respect to the migration slowness s; can be computed as

before by finite differences.
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A steepest ascent optimization algorithm using this new gradient can now be

outlined as follows:

Set initial interval slowness model m

Set initial values of s; on a fixed grid of (y;,74)

Set initial values of (z,z;) corresponding to (y,,7;) grid.
Calculate initial dip spectrum estimate 6; from time dips and s,

Compute G(d,a) and H(d,a) from initial m, s, and 8,

Repeat until AQ is small enough

{

. Compute 7, by finite differences
.Form vn@ = H,'v,Q
. Line search for o that maximizes @ (m+av,Q ) = @ (s+aHv,Q )
. Update model
Am = avy,Q
m=m + Am

s =8+ HAm

W N

5. Update map between (y;,74) and (z4,24)
y=y + GyAm
=17+ G,Am
Compute new x,z by inverse interpolation
6. Update 8,
7. Compute new G(d,a) and H(d,a) for new m, s, and 8,

This algorithm is similar in many ways to that of section 4.5. The important point
to note is that H here relates perturbations on a fixed grid of model points m(a) to
perturbations again on a fixed grid in data space s(d). The migration slownesses s
are explicitly treated as a function of the coordinates y and 7. Thus the objective
function @ is always evaluated by a sum over the same grid points d=(y,,7; ). Like-
wise, the finite difference approximations to the derivatives are always calculated at
the same (y,;,74) values. Note that, like the alogrithm of section 4.5, this approach
can also be modified to use ray tracing to update the map between (z;,z,) and

(y4,74) and to use DMO slownesses instead of migration slownesses.
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The choice between this algorithm and that of section 4.5 is somewhat analo-
gous to the choice between Lagrangian or Eulerian viewpoints in fluid dynamics. A
similar problem arises there, requiring a choice between computing spatial gradients
at a fixed location (Eulerian) or for a particular particle (Lagrangian). (For introduc-
tory discussion of the Eulerian and Lagrangian approaches in mechanics, see
Batchelor (1967) or Aki and Richards (1980).) Here the choice is between evaluating
gradients for a fixed location in the (y,7) data space or for a fixed reflecting point in
(z,z) space.

I do not know which approach is better to use for practical implementation.
The approach presented in this appendix is perhaps easier to implement, in so much
as 1t works with the migration slowness data on the grid on which it is provided.
This is a major advantage, as it allows one to decrease the size of the problem by
using only those parts of the data that correspond to strong reflectors without know-
ing in advance the correct physical locations of these reflectors. However, problems
could arise with this algorithm because of the inverse interpolation step needed to
update the map between (2,2 ) and (y,7). This map could fail to be one-to-one, or,
if the model space is chosen badly, parts of the data could be left wholly outside the
image of the model space. In either of these cases it would be impossible to figure
out which (z,z) to associate with a given (y,7). The approach of section 4.5 should
have no such problem, as it works in principle only with the map from (z,2z) to (y,7)
and not the inverse; it would simply count a contribution from some (z,z) more
than once in calculating the objective function if that point maps onto multiple
values of (y,7), and would never look at those parts of the data that are not images
of some part of the model space. The two approaches thus interact with the data
and model differently. The objective function calculation in the algorithm of this
appendix weights all parts of the data equally, without concern for whether they are
actually well determined by the given model. The method of section 4.5, on the
other hand, ignores those parts of the data that are not the images of any point in
the data, and may allow some parts of the data to contribute much more than oth-

ers.



Appendix F

The movement of reflectors during migration

In this appendix I derive equations for the movement of reflectors during migra-

tion with different velocities. Start with a point (z,z) on a reflector that has dip

angle @ from the horizontal. If the medium has a constant slowness s, this point

appears in zero-offset data at midpoint y and time { given by
y = z—ztand

and
t = 2szsect .

The apparent dip (time-dip) of this reflecting segment is

dt

d_y = —2ssinf .

!

Suppose now that this reflector segment is migrated with a slowness s'.

in the resulting (z’,z') section is given by

. -1 dt
¢ = — —
sin 257 dy
=-s—,sin9.

)

(F.1)

(F.2)

(F.3)

The dip ¢/

(F 4)

(F.5)

The new values of z' and z' are found by solving equations (F.1) and (F.2). Here y

and t are given, but §' varies with s’. One has

2! = _t
2s secd’

= icosO’
2s

b V1 = sin?9’
2s

and

(F.6)
(F.7)

(F.8)

(F.9)



-180-

z'=y + z'tand’ (F.10)
=y + 2%9’ cosf! tanf’ (F.11)
=y + _2—?9—’ sinf’ (F.12)
—y 2(:? - sind . (F.13)

In practice time migration results are expressed not in the coordinates (z',2z') but in
migrated midpoint y’ and migrated time 7', where y'=z' and 7'=2s''. Solving

for y' and 7' in terms of z and 2z yields

sm (F.14)
= 2sz sm (F.15)
and
ts .
'— ¢y + sind F.16
V=Yt Sy (F.16)
=z — ztanf + st tand (F.17)
2(31)2 ’
s2
=z - ztanf | 1 - . (F.18)
2(s!)?

These are the equations used in chapter 4 for tracking the (y,7) image of a reflecting

point (z,z) as migration slowness changes.

In section 2.6 limits on the motion of reflectors are used to estimate the neces-

sary density for sampling slowness. Differentiating equations (F.140 and (F.16) gives

;’_g — (;fj‘* sinf (F.19)
and
) 2
ﬁ _ t sin“d s _. (F.20)
§ s . (SI)
1- (s')2 sinf

In estimating sampling density one does not know s a priori, so one sets s'=—s .

Then these last two equations reduce to

—~ = — sinf (F.21)
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and

ﬂ — i Sin0 tane (F22)

ds s

which are the equations used in section 2.6.
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