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ABSTRACT

Accurate estimation of background velocities is often the most problematic step
in imaging seismic reflection data. Conventional methods compute stacking veloci-
ties by normal-moveout hyperbolic stacking at a range of velocities, followed by
selection of the stacking velocities that correspond to optimal stacks. This method is
widely used because it is robust for noisy data. From the stacking velocities an esti-
mate of interval velocities is made, based on assumptions of flat-layered geology and
laterally invariant velocity. This estimate degrades in regions with complex geological
structure.

A natural extension of conventional velocity analysis replaces normal-moveout
stacking by prestack time migration. The assumption of a stratified medium is
removed, and the resulting velocity analysis becomes independent of structure. Just
as stacking velocities provide the information needed to form a good stacked image,
prestack time-migration velocities yield a good time-migrated image. I show here
how the processes of dip moveout and migration can be formulated to act on data
that is NMO-stacked at a range of velocities, converting a conventional velocity
analysis into a prestack time-migration velocity analysis. The resulting algorithm

integrates velocity analysis and imaging, enabling practical interactive migration.

For many data, a time-migrated image is sufficient for structural interpretation.
Complex geological structure, however, is often accompanied by substantial lateral
velocity variation, which necessitates using depth migration for correct imaging.
Depth migration requires detailed knowledge of interval velocities. 1 derive here a
linear operator that relates perturbations in interval velocities to the corresponding
observed changes in prestack time-migration velocities. This operator formally
comprises a filtered version of travel-time tomography, but no picking of traveltimes
is required. The resolution possible for long wavelength velocity variations is com-
parable to that obtained by ray-trace tomographic methods. The linear operator
developed here can provide the gradient information required for iterative, nonlinear
inversion algorithms. The same linear operator can also be modified for inverting
velocities computed from data that is dip-moveout corrected but not migrated.
Results from synthetic data suggest that anomalies in the latter type of velocity are

easier to measure and invert accurately.
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