539

Overlay plotting with svplot

Jon F. Claerbout

ABSTRACT

“Svplot” is a plotting utility that runs interactively under Sun Microsystem’s “Sun-
view” and allows hard and soft copy through SEP’s traditional vplot utility. Svplot sup-
ports both hard copy and interactive on-screen plotting of both vector and raster informa-
tion. Further, the vector and raster is handled in a coordinate-system-independent man-
ner that should be readily transportable to future systems. Svplot provides sv_XXXX
routines that mimic vplot’s vp_ X XXX routines except that the plot appears immedi-
ately on the Sun screen and later, on command, in a file for vplot hardcopy. Svplot
consists of a header svplot.h and four parts, a part svcoord.c for coordinate transfor-
mations, a vector library svlib.c, a raster library svras.c, and an overlay management
utility svover.c.

INTRODUCTION

After investing a great deal of personal time in developing interactive programs to
demonstrate hyperbolic overlays, Fourier analysis, and Z-plane filtering, I found I still did
not have suitable means of preparing materials for reports and lecture notes. So I have been
looking for solutions for myself and the SEP students and staff.

Altogether, I have written about 10,000 lines of C-language code for interactive seis-
mological work on the SUN III color graphics workstation. Of the 10,000 lines written,
the last three quarters use the 1000 line svplot package described here to handle all the
graphics. Svplot came into existence because although Sunview is interactive it has no way
to produce hard copy, hence no way to get plots into reports or lecture notes. SEP’s tradi-
tional plotting systems, including the most general one, vplot, are not interactive. Svplot
is exciting Because it handles both vector and raster for both moving displays and for hard-
copy. Commercial systems known to us that come closest to svplot, do not handle raster
effectively. = '

Svplot really was born out of an application program Balloon (described elsewhere in this
report) in which an interpretive “comic strip” balloon is superposed on a plot (from any of
our most important plot formats) The user interactively adjusts the location of the balloon
and its pointer. Since then, svplot was used in an application Zplane where the operator

SEP-57

Claerbout 540 Overlays with svplot

moves poles and zeros around in the complex plane and watches the filter, spectrum, and
filtered data adjust themselves. Figure 1 is an example of a filter and its complex frequency
plane made by Zplane and balloon annotation done with Balloon. In ed1D, the third major
application, two one-dimensional functions are displayed which can be edited in various
ways. The functions are selectable from Fourier transform pairs, Hilbert pairs, Kolmogoroff
spaces, reflection coefficients and impedances or reflection seismograms, etc, or any two of
the above functions as well as a few others from one-dimensional seismology. Immediately
after the user edits one function, the other is updated consistently.

4 millisecond
Nfervalss

|N| I 1T T — il
|”|| P

[rho=g, 3.5 Hz | a;\m]

FIG. 1. Repeat of a figure in SEP-56 page 270 with added information enabling readers to
duplicate the plot.

Svplot now stands on two narrow foundations, Sunview and Vplot. I would like to
broaden these foundations to encompass more devices and more widely available plotting
languages. So within a year or so we may expect either or both of these foundations to
change, though the direction is not clear, NeWS? Xwindows? Postscript? As a consequence,
care is being taken to protect svplot’s users from unnecessary future disruption. This mainly
means designing complete coordinate-system independance.

Left handed systems, etc.

Consider the placement of European language text. The origin is in the upper left corner.
Applying mathematics to the placement of text, the 1-axis is the horizontal placement of
letters on a Jine, and the 2-axis gives the lines down the page. This coordinate system is “left
handed”. The television scan line system is likewise, and hence are Sunview, MacIntosh,
and most video systems. A mathematical matrix always has A;; at the upper left, and the
1-axis (first subscript) points down. In reflection seismology, the 1-axis generally points
down from the surface of the earth. Despite these important systems with the origin in the
upper left, the preponderance of applications have origins in the lower left. I do not expect
the ideological struggle between these systems to be resolved in my lifetime. In self-defense
we should vigilantly avoid writing code that is coordinate-system dependent.

SEP-57

Claerbout 541 Overlays with svplot

(Besides the two dominating systems described in the previous paragraph, is another
right handed system with the origin in the upper left hand corner and the 1-axis pointing
down. That system (called “rotated” at SEP) is a natural one for maintaining consistency
between paper devices that are infinite in one dimension (paper on a roll) and terminals that
scroll the screen upward. Since the advent of laser printers and nonscrolling workstation
screens, the “rotated” system is on the decline, though it is still with us in valuable older
software.)

A plot utility need not dogmatically choose a coordinate system and force
users to adapt to it. A plot utility should be a utility and serve the people by
finding out what coordinate system they want to use. In svplot the user chooses
the coordinate system, and can change it dynamically.

Need for floats

On a raster system such as Sunview it is tempting to do the graphics work with integers,
it should be faster, the cursor location is presented to you as integers, and all the drawing
routines take integer arguments. But integers are a trap. When time comes to make a hard
copy of your plot, you have lost the possibility of the higher precision of laser printers. So
the plot utility svplot uses all floating point arguments for locations.

COORDINATES

It is important to distinguish between coordinate transformations and coordinate sys-
tems themselves. If you have NV coordinate systems, then there are N (N —1) transformations
among them. For large N it is obvious that you want to define the coordinate systems,
and then derive the coordinate transformations. This is simplest and ensures consistency
(thereby easing maintenance). But this is not the philosophy of Postscript or Vplot or GKS,
or HyperCard. They give you a default coordinate system and, if you are lucky, they tell
you how to design a transformation of your application coordinates to fit theirs.

Definition of coordinate triad

Given cylindrical coordinates (r,0), algebraically r is the l-axis and # is the 2-axis.
Algebraic coordinates are defined by the order that components are presented. Algebraic
coordinates have no geometric properties. Further, algebraic coordinates are programmers’
coordinates. They are often positive integers such as those that range over loops, or range
over indices of arrays.

Consider two-dimensional linear coordinate systems. To convert a vector from one such
coordinate system to another you need a 2 X 2 matrix for rotation and deformation and
you need a two-component vector for translation. In all, the transformation requires six
numbers.

(Some users might wish to restrict these six numbers in various ways, to ensure isotropy,
etc, but not all users should be forced to make isotropic plots. In fact few plots need be
close to isotropy and for some plots, the seismic (¢, z)-plane for example, there is no concept
of isotropy. There should be a straightforward way to enable some users to have isotropy
without requiring all users to draw isotropic plots. Svplot ignores the isotropy issue.)

We all know what we mean by coordinate transformation, but what do we mean by

SEP-57

Claerbout 542 Overlays with svplot

a coordinate system? Since we are talking about plotting, not mathematics, we mean
coordinates on a rectangular screen or page where the boundedness of the rectangle is a
central aspect.

A coordinate triad ties together the algebraic concepts of coordinates with the geomet-
rical concepts. Presumably, a coordinate triad is defined at the beginning of a program (or
large block of code) and all required information about geometry is drawn from that triad
and from nowhere else.

We now define a coordinate triad. A coordinate triad is defined by three geometrical
points, the top left corner, the bottom left corner, and the bottom right corner (named t,
o and r). There is no presumption that the origin is the bottom left corner! To specify a
coordinate triad, each of these corners must be given in algebraic coordinates, i.e. a value
must be given for the corner’s 1-axis and another value for the corner’s 2-axis. We saw
that the coordinate transformation took six numbers to specify and now we see that the
coordinate triad is also specified by six numbers.

Given two triads (twelve numbers) the program coordinate.r finds the transformation
(six numbers) between the triads. The method is this: Let one triad be three (z,y) pairs
and the other triad be three (u,v) pairs. The transformation for the triads, indeed, for the

whole space is
X Azz Azy u Sz
= -+ 1

Take the transpose

Azz Aya:
["3 y] = [u v 1] Ay Ay (2)
SZ Sy

Stacking the row vectors in (2) on top of each other for three (z,y) and (u,v) pairs gives
two sets of 3 X 3 equations solvable for the transformation, namely for (A;;, Azy, s;) and
for (Ayz, Ay, 8y). These equations are:

1 N up v; 1 Az Ay
Ty Ys = | ug vy 1 Ay Ay (3)
T3 Y3 ug vy 1 Sz 8y

Before using any svplot plot routines, you must notify the svplot package of your screen
dimensions by means of a call to svcoord_init(n1,n2) where nl and nl are frame dimensions.
This initialization routine first defines triads from some important systems, namely:

Cvplot, /¥ vplot’s “STANDARD” coordinate system */
érotated, /* vplot’s “ROTATED” coordinate system */
Cportrait, /* vplot in portrait mode */

Csunv, /* Sunview coordinates */

Then defaults are prepared for two essential coordinate transformations, Ltube and Lhard.
Ltube is the transformation from algebraic coordinates to the screen. The default is for

SEP-57

Claerbout 543 Overlays with svplot

Sunview programmers, so for Sunview programmers it is an identity transformation that
svcoord_init(n1,n2) makes with

get_transform(&Csunv, ECsunv, &ELtube)

The other necessary coordinate transformation Lhard is the one from algebraic coordinates
to the output vplot file. It is made with

get_transform(&Csunv, ECuvplot, &Lhard).

The Balloon application program allows for hardcopy in portrait mode by making the output
transformation by

get_transform(&Csunv, &Cportrait, &Lhard)

The source code in svcoord.c contains various other routines for handling coordinate
transforms and triads. About the only one of general use is svcoord_iso_init(nz, ny) which
ensures isotropy of your final plot when ny is not 75% of nz.

This package needs more work to give you a coordinate system for all seasons. For
example, you may interactively move a box around a screen and want an automatic means
of getting various coordinate systems that refer to that box. At the present time much of
the required code is buried in balloon/box.c but it is not yet been extracted for public use.

RASTER

Initially, my raster package could support all angles, but in the interest of efficiency only
90 degree alignments are currently supported.

Cube indexing

Cube indexing is a subject slightly outside the realm of plotting, but it suggests that
the array accessed by the raster plot routine should not be required to be “tight packed”
or “stored by columns,” (or by rows) but stored more generally. I interpret the ordinates
of a cubic array by:

A(i1,i2,i3) = A[s0 + s1*il +s2*i2 + s3*i3]

The array operations: transpose, rotate, slice, reflect, subcube or window, can all be ac-
complished by manipulations on the seven parameters (n1,n2,n3,s0,s1,s2,s3). The data
itself need not be touched. For the two-dimensional raster plot routine I reduce the seven
parameters to (n1,n2,s1,s2). Sequential access uses incrementation instead of fixed point
multiplications, so besides being general, and economical of storage, this method is fast.
Notice that when the k-axis (k = 1, 2, or 3) is reversed, the value of sk (s1,s2, or s3) is made
negative after sO is incremented by sk(nk-1). Further details are in the gapazis.c source
with the Balloon application.

Raster calling sequence

The vplot raster routine that suvplot builds upon has a blatant coordinate system de-

SEP-57

Claerbout 544 Overlays with svplot

pendence in the argument list. Its argument list specifies (x,y) coordinates for the lower
left and the upper right and an orientation and an azis reversal parameter. (It is confusing
too). This is six numbers in all. Instead of that six, svplot uses six others, the coordinates
of three points, namely, the location for the Fortran array element A(1,1), the location for
the array element A(nl,1), and for A(1,n2). I should point out a minor disadvantage of
svplot—the user could specify a nonrectangular region. So I interpret the given arguments
as the outer bounding rectangle of whatever is given.

The available routines in the raster package svras.c are:

svras(20,90, z1,y1, 22,92, n1,n2, sl,s2, raster)
sv_wiggle(z0,y0, z1,y1, z2,y2, n1,n2, s1,s2, raster, dir)
The three points (x0,y0), (x1,y1), (x2,y2) bound a rectangular region that will contain

the raster bytes. The raster matrix is accessed as “raster| s1*il + s2*i2].” The three points
correspond with the raster as follows:

raster[s1*il] for 0 < i1 < nl plots from (x0,y0) to (x1,y1).
raster[s2*i2] for 0 < i2 < n2 plots from (x0,y0) to (x2,y2).

As stated earlier, sl and s2 may be negative. The wiggle-trace routine is like the raster
routine with the additional argument “dir” where

if(dir == 1) traces run on l-axis.

if(dir == 2) traces run on 2-axis.

An example is in Figure 2.

VECTOR LIBRARY

In svlib.c are user callable subroutines named sv_XXXX that mimic a few of SEP’s
traditional vplot routines vp_XXXX. Internally each sv_XXXX subroutine fits the pattern:

e Convert coordinates to Sunview integers.
e mimic spen, ie put the image on the screen.

o if either of the global variables sv_save or sv_animate are set, make hardcopy by calling
vp XXXX

The available subroutines are few, namely:

svlib_init(pizwin)
‘sv_vector(20, y0, z1, y1)
sv_move(z, y)

sv_draw(z, y)

sv_text(z, y, size, orient, teztstring)

SEP-57

Claerbout 545 Overlays with svplot

time runs down from 0 1o 2,192

critical angle

-

—_—
offset, km runs right from 0.294 to 2.044

Picne of constant cmp,cspecos = 0

FIG. 2. An example of raster displayed in both typical variable density form and in wiggle
trace form. The wiggle trace form is most practical in a zoom where the number of traces
is few.

SEP-57

Claerbout 546 Overlays with svplot

sv_fat(ifat)
sv_area kludge(z4, y4, n, z, y)

sv_color(my_color)

The routine svlib_init must be called first to specify the window on which the plot is
drawn,

Vector, move, and draw routines work exactly as you expect.

Sunview doesn’t have various sizes and orientations of text, so those arguments of
sv_text() are ignored on the screen, but honored on the vplot hardcopy. Ideally, I would
eliminate the orientation angle parameter from the text routine and instead specify direc-
tion with a vector. Then plot files would rotate and translate more sensibly. Unfortunately,
neither Sunview nor vplot gave me adequate hooks to do this.

Vector fattening applies to the hardcopy only.

Sunview doesn’t have an area command, so I kludged one up by drawing lines. It only
works for four-cornered polygons and triangles, so sv_area_kludge() has limited ability on the
sun screen, but the hard copy is pure vplot. The arguments x4 and y4 are four-component
vectors that define the four cornered polygon, (or triangle if one corner is repeated). The
arguments x and y are the usual arrays defining all the n corners of a general polygon.

Color handling is more complicated as described in the section on overlays. The extra
complexity has to do with making it possible to move plots by redrawing them with color
number zero.

OVERLAY UTILITY

An overlay is any plot that can be changed by user interaction. So it is a plot that is
repeatedly drawn and erased. I have written about fifty overlays in four large packages, and
the common threads are in svover.c. The application program Balloon had 21 overlays at
last count. The file svover.c is considerably shorter than this explanation of its function, so
any questions you may have are perhaps best answered by reference to the code itself.

User programs invoke sv_show() to see an overlay and sv_hkide() to make it to go away.
User code contains sprinklings of sv_hide() and sv_show() and the pattern (hide; change
parameters; show). The programmer’s discipline is to avoid the pattern (show; change
parameters; show) because multiple copies of an overlay are considered an error.

Successive calls to sv_show() or sv_hide() are permitted, indeed they are hard to avoid
with the operator of an interactive program being permitted to push buttons and move the
mouse at will. What happens then is this: If sv_show() is called several times in succession,
only the first call draws a plot, likewise with sv_hide(), only the first call does the actual
erase. This' design was partly for efficiency, but mainly to allow draw and erase with the
ezclusive-ot function.

Both sv_show() and sv_hide() invoke the same user routine “hit”. When the user ini-
tializes the overlay structure he/she loads into “hit” a pointer to his/her overlay routine
(which calls sv_draw(), etc). The user’s hit routine can find out if it was called by sv_hide()
or sv_show(), but I found that my hit routines almost never bothered to do so because the
process of erasing is usually the same as that of drawing.

SEP-57

Claerbout 547 Overlays with svplot

Most hit routines do not contain color calls (rainbow=0). Draw and erase colors are
specified in the overlay structure and they are taken care of by sv_show() and sv_hide() if
the overlay is monochromatic (not rainbow). The hit routine of a rainbow overlay may
call sv_color(). If so, colors are overridden automatically during sv_hide() which erases by
writing with background color. In the Balloon application program, many hit routines start
off by defining Ltube and Lhard. Then they call sv_draw(), sv_tezt(), etc.

To get started you load a structure defining the overlay type. I usually start with the
routine generic_overlay_init() in which are found

struct Overlay *ov; {

ov->hit = nohit; /* pointer to activator routine */
ov->on = 0; /* image on screen now ? */
ov->id = 0; /* integer identifier (so hit() can know who called) */

ov->rainbow = 0; /* contains color calls? no*/

ov->vphot =6; /* vplot desired foreground color */

ov->vpcold = 0; /* vplot desired background (erase) color */
ov->sunhot = XOR; /* sun foreground color, HOT or XOR */
ov->suncold = XOR; /* sun background color, COLD or XOR */
ov->sunsave = HOT; /* usually HOT, sometimes COLD, never XOR*/

ov->raster = 0; /* is the overlay vector or raster? */

For most of my overlays, I use all the default parameters except that the “hit” routine
obviously must be specified. Several different overlays could share the same hit routine
which is the reason for the ‘id’ variable. For example Balloon has three overlays that are
deformable boxes. All share the same hit routine, so theoretically all three boxes could be
on the screen at the same time.

HOT and COLD refer to the Sunview representation of SET and RESET.

The way you get a hard copy is by setting the global variable sv_save nonzero and then
invoking sv_show(). Then set sv_save=0 so all subsequent moving overlays do not go to
the hardcopy file too! A value sv_save=1 denotes a copy goes to the offline file. A value
sv_save=2 denotes an additional indelible copy is left on the screen.

The exclusive-or function XOR

Overlays often come in families. For example the text filled balloon is written in three
parts, the drea fill behind the outline, the outline, and the text. Another example is a
vplot with a resizing box around it. You need to think about the interference of family
members. A problem with SET/RESET overlays is that when you take one off, you also
remove anything underneath that was overlapped. This doesn’t happen with the exclusive-
or function (called XOR). XOR overlays can be put up in any order and taken off in any
order and any original image remains perfectly preserved. Rick says that Xwindows doesn’t
support XOR and there you need to draw overlays with SET and erase them with RESET.

SEP-57

Claerbout 548 Overlays with svplot

A family of SET/RESET overlays can also be drawn in any order and erased in any order.
But if you wish to mix XOR overlays with SET/RESET overlays, then the SET/RESET
overlays must be put down before the XOR overlays. Taking them off must be done in
the reverse order. Within the SET/RESET group and within the XOR group, order is
irrelevant.

Because SET/RESET overlays tend to mutual destruction, things like wire frames (set
on a complicated overlay to show it can be moved or resized) must be XOR or they must lie
totally outside the object or else they must be kept on a separate plane that can somehow
be simultaneously viewed. My application programs choose overlay order and positioning
so as to minimize aggravation should we ever convert it to Xwindows. They do not use
extra planes for overlays but I expect to change this if I convert to Xwindows.

When the time comes to make hardcopy plots, the philosophy of overlay ordering
changes. Instead of choosing the order for the cleanest move, the order is chosen for the
best looking final copy.

When it isn’t an overlay — tweaking global variables

Of my applications 90% fit the pattern described above. Sometimes I fool sv_show() and
sv_hide() by tweaking global variables. For example a pole-zero plane contains many small
letters ‘p’ and ‘z’. The overlay package is designed to prevent the screen from filling up
with multiple copies of an overlay, so my Zplane program overrides “on”. Retrospectively,
I notice that an overlay is really just a dozen or so values in a C-language structure and I

think I should have made a vector of such structures to handle the many little letters.

Sometimes you are editing a tiny part of a complicated plot. It is too slow to redraw
the whole plot after each minor change, so again, you don’t have what I formally call an
overlay. Maybe you can split your complicated plot into overlays, or you can forget about
my overlay package, mess around in pure Sunview, do a global screen erase and then redraw
as an overlay (to solve your hard copy problem). This happened with my “push” tool in
the one-dimensional signal edit program.

Raster is a bit slow and it happens that when time comes to erase, you have already
prepared a massive panel that needn’t be prepared again. So Balloon’s hit_raster() looks
to see if it was called by sv_hide(). It does a test “if(sv_caller == SV_HIDE)”. To speed
raster, I added another global variable sv_movie which when set tells the overlay package
that raster erases will be done by the subsequent sv_show(). Besides speed, an advantage
of erasing with a subsequent sv_show() is to avoid an annoying screen blink.

SEP-57

