Z transforms visualized on the complex plane

Joe Dellinger, Clement Kostov, and Fabto Rocca

ABSTRACT

Z transforms provide a unifying framework for designing filters and under-
standing their properties. Unfortunately, Z transforms are not very intuitive.
To remedy this situation for students at SEP, we have developed a program to
display Z transforms on the complex plane. We display several different filters,
and show how their properties are visible in the plot.

INTRODUCTION

Definition and basic properties

The Z transform of a sequence

{ax}

is
=400

A(Z ) = Z a,,Z k.
k=-—o00
Note that A(Z) is not a discrete time series but is instead a complex-valued function
of a complex variable. (The Z transform may be infinite or undefined for some values
of Z.)

Why is, this transform useful? For one thing, just as with the Fourier transform,
convolution ({a;}*{b;} = {¢x}) maps into multiplication (A(Z)B(Z) = C(Z)). (Put
another way, polynomial multiplication convolves the polynomial coefficients.) This
is not surprising since the Z transform is closely related to the Fourier transform
via the relation

FT(ax)ly= A(Z)] ; _ .

The slice of the Z transform lying on the unit circle gives the Fourier transform.

SEP-57



Dellinger, Kostov, and Rocca 524 Z transforms

Poles and zeroes

Any polynomial
k=00
X(Z) = Z IBka
k=0

is uniquely specified up to some constant multiplicative factor by knowing all of its
“zeroes” (values of Z for which X(Z) = 0). Gauss’s theorem tells us how many

zeroes there are to look for.

In general, Z transforms have terms in both positive and negative powers of Z.

Such a series A(Z) can be written in the form
N(Z)

where N(Z) and D(Z) each contain only positive powers of Z. A(Z) becomes zero
if N(Z) = 0. A(Z) becomes infinite if D(Z) = 0. The zeroes of D(Z) are called the
“poles” of A(Z).

If you know all the zeroes and poles of A(Z), you know much about the properties
of the time series {a;}.

THE PROGRAM

Our program accepts as input the two complex causal time series {n;} and {d;},
corresponding to N(Z) and D(Z) mentioned before. It then plots 4 different things.
(You should now refer to the first pair of plots, Figure 1, as you read along.)

In the upper left it plots the central portion of the time series {a;}, with the
zero’th lag in the center. Since in general the series is complex, it plots the Real
part in Blue! and the Imaginary part in Red.

In the upper right is the log spectrum of the time series. The plot shows de-
viations from unity, so amplified frequencies plot above the axis and attenuated
frequencies plot below. Zero frequency is at the center, +Nyquist is at the right,
and —Nyquist is at the left. The phase is encoded by the color. A cyclical color
scheme is used which completes one cycle from —x to :

+Real — Cyan
+Imaginary — Blue
’ —Real — Magenta *
. —Imaginary — Red

1Your eyes contain cells sensitive to three different colors: red, green, and blue. These are the
primary additive colors. Combinations of two of these at a time make the primary subtractive colors:
red and green make Yellow, red and blue make Magenta, and blue and green make Cyan. For some
reason everybody knows what yellow is but magenta and cyan languish in obscurity. If you live in
the city the sky is probably cyan colored; magenta is a purplish red, and has its name after Magenta,
a town 15 Km from Milano where a bloody battle was fought in 1859.
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In the lower left the amplitude of A(Z) over a portion of the Z plane is shown.
Higher amplitudes are brighter, lower amplitudes are darker. Thus a pole shows up
as a bright spot, and a zero shows up as a dark spot. A cyclical color variation has
been superimposed on the basic grey scale so that amplitude “contours” may be
perceived. The actual colors themselves are arbitrary. The axes and the unit circle
are shown to give a reference frame.

In the lower right the phase of A(Z) over a portion of the Z plane is shown. The
phase is encoded with the same color scheme used for the “Log Spectrum” plot.
EXAMPLES

All of our examples will consist of pairs of plots showing two different filters.
Compare the two to see how they relate to each other and how they differ.

Figure 1: Single zero with causal inverse

We start with two very simple filters, a filter consisting of only a single zero
(Upper plot) 1-—.9Z7

and its inverse, a filter consisting of only a single pole

(Lower plot) YA

1 — .9Z obviously represents the time series {1,—.9}. What does 1/(1 — .92)
represent? Noting that

1 — 2 3
T =X+ XX+,

we let X = .9Z and find that

=1+4+.9Z+.9222+9%2%+...,

1-.97

an exponentially decaying causal series.

Figure 2: Single zero with anti-causal inverse

Next we try a seemingly slight variation on the previous example,
. (Upper plot) 1-1.1Z
and
1
1-11Z
Note that while the time series on the top plot has hardly changed from the previous
example, the time series on the bottom plot is now anti-causal.

(Lower plot)
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The identity we used before no longer applies (it diverges) and we have to use
instead the identity

— — =-X-X'-_X3-....
1- X1
Letting X = 1/1.1Z, we find that
Ll oo11lzlo1a7z 1178278 -
1-1.17

an exponentially decaying anti-causal series.

A causal series with a causal inverse like the one in example 1 is called minimum
phase. Since a pole inside the unit circle causes a series to be non-causal, a series
is minimum phase if and only if all of its poles and zeroes (which are poles in its
inverse) are outside the unit circle.

Figure 3: Notch and all-pass

In this example we show two filters that can be made from a single pole-zero
pair. The filters are a “notch” filter,

1-2
(Upper plot) 157
and an “all-pass” filter,
(Lower plot) 1-22
P 1- 52"

A pole and zero are exactly opposite in effect; a pole and zero in the same place
annihilate each other like anti-particles. It follows that such a pair only affects a
nearby portion of the Z plane; further away the distance between them becomes
insignificant and they cancel out.

A notch filter strongly attenuates frequencies around some w = f;, but leaves
the rest of the frequency spectrum nearly untouched. To kill frequencies around f;
we place a zero on the unit circle at Z = e'/o. We balance out the zero for other
frequencies by placing a pole next to the zero and just outside the unit circle. The
closer the zero and pole are together, the sharper the notch is.

If a pole and zero are placed at reciprocal positions on either side of the unit
circle, an all-pass filter results. This filter has a constant amplitude over the unit
circle, but a varying phase.

Figure 4. Autocorrelation Functions

To autocorrelate a sequence, convolve it with a time-reversed and conjugated
copy of itself. If a sequence is time-reversed and conjugated, the amplitude spectrum
is left the same but the phase spectrum changes sign. When this is convolved with
the original sequence the result must have zero phase, ie, the spectrum must be
purely positive real.
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All sequences that are autocorrelations must be symmetric, but not all symmet-
ric sequences are also autocorrelations. All symmetric sequences have a purely real
spectrum, but the spectrum may be both positive and negative real.

In this example we show a filter that is an autocorrelation,
(Upper plot) 4Z7'+1+ .42

and one that is not,
(Upper plot) .6Z7'+1+ .6Z.

The spectrum in the upper plot is purely positive real (cyan), while the spectrum
in the lower plot contains a negative real region (magenta) around the nyquist.
Where these regions meet there must be a zero, and so we know the two zeroes on
the lower amplitude plot must actually be ezactly on the unit circle.

What happens as we perturb the lower case into the upper one, always keeping
the filter symmetric? The zeroes must slide down the unit circle like beads on a
wire, until they collide with each other at the nyquist and can finally be pulled off
sideways. Sequences that are autocorrelations may only have double (or quadruple
etc.) zeroes on the unit circle.

Note that in the previous example we saw a filter that had constant amplitude
over the unit circle; in this example we have seen a filter with constant phase over
the unit circle.

Figure 5: Many zeroes <> one pole

As we saw before, a single pole corresponds to a decaying exponential as a time
series. What if we truncate the exponential? Such a finite series can have only
zeroes. How can many zeroes look like one pole, given that zeroes and poles are
opposites?

To test this, for the upper plot we will use

2
U .
(Upper plot) T 87’
and for the lower one

(Lower plot) 2(1+.8Z +...+ .819219),
As you can see, we get 11 evenly spaced zeroes, except that one is missing.
Inside the Ting of zeroes the missing one looks like a pole! Mathematically,

1 .8liz1

1+.8Z+...+.819210 =
+ Foedt 1- .82

The numerator has zeroes at the 11th roots of unity, but one of them gets canceled
out by the pole in the denominator. This is just another guise of the same identity

SEP-57



Dellinger, Kostov, and Rocca 528 Z transforms

we used back in examples 1 and 2. For Z outside the ring of zeroes the identity
breaks down and the two plots look quite different.

Figure 6: Windowing

What happens to the poles and zeroes of a function when it is windowed? In
Figure 6 we show the Hilbert operator windowed two different ways:

(Upper plot) Hilbert transform with boxcar window,

and
(Lower plot) Hilbert transform with raised cosine window.

The frequency spectrum of the perfect, unwindowed Hilbert operator is +: for
w > 0 and —1 for w < 0. Since the spectrum of a boxcar is a sinc, we should not be
surprised at the sinc-like oscillations superimposed on the basic pattern. The raised
cosine avoids these oscillations by moving the zeroes away from the unit circle while
still keeping the effect of each doublet the same.

A common misconception when looking at this figure is that the zeroes at w =0
and w = 7 are double. It looks like the inner and outer rings of zeroes briefly merge
at those two points. Actually, both these zeroes are single; if they were double the
spectrum could not abruptly change sign there.

Figure 7: Levinson recursion

For any given filter, several other filters can be found that have the same au-
tocorrelation. For instance, Z — Z; and Z — 1/Z; have the same autocorrelation.
A simple way to obtain a new filter with the same autocorrelation as another is to
convolve it with your favorite unit-gain all-pass filter. Among the set of all filters
that have the same autocorrelation function, however, there is only one that has the
property of being minimum phase. This unique minimum phase filter is particularly
important for numerical applications, because it is the only filter that has a causal
inverse.

Levinson recursion is an efficient algorithm for finding the unique minimum-
phase sequence corresponding to a given autocorrelation function. Given N lags
of an autocorrelation function, the Levinson recursion determines in N steps a
minimum phase sequence of length N. An important property of the Levinson
recursion is that the filters generated at each intermediate step of the process are
guaranteed minimum-phase.

We computed the autocorrelation of a window of 1024 data samples from a
seismic trace, and applied the Levinson recursion to determine the minimum-phase
filter of length 50 that has the same first 50 lags for its autocorrelation. The zeroes
of the filter at the 25th iteration are displayed in the upper part of Figure 7; the
zeroes for the filter at the 50th iteration are displayed in the lower part of the same
figure. Although some of the zeroes are very close to the unit circle, all are outside.
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Figure 8: Conjugate gradients algorithm

Alternatively, the system of normal equations for the computation of the mini-
mum-phase filter with a given autocorrelation can be solved using a general-purpose
minimization algorithm such as the Conjugate-Gradient algorithm. An advantage
of the conjugate-gradient algorithm is that in many cases it provides a very good
approximation of the solution after only a few iterations. This property makes it
particularly attractive for large problems.

In Figure 8 we show the results of doing the same problem as in the previous
example by using conjugate gradients instead of Levinson. In this case, there is no
guarantee that the iterates will be minimum phase, even though the starting point
is known to be minimum phase, and the end point should be minimum phase as well
since theoretically the final result should be the same as in the previous example.
Of course, the final results did not turn out to be the same due to different handling
of numerical errors by the two different algorithms. As before, we display the filter
at the 25th iteration in the upper part of Figure 8, and the filter at the final 50th
iteration in the lower part. The question is, are these filters minimum-phase?

Figure 9: Close up of zeroes near the unit circle

We applied the Levinson recursion to the filters calculated at the final itera-
tions of the previous two examples. A given filter is minimum phase if and only if
the reflection coefficients computed at each step of the Levinson recursion are less
than one in absolute value. Thus the Levinson recursion is a sensitive numerical
test of whether a given filter is truly minimum phase or not. We found that the
filter obtained by the Levinson recursion was indeed minimum phase while the one
obtained by Conjugate Gradients was not.

Since this observation can not be made without ambiguity by looking at the
plots in Figures 7 and 8 (since many zeroes are so close to the unit circle that it is
impossible to tell whether they are actually inside, outside, or even exactly on it),
we produced an enlargement of a portion of the Z plane where the zeroes clustered
particularly closely to the unit circle. The result is shown in Figure 9: in the upper
part we show the final iteration of the Levinson example from Figure 7, and in the
lower part we show the final iteration from the conjugate-gradients example from
Figure 8.

If the zeroes obtained by the conjugate-gradients algorithm are within the unit
circle, they are only barely so! Yet this is enough to cause the conjugate-gradients
result to have a non-causal inverse. It is interesting to note that the error functions,
the spectra, and the distribution of zeroes are all similar in the two algorithms. The
time series, however, differ significantly.

Go reread “Fundamentals of Geophysical Data Processing” and see if you can
understand Z transforms better now!

SEP-57



Z transforms

Dellinger, Kostov, and Rocca 530
Time Series Log Spectrum
Z — Amplitude Z — Phase
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FIG. 1. Upper plot: 1 —.9Z; Lower plot: 1/(1 — .92)
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Z transforms

Time
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Z — Amplitude
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FIG. 2. Upper plot: 1 —1.1Z; Lower plot: 1/(1 — 1.1Z)



seccceae




+

Gy




C e eCE sC oEEE RE s eesaessE o

sssesssec s




Dellinger, Kostov, and Rocca 532 Z transforms

Time Series Log Spectrum
Z — Amplitude Z — Phase
Time Series Log Spectrum
Z — Amplitude Z — Phase

FIG. 3. Upper plot: Notch filter; Lower plot: All-pass filter
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FIG. 4. Upper plot: .4Z '+ 1+ .4Z; Lower plot: .6Z 1+ 1+ .6Z
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Time Series

Log Spectrum

Z — Amplitude

Z — Amplitude Z — Phase
Time Series Log Spectrum

Z — Phase

dh
N

FIG. 5. Upper plot: 2/(1 —.8Z); Lower plot: 2(1 + .82 + .822% + ...+ .810710)
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Time Series Log Spectrum
Z — Amplitude Z — Phase
Time Series Log Spectrum
Z — Amplitude Z — Phase

FIG. 6. Upﬁer plot: Hilbert function with boxcar window; Lower plot: Hilbert
function with cosine taper.
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Z transforms

Time Series

Log Spectrum

Z — Amplitude Z — Phase
Time Series Log Spectrum

Z — Amplitude

Z — Phase

(1N
N

FIG. 7. Upper plot: Filter at the 25th step of the Levinson recursion; Lower plot:
Filter, at the final (50th) step.
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Time Series Log Spectrum

Z — Amplitude Z — Phase
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Time Series Log Spectrum
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FIG. 8. Upper plot: Filter at the 25th step of the conjugate-gradients algorithm;
Lower plot: Filter, at the final (50th) step.
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Z transforms

Time Series Log Spectrum
Z — Amplitude Z — Phase
o
e
Time Series Log Spectrum
Z — Amplitude Z — Phase
L ]

FIG. 9. Upper plot: Enlargment of the lower part of Figure 7;
Enlargment of the lower part of Figure 8.
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