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Modification of
conjugate gradient iteration to enable
control of the eigenvalue range inverted

Christof Stork

ABSTRACT

The basis for chosing the scaling factors for conjugate gradient itera-
tion is changed from the minimization of the data variance to the accurate
inversion of eigenvalues over a predetermined range. This different basis
enables the inversion to be controlled using knowledge of the inversion prob-
lem and produces a greater likelihood inversion while keeping the favorable
characteristics of conjugate gradient intact.

INTRODUCTION

A previous paper in this report (Stork, 1988) demonstrated through com-
parison to Richarson’s iteration how conjugate gradient fails to satisfy two
desired criterion: that the inversion can be controlled, and that it produce a
maximum likelihood (Aki and Richard’s, 1980) inversion. A maximum likelihood
inversion inverts the larger eigenvalues well even when the data does not contain
significant components at that eigenvalue. Conjugate gradient, in its quest to
reduce data variance in the minimum number of iterations, will not bother to
invert the eigenvalues with little corresponding data energy components. How-
ever, generally we can afford to perform the very few additional iterations neces-
sary to better invert these eigenvalues.

In reducing data variance, an additional iteration of pure conjugate gra-
dient may invert to smaller eigenvalue rather than inverting the larger eigen-
values more accurately. In some cases, inversion to smaller eigenvalue may not be
warranted. The signal to noise ratio may be too low or the desired objective may
exist only above a certain eigenvalue.

Im general, by being able to control the eigenvalue range inverted enables
one use the modified conjugate gradient to easily analyze the characteristics of an
inverse pfoblem and then use that knowledge and other knowledge of the inverse
problem in the inversion of the data. In particular, by being independent of the
data components, synthetic inversion of this modified conjugate gradient can be
directly compared with data applications.

SEP-57




Stork 506 CG Modification

It turns out that the simple modification of changing the variance function that
conjugate gradient uses to determine it’'s scaling factors alleviates these problems.
Whereas pure conjugate gradient uses variance based on data:

data variance = | |b(0)—Ax(m)| ]

instead we use variance based only on matching the eigenvalue inversion over a
particular eigenvalue range. We will call this ‘‘eigenvalue variance.”

N pmx
etgenvalue variance = f(l.O A2\ Yd \
>\mln
where:
A% — the generalized inverse achieved after n iterations.

Anin & Apax define the eigenvalue range over which we wish to invert.
This method can be thought of as fooling conjugate gradient into thinking that the
data energy distribution is even over the desired eigenvalue range and that there is no

data energy outside the range. Thus conjugate gradient will invert the eigenvalue
range approximately evenly and not bother to invert the eigenvalues below the range.

IMPLEMENTING EIGENVALUE VARIANCE

For a forward problem written as:
b = Ax,

The inversion achieved after the n’th iteration is represented as:
x(") — A G pl0)

where A% is the generalized inversion of A after n iterations.
Conjugate gradient iteration (Scales, 1987; Hestens and Stiefel, 1952) is generally
written as:

x(" ) = x*) + 5, p(,),
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where:
Py = AT + s )

| |ATBM) | |
| |ATB( D] |

KRy ==

is chosen to minimize the data variance, which is done by:
1B~ Axn 1| |

On

o = (pTATAp)—lpTATb(n)

n

AT = the gradient operator

b(")= the residual data not explained by the previous iterations,
(b(*) = b0 - Ax(®)),

Preconditioning and data weighting can be included in this formulation (Stork, 1988b).

Adjusting this method so the determination of the scaling factor, o, , is
performed using the eigenvalue variance requires the reformulation of this iteration
procedure in terms of the eigenvalues. The effect of each iteration on the eigenvalue
inversion can be determined by substituting the singular value decomposition for A,
A =UxvT:

VIx( ) = VTx0) 4 g VT p
VIp,) = sUTb) + 4, VI pp

oo LIVIRUTBW | | | [ RUTB®)| |
CT O IVIRUTR D[ [ SUTRr |

o, = (pTvT neyT p)—lpTvT YUb(?)
’ UTb(?) = uTpO - pvTx(»)

VITxr — EG"UT bl0)

The UTb and VT x operation separate the data and model into their eigenvector
components. Since Y is diagonal, these matrix equations can be rewritten as scalar
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equations for each eigenvalue, \, and its data and model components. We will treat
the terms of this equation as continuous functions of the eigenvalues with the following

substitutions:
UTb — U()\)
VIix - V()
Vip — P()\)
PHEID

where U (X), V(N\), & P ()\) are defined as:
A-d X

n . — I b(n)T N Yd )\
U™ (\)-d )\ }1310[ u(\ )

Ad X

n . — I (n)7. " Vd N
Ve (\)-d X dhxx_x}o{x v )X

A+d X

"(\)dx = li )Ty (N )d N
P (\)-dX }‘{f}o{p v )

and
u(\’ ) = the data space eigenvector at eigenvalue ' .
v(X\' ) = the model space eigenvector at eigenvalue N\ .

These functions represent the distribution of energy in the data and model over the
eigenvalue range. Note that the distribution of eigenvalues is included in this function.

The new equations are:
V) =V (N) + 0, P"(N\)

3

»

PM(\) = AU"(N) + p, P71
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[P ONU™ (e

. 00

[Pryzazan
0

Un(\) = U)XV (\)

Ve () = 2" U%)

We seek a formula for @" (\) = AA% after each iteration which represents
the inversion level of the eigenvalues. ()\G" represents the generalized inversion of
eigenvalue X\ achieved after n iterations.) We rewrite the equation in terms of
R"(\) = A% and substitute UO\)-P™(\) = P"(\)\ to simplify the equations.

vr () = (10-@" () U

PPy =22 (10- Q" ()] + u, PPN

o0

-‘ 2 (10- Qn(x)]Q-UO(wdx

» unz

o0

[xz(10-¢ "-l(x)]Q- UO(\)2d A

0
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[P (10- @) vz
[P (U002

Normally, the function U%\) represents the distribution of energy in the data
over the eigenvalue range. The data variance that conjugate gradient tries to

minimize,
data variance = | |b(0)—Ax(m)| |

can be rewritten using our continuous functions (Stork, 1988b) as:
(o]
Juoog(1-@)2ax
0

Our complaint with conjugate gradient is that it may invert eigenvalues below
a desired level and that it may invert a larger eigenvalue range poorly when it contains
few data energy components. However, with the equations above, we can redefine
U%N\) to suite our own desires. If we desire the inversion to not invert the eigenvalues
below a certain point, we set this function to zero below that eigenvalue. To invert
eigenvalues approximately evenly above that point, the function is set to a constant
above the eigenvalue. Thus, the proposed value of U°\) to invert over an eigenvalue
range Apin < A < Ay ISt

UN) =1.0 for My < N < Aoy
U°(N\) =0.0 for X\ < A\pip

If, after several iterations, we decide to invert to lower eigenvalue than
originally specified, we need only change the function, U0(>\) to include the greater
eigenvalue range, and continue the iterations.

>

NUMERICAL EXAMPLE

Figure 2 is an example of the function \'\¢ produced using this choice for
U%)), which is shown in Figure 1. The corresponding function for \-\€ produced
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using Richarson’s iteration with Chebyshev acceleration factors (Stork, 1988) is also
plotted for comparison. While Chebyshev iteration has uniform error over the specified
eigenvalue range, conjugate gradient has inverted the larger eigenvalues more
accurately than the lower ones in the range. The difference is not very significant, but
it is enough for the ‘‘eigenvalue variance,” as defined earlier, to be about half for
conjugate gradient as it is for Chebyshev iteration.

However, a main advantage of conjugate gradient iteration over Chebyshev
iteration is that the number of iterations need not be specified before hand. Conjugate
gradient iteration can be continued until the desired accuracy over the eigenvalue
range is achieved. It can be easily restarted when inversion to smaller eigenvalue is
desired. Chebyshev iteration, however, would require the number of iterations and
eigenvalue range be specified at the start. Changing either requires restarting from

beginning.

CONCLUSIONS

The use of ‘“‘eigenvalue variance” instead of the standard data variance for the
conjugate gradient iteration achieves a result closer to the maximum likelihood
inversion and the eigenvalue range inverted can be easily controlled. The speed of
conjugate gradient and its ability to arbitrarily stop and continue the inversion are
kept intact.
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