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Comparison of Richardson’s iteration
with Chebyshev acceleration factors to
conjugate gradient iteration

Christof Stork

ABSTRACT

Minimization of data variance may not be the best basis to judge
iterative matrix inversion schemes. Instead, one may want to produce a maz-
imum likelthood inversion and one may want to exercise control over the
inversion. On this basis, Richardson’s iteration with the application of Che-
byshev acceleration factors has advantages over the conjugate gradient itera-
tion for use in very large inverse problems that are common in geophysics.

INTRODUCTION

Richardson’s method is a steepest decent iterative method with unit step
size for locating the bottom of a quadratic, multidimensional surface that
represents the error between data and model. The steepest decent method is gen-
erally taken to be the worst of many possible iterative methods for solving least-
squares normal equations. The present, most popular method is probably the
conjugate gradient method (Scales, 1987). However, the application of the Che-
byshev acceleration factors (Olson, 1987) makes Richardson’s method very com-
petitive with the alternative techniques for applications with very large model
spaces. Perhaps it should called a form of intelligent steepest descent.

The objective of conjugate gradient is to minimize data variance at each
iteration step, which it does very well. To achieve this objective, the eigenvalue
ranges inverted first are those that have greater data components. Larger eigen-
values may not be inverted before smaller ones, although a bias exists toward the
larger eigenvalues.

Conjugate gradient iterations are generally continued until some stopping
point is reached, which is frequently based on data variance reduction. When
enough iterations can be performed to reach the stopping point, an alternative
criterion tan be used with a few additional iterations to produce a greater likeli-
hood inversion (Aki and Richards, 1980) after a predefined number of iterations.
Most greater likelihood inversions define the ‘“‘best” inversion to be very accurate
over some eigenvalue range with a smooth transition to the very small eigen-
values which are not inverted:

SEP-57



Stork 480 Richardson’ s iteration

A =AY for Apip < A < Apay

and,
A =0 for N << Ay -

where:
X\¢ = the generalized inversion of eigenvalue, \.
In a maximum-likelihood inversion, such as the stochastic inverse (\¢ = X;\ ),
+¢

larger eigenvalues are better inverted than the smaller ones.

Moreover, Richardson’s iteration allows a user to control the inversion from his
knowledge of the inverse application. For some cases such as the tomographic
inversion used in Stork (1988a), this control is very desirable. However, Chebyshev
acceleration factors require the maximum eigenvalue and the number of iterations be
known before starting the iterations.

The behavior of these two iteration techniques is compared analytically and
numerically. The analytic analysis introduces a different perspective than variance
reduction for comparing of the two techniques.

The numerical comparison models the behavior of both methods for several
different cases. Instead of constructing actual matrices, they are represented by their
eigenvalue distribution.

ANALYTIC COMPARISON

Conjugate gradient is compared to Richardson’s iteration with Chebyshev
acceleration factors for a forward problem written as:

At = LAs,
Conjugate grﬂadient and Richardson’s formulas are generally of the form:

» As(n+1) — As(n) + o, -g(n )

where:

En) = GAt") t K ‘B(n-1)
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o, and p, = scaling factors
G= the gradient operator

At(")= the residual data not explained by the previous iterations,
(At — AL _ LAs™),

The gradient operator generally has the form:
G = SLTD,

where:

D= a symmetric data weighting matrix

LT = the transpose of the L matrix.

S= a symmetric data weighting and preconditioning matrix. It is
occasionally chosen to approximate (LTDL)‘1 to speed the

convergence of the iterations.

Conjugate gradient differs from Richardson’s iteration in the scaling factors, o
and p. For Richardson’s iteration, H(n) equals 0.0 and O(n) I8 the inverse of the square

of the maximum eigenvalue (a(n) = ——2—), while for the conjugate gradient method,
max

Kny and o,y are determined to minimize the square of the data mismatch:

| | At° LAs"+1)| | . The application of Chebyshev acceleration factors to

Richardson'’s iteration (Olson, 1987) uses scale factors of:

2

max rnm +()‘max+)‘n%in)

COS( 2n +1 )

forr n=0,1, - -+ N-1
The motivation of these acceleration factors will be presented later.

This* generalized iteration formula can be manipulated into a more generic
formulas:

(8712880 +1)) = (§71/2As(1)) + o, "P(n)
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and,

P(n) = (SI/QLT Dl/?)(DI/QAt(n )) + I(n ) P(n -1)

By substituting x= S‘l/gAs, b= D1/2At, and A= DI/QLSI/Z, we achieve a
more compact form:

x(n +1) = 'u,nch(n) + o'n p(n)

P(n) = AT + iy P,

which contains no preconditioning matrix, S, or data-weighting matrix, D. The square
root of a symmetric matrix is defined as the square root of its eigenvalues with the
eigenvectors kept intact.

This form converges to the least-squares solution of b = Ax which is the
original forward problem, At = LAs, with weights applied to the data and model

space:

(D1/2At) = (DY2LSY2)($1/2As),

While the choice of the preconditioning matrix, S, may speed convergence, it
may produce very undesirable weights. Strong caution is urged in choosing the
preconditioning. For instance, a common choice for the preconditioning is too boost
the high wavenumbers of an inversion since they are inverted slower. However, this
preconditioning encourages high wavenumber components in the result, which is
generally not desirable.

The generic conjugate gradient equation involves only the matrix AT, which
when multiplied with b produces the gradient of steepest decent down the quadratic
error function, E=(b(°)—Ax)2. The name ‘‘conjugate gradient” results from the
method using a linear combination of the present gradient, (AT b(")), and last
gradient, (p(" )). Each new gradient is perpendicular to and properly scaled in relation
to all the others. Once enough vectors have been produced to span the entire resolved
space, they eliminate all possible data variance. Steepest descent iteration simply
marches down the contours of the error function.

The methods can be compared using the variance perspective for the two
dimensional case using Figure 1 borrowed from Figure 2.10 of John Toldi’s thesis
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(1985). Conjugate gradient will take only two steps to reach the bottom of the two
dimensional objective function while steepest-descent will take an infinite number of
iterations as it zig-zags down. From this perspective, conjugate gradient appears to
have clear advantages.

An alternative perspective for analyzing the iteration techniques is the
inversion of the eigenvalues, independent of the data components. The effect of the
iterations on the eigenvalues is analyzed with the following decomposition performed
with the insight of Comer and Clayton (1986) and Ivansson (1983). It is this
perspective from which the Chebyshev scaling factors are chosen for Ricardson’s

iteration.

Continuing from the equations of before,

x(* ) = x(") 4 o, g,

g(n) = AT (b(o) - Ax(n )] + My 'g(n -1)

= ATbO - AT Ax(®) 4 Ky 8(n 1)
Combining these equations, produces:
x(n +1) [I -0, .ATA]x(n) + o, AT b(O) + 0, H, 'g(n—l)

Careful consideration convinces us that recursively substituting in for x and g until we
reach x(®) and (o) which are defined to be zero, will produce a result of the following

form:

x(*) = [anﬂi (AT A) ]-ATb(O)

i =0

where the coefficients #; will be some function of the o’s and p’s. An unsuccessful
attempt was made in appendix B to find an explicit expression for the g’s.

3

By substituting in the singular value decomposition for A, A = UAVT | this form is
rewritten: *

x(*) =V [Z‘ﬂ,- SN ]EUTb(O)

f =0
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Thus, the generalized inversion achieved for each eigenvalue after n iterations can be
represented as a polynomial:

NG = 31BN X

t =0

We can choose the coefficients, #;, to best match the desired eigenvalue
. . . . . A
inversion, such as the stochastic maximum likelihood inversion, \¢ = T—’ for
+ €
example. How accurately we match our desired function is dependent on the degree of
our polynomial, which is the number of iterations we perform.

If we could determine the scaling factors necessary to produce these
coefficients, we would have an intelligent form of steepest decent. Unfortunately,
converting these coefficients, §;, back into scaling factors used in Richarson’s iteration
is not an easy task. However, Olson (1987) is able to determine an effective method
for defining the Richardson’s scaling factors based on Chebyshev polynomials. The
development is presented in appendix C. The development also suggests how any n’th
order polynomial can be represented only with Richardson’s iteration.

The Chebyshev scaling factors will match the function A6 = 1.0 with
approximately even error over a specified eigenvalue range. Figure 2 is plot of the
function A*\¢ for two different sets of Chebyshev scale factors, chosen with different
minimum eigenvalues. The height of the peaks and troughs for each set of iterations
are identical over the eigenvalue range . A trade off exists between accuracy of the
inversion and eigenvalue range over which the inversion is performed. These scale
factors provide a smooth transition to A\ = 0 for very small \.

Since any polynomial,

n
NG =316 NN
1 =0

can be represented with Richardson’s iteration, any conjugate gradient inversion can
be identically reproduced with Richardson’s iteration. This relationship may not be
directly apparent, but can be seen that only one scaling factor per iteration is needed
to have enough degrees of freedom after n iterations to define an n’th order
polynomial. .Although we cannot determine the exact relationship between the scaling
factors of Richardson’s iteration with those of conjugate gradient, they will be different
since they are chosen to satisfy two different types of criterion.

The conjugate gradient method minimizes data variance at each step; the
Chebyshev acceleration factors are the optimal scale factors based on three conditions:
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Figure 1: Figure 2.10 borrowed from John Toldi’s thesis. The contours represent
the variance of a two dimensional inverse problem. Steepest decent (solid line)
takes an infinite number of iterations to reach the bottom as it zig-zags down.

Conjugate gradient (dashed line) reaches the bottom in two steps. Additional
dimensionals complicate this model.

Figure 2: The inversion level (A-AC) for two sets of 16 iterations of Richadson’s
iteration with Chebyshev scaling factors. The maximum error of all the bumps for

one set of inversion is even. A trade-off exists between the size of the bumps and
the eigenvalue range inverted.
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1) a predetermined number of iterations, 2) an eigenvalue range the inversion is
desired over, and 3) the minimization of the maximum eigenvalue error over the

specified  range, i.e., min(max I 1.0 — X*\€¢ I ) where, X% =~\X1 for
Apin < N < Mpaxe

NUMERICAL COMPARISON

Conjugate gradient iteration is compared with Chebyshev iteration for several
sample matrix inversions. Instead of actually creating sample matrices and performing
the iterative inversion explicitly, the inversion procedure can be completely represented
by considering only the eigenvalue distribution of the matrix, A, and the distribution
of the energy in the data over these eigenvalues. The inversion procedure is
represented by the inversion of the individual eigenvalues as described in Stork,
(1988b).

The behavior of the inversions is presented according to two characteristics:
variance reduction, and inversion of the eigenvalues. These two characteristics
represent the different perspectives the scaling factors of the two iteration methods are
defined in. The parameters of conjugate gradient are chosen based on the variance
reduction, while those of Richardson’s iteration are chosen based only on the inversion
of the eigenvalues.

These two basises for comparison are, of course, closely related. The variance

reduction is a function of the inversion of the eigenvalues and the distribution of the
data energy over the eigenvalues range. In the conventional form, variance is:

variance = I Ib(o)—A(AG b(o))l I

To treat the distribution of data energy as a continuum over the eigenvalue

range, it is written as a function: E()\), where the distribution of eigenvalues is
included in the function. The development of this function is presented in appendix A.
The variance can be written as:

Armax

varignee = fE ()\)-(1.0 ~XNG)2d
A min

where :
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X\CG represents the generalized inversion of .
FE ()\) is the distribution of the data energy over the eigenvalue range.

The behavior of conjugate gradient and Richardson’s iteration with Chebyshev
acceleration factors is compared for various different data energy distributions. The

first comparison will be for a constant data energy distribution, &/ ()\) = 1.

Figures 3a and b show the eigenvalue inversion level after each iteration of
conjugate gradient and Chebyshev iterations. The eigenvalue inversion level is defined
as: A°\C , where A\C represents the generalized inversion achieved after the iterations.

The method for its computation is presented in Stork (1988D).

The function A‘A\¢ should equal 1.0 for the large eigenvalues and 0.0 for the
very small ones. The thick black line in Figures 3a and 3b is the result after 16
iterations. The conjugate gradient method is stable after each iteration, as would be
expected. The Chebyshev method, however, gyrates wildly until the last iteration.

The result after 16 iterations for both techniques are plotted together in Figure
4b. The conjugate gradient method has inverted to smaller eigenvalue, but to less
accuracy over the eigenvalue range. The peaks and troughs of the Chebyshev
iterations are even over the eigenvalue range, while they are greater at the low
eigenvalues for the conjugate gradient iterations. Note also that conjugate gradient
has not inverted the eigenvalue of 1.0 very accurately.

Comparison of the variance reduction is shown in Figure 4c. The residual
variance of the conjugate gradient iterations is lower than for Chebyshev iterations
after 16 iterations, although they are quite close. They gyrations of the Chebyshev
iterations is apparent, but it finally produces a reasonable result after the set number
of iterations.

The eigenvalue range inverted with Chebyshev iterations is adjusted to invert
to smaller eigenvalue similar to that of the previous conjugate gradient iterations.
The result is- shown in Figure 5b. Conjugate gradient has inverted the larger
eigenvalues slightly more accurately than Chebyshev, but not the lower eigenvalues.
The variance reduction, plotted in Figure 5¢, shows the two produce nearly the same
result after 16 iteration, but the path to the result is very different. Conjugate
gradient is stable for all iterations; the Chebyshev method is stable only after the last
iteration.

The behavior of conjugate gradient iteration is affected by the the eigenvalue
distribution of the problem and of the data content. This effect is seen with the use of
Figure 6a, b, and c¢. The data energy distribution, & ()\), consists of four bands seen
in Figure 6a. The conjugate gradient iteration has accurately inverted the eigenvalues
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Figure 3: Inversion level (A-AC) after each step of iterations for a) conjugate
gradient iteration and b) Chebyshev iteration. Thick line is the result after 16
iterations. Conjugate gradient produces a stable result after every iteration while
Chebyshev does not. Chebyshev produces a reasonable result only after the last
iteration.
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Figure 4: a) Even data energy distribution, £ (A), used to compare conjugate
gradient and Chebyshev iteration. b) Inversion level (A-AC) for conjugate gradient
and Chebyshev iteration. Conjugate gradient has inverted to smaller eigenvalue but
Chebyshev has inverted the larger eigenvalues more accurately. ¢) Residual variance
after each iteration. Conjugate gradient follows a stable path while Chebyshev does
not, producing a reasonable result after only the last iteration. Conjugate gradient
has done a better job after the 16 iterations.

Data Energy Distribution

>
=T1]
L)
[}
g o
SR
Q
Eigenvalue
Inversion Level
0
= Ve Conjugate Gradient \'
4]
2 /N
1
O —d
>
&
2
-g i Chebyshev
0.
o T ¥ T T T
0 0.2 0.4 0.6 0.8 1
Eigenvalue
Variance Reduction
o
Q - d
g
o
"
*‘ g
—_ Chebyshev
[oATe]
v 5 o 7
0
[ %
e
i , ,
0 J 5 10 15
Conjugate Gradient Iteration Number

SEP—57



Stork 490 Richardson’s iteration

Figure 5: a) Even data energy distribution, E(?\), used again to compare
conjugate gradient and Chebyshev iteration. b) Inversion level for conjugate
gradient and Chebyshev iteration. This plot is similar to that of Figure 4b except
that the scaling factors of Chebyshev iteration were chosen to invert to smaller
eigenvalue. Conjugate gradient has smaller bumps at the larger eigenvalues, but
larger bumps at the smaller eigenvalues. It has also inverted to slightly smaller
eigenvalue. better ¢) Residual variance after each iteration. Chebyshev iterations are
now very unstable until the last iteration, when it’s variance reduction is nearly the
same as that for conjugate gradient.
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only within these bands, seen in Figure 6b. The positions of these bands is also
plotted in figure 6b. Since there are no data components in the region between these
bands, their poor inversion has no impact on the result. The Chebyshev scaling factors
are chosen irrespective of the data energy distribution and invert the regions with no
data energy as well as those with data. Since conjugate gradient was able to
‘“‘conserve” its iterations, it was able to partially invert even the band at very low

eigenvalue.

Analysis of the variance reduction shows that conjugate gradient has done a
much better job than the Chebyshev iterations. Since the Chebyshev iteration inverted
the eigenvalues better in the three bands with larger eigenvalues, the greater variance
reduction of conjugate gradient comes almost entirely from the better inversion of the
band at smallest eigenvalue.

The final energy distribution function considered, shown in Figure 7a, has most
of the data energy at small eigenvalue. The conjugate gradient iterations do not
invert the very large eigenvalues well. Otherwise, Chebyshev iteration was very
similar, except that it didn’t invert to quite as small of an eigenvalue. The plot of the
residual data variance shows the end result to be similar, although conjugate gradient
is slightly lower.

DISCUSSION

In all the numerical examples above, conjugate gradient has been more
successful at reducing data variance. However, the inversion result may not be more
desirable. In Figure 6b, conjugate gradient has inverted the three bands at larger
eigenvalue less well than Chebyshev, but has inverted the band at very low eigenvalue,
below 0.05. The signal to noise level may not justify the inversion of such a small
eigenvalue, but conjugate gradient does not give us the option to avoid inversion of
these eigenvalues. Figure 7b shows that conjugate gradient has ‘“sacrificed” the
inversion of the larger eigenvalues for the lower ones. While they contain only small
data components, they are the best resolved part of the inversion problem. If we are
seeking the most accurate solution, we will still want to accurately invert these data
components even if it means performing a few additional iterations.

Inverse theory tell us that a maximum likelihood inversion requires larger
eigenvalues e inverted better than smaller ones, regardless of data energy distribution.
If the computer power is available, which it generally is even for very large problems
such as tomographic inversion, it may be advantageous to perform the extra iterations
necessary to perform a maximum likelihood inversion. Data variance of the Chebyshev
method was not significantly poorer than that for the conjugate gradient method
which suggests only a few additional iterations would be needed to achieve a similar
variance reduction but with a maximum likelihood inversion result.
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Figure 6: a) Data energy distribution with four bands. b) Inversion level for
conjugate gradient and Chebyshev iteration. Conjugate gradient has not bothered to
invert the eigenvalues with no data energy, while Chebyshev iteration is not effected
by the data energy distribution. Conjugate gradient has inverted some of the band at
very small eigenvalue while Chebyshev has not. ¢) Conjugate gradient has produced
a much lower variance than Chebyshev after 16 iterations. Since Chebyshev has
better inverted the eigenvalue in the three upper bands, the lower variance for
conjugate gradient must all result from its better inversion of the band at smallest
eigenvalue.
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Figure 7: a) Data energy distribution weighted to the smaller eigenvalues b)
Inversion level for conjugate gradient and Chebyshev iteration. Conjugate gradient
has not inverted the very large eigenvalues very well because of their low energy
levels. ¢) Variance reduction for both methods is similar, although conjugate
gradient is still a little better.
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An example of the maximum likelihood inversion is the stochastic inverse, which

. A .
inverts the eigenvalue according to: A = —Z=——. The smaller eigenvalues are less

N +o
well inverted and their inversion level ()\-)\G ) is less than 1.0. The conjugate gradient
inversion of Figure 4b has some of the inversion level of the smaller eigenvalues greater
than 1.0. In particular, the peak at eigenvalue of 0.15 is quite large. This ‘“over-

shoot” will introduce unwanted energy into the model.

A key drawback of conjugate gradient is that it is a ‘‘black box”, one who's
behavior is difficult to predict and cannot be controlled. One does not know whether
an additional iteration will invert smaller eigenvalues or improve the accuracy of the
inversion of the larger eigenvalue.

For instance, the inversion using banded data energy distribution in Figure 6b
has inverted some of the eigenvalues near 0.05, which may not be warranted. One
may instead want to more accurately invert the larger eigenvalues. Chebyshev
iteration allows one to specify the eigenvalue range over which to invert and the
accuracy to achieve over that range.

The control Chebyshev iteration gives a user over the inversion enables the him
to use knowledge of the inverse problem to guide the inversion. He may have an
objective that can be achieved with inversion to a specific eigenvalue. He would want
an accurate inversion down to that eigenvalue, but not below.

Moreover, the availability of the control over the iterations may encourage the
user to learn about the eigenvalue characteristics of his problem. The Chebyshev
acceleration factors provide an excellent tool for the quantitative analysis of the
problem through synthetics. Knowledge of the eigenvalue characteristics of the
problem could then be directly used in the inversion. In addition, since Chebyshev
iteration is not effected by the data energy distribution, a synthetic inversion can be
exactly reproduced on the data.

However, the Chebyshev factors do not allow the luxury of starting the
inversions having little knowledge of the problem’s characteristics and being able to
stop when convenient. When one doesn’t know which range of eigenvalues to invert
over, using Chebyshev scale factors can get cumbersome. After starting a series of
iterations, one must continue until completion to analyze the results. If the results are
unsatisfactory and another range of eigenvalues should be inverted, one must start
over. One cannot backtrack or continue when using the Chebyshev factors, something
possible with' conjugate gradient.

In many applications such as the tomographic one, inversion should not be

performed without familiarity of the characteristics of the intended application (Stork,
1988a). This familiarity is especially important for the proper interpretation of the
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result. Several synthetics inversions should be performed as well as several data
inversion with different parameters.

Without knowledge of the maximum eigenvalue, it is not possible to choose the
Chebyshev scale factors. This requirement is not a problem for the Dines and Lytle
(1979) back-projection formula since the data and model weights it imposes ensure
that the maximum eigenvalue will be 1.0. In other situations where the maximum
eigenvalue cannot be controlled through weighting, one can generally produce an
accurate bounded estimate of the maximum eigenvalue by performing short test
inversions of random noise. If the iterations diverge, the maximum eigenvalue is
greater than estimated.

CONCLUSION

Although Richardson’s iteration with Chebyshev scaling factors is slightly less
efficient than conjugate gradient iteration, it produces a result closer to the maximum
likelihood inversion, allows control over the inversion, and enables direct comparison of
synthetics to data applications. However, determination of Chebyshev acceleration
factors requires the maximum eigenvalue and the number of iterations be known
before starting the iterations, which complicates the inversion.
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Appendix:

PART A: REPRESENTING THE VARIANCE IN TERMS OF
EIGENVALUES

In the conventional form, variance is:
K}

variance = l lb(o)—A(AG b(O))I I

»

This can be rewritten in terms of eigenvalues by wusing the Singular Value
Decomposition representation for A, A = UXVT:

— | |b@-Usz¢uTpO| |
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Since the eigenvector matrix U is orthonormal (UUT = I), its introduction does not
affect the variance:

= | |uT(@-UszCuTbO) | |

= | |UTO-_xx¢uThO | |

The operation UTp© separates the data into the components corresponding to each
eigenvalue. The energy in the data corresponding to each eigenvalue is defined as:

E; = ((uTH0), )

The data variance can be written as:

— SIE (1 -\ A9

To treat the distribution of data energy as a continuum over the eigenvalue range, it is
written as a function: F ()\) where the distribution of eigenvalues is included in the
function.

The variance can thus be written as:

A max

variance = fE()\)-(l.O— ANG )2 d N
Amin

where :
A€ represents the generalized inversion of \.

E ()\) is the distribution of the data energy over the eigenvalue range.
In mathematical terms, F/ ()\) is:

A+d X

E(\)ax=(lim [ 507 u )ax )2
N

A—0
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where:
u()\' ) = the data space eigenvector at eigenvalue \' .

PART B: UNSUCCESSFUL DECOMPOSITION OF
CONJUGATE GRADIENT ITERATION

An unsuccessful attempt is made to represent the result after n conjugate
gradient iterations, x(# ), in terms of a polynomial in AT A, such that:

n

x(7) = [ Zﬂi (AT A) ]-AT b®
1 =0

This result would enable the determination of:

A = znjﬂ,-’ (N

1 =0
as was done for Richardson’s iterations.

The attempt is made by substituting in recursively for x(*) until the function for
x(®) is only in terms of b{® and x(©). x(® is defined to be equal to zero, giving us the

function in terms of b(%),

After two substitutions, no recursion pattern could be identified as was for
Richardson’s iteration and the result was too complicated to continue. However, it is
clear that X(n ) can be represented by a polynomial in AT A.

x(") = x("-1) 4 o, p,
p, =ATb") +0,p, ;, Pp=0
n n .
py =Y [ I « ].Arb(z)
§=0 L J=i+1
b{) = bl0) _ Axi-1

x(n) — x(n_l) + o, E [ H Nj }AT -b(’.)

i=0 | J=1+1

»

=0 | J=t+1 J

n-1 n-1 T
x(n) 3 x(n—Q) + o-n_l- Z [ H Nj AT -b('.) +

n -1 n .
Oy * Z[ II }AT°b(') +

f=0 | 7=¢t+1
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AT-b(")J +

H [ ]AT bl | +
o, '[AT'(b(O)—Axn_Q]] +

n -1 n-1 ]
-0, AT A0, , Z[ 1 }ATeb(')
1 =0 ]'=i'+1

x(")—x("2+a Zl:

1 =0

HHJJ

J=i+1

AT-b<")] +

[z[ [T v Jar ] 4

=0 J=t+1 J
0, ATbO -5, AT Ax(n-2) _
n-1 n-1 ]
o™ ATAO'n_l Z l: H I :IAT-b(‘)
t=01] J=1i+1

x(n) = (I—anATA]x("‘2)+
(I~anATA]'an 1
an[ni:l[ﬁ K -

1 =0 ] j=t+1

o, AT b0 “
x() = (I o ATA]x("—2) +

(oot 5]

§ =0

—1
Tn 'l [ [ H uj |ATDBU >]+
1=0 | j=i+1
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x(") =

x(") =

x(®) —=

500 Richardson’ s iteration
o, AT b
(I o, ATA] (1 - an_lATA]x("'?’) +

I-0,AT -0 T . . S n_Q .
(1-0nATA(1-0, AT A) 0, | 33| TT o,

i=0 | =1+l

AT .b(i)J +

[I—onATA]-Un_1~Hn_1[ _2[ T u]} ()]+

=0 | j=i+1
(1-0, AT Ao, AT DO
o, AT b0

on-un-["if[ 1‘[2 i }ATbU)]Jr
t=0| j=i+1

o, 'Nn'[AT [b(O)_Axn—Q]] +
(I—anATA](I—anATA]x("—3)+

(1-0nATA)(1-0,AT A0, E[ ﬁ ,tj}a;T.b(i)JJr

=0 | j=t+1

(1-0n ATA)0p vy | S [ " [ ey ]Arb( )]

=0 | j=1+1
(1-0.ATA)o,,ATBO
o, AT b©)
—2
On "Hy By 1" [ l: H By }AT )J +
=0 | j=i+1

o, °Nn,'(AT [b(O)_Axn—s]] +

n-2 n-2 .
—o,u, | AT Ag, o E [ 1 & :lAT.b(z) +
N t =0 ]=l+1

(1-eATA] (1 -0, aAT A X9 4
— 0, Uy .ATAxn—S +

(1-0.A74A) [I—an_lATA)-anQ-[g [ ’ﬁg " }AT'b(i)] n
2| 1L
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n -2 n-2 .
(I"an ATA].an—l'un—l. Z [ H Nj ]AT b(,)] +
=0

J=i+1

[1 — o, AT A]on_IATb(O) +0, ATbO + o, u, AT b0

2 n— .
[.un—ll_an—QATA]an.un'[ l: H By JATb(,)J'i'

1=0| j=i+1

PART C: DETERMINATION OF RICHARSON’S SCALING
FACTORS USING CHEBYSHEV POLYNOMIALS

This development shows how the Chebyshev polynomials can be used to find the

scaling factors for Richardson’s iteration such that \¢ = % over a predefined

eigenvalue range.

Richarson’s iteration with scaling factors of o is written as:
x(n+1) = x(n) + o, ~ATb(n );

where:

b(?) = b0 — Ax(r-1)

decreasing the superseripts by one and substituting for b{®);
x(n) = x(n-1) 4 o, AT (b0 - Ax(n-1)y;
rearranging:
x(*) = o, ATbO) + (1-0, AT A)x("-1);
Substituting in recursively:

x(") =0, ATbO + (1-0, AT A)o,_JAT bl

+ (I-o, AT A)(I-0, AT A)x("-?)

H I-0;ATA) 5;ATDO
| =0 =l
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+ JJ@-o0,ATA) X9

=0

x(o), the starting point, is defined to be 0. Thus,

m -1
) = Y [I(1-0,474)0, AT5O

which can be converted into independent linear equations for each eigenvalue by
substituting in the singular decomposition for A, A = UXVT:

x(") = vueéulp

where,

n-1

m—1
¢ = E :H(I—ajz:?)amz
m = 0J =0

Since ¥ is a diagonal matrix of the eigenvalues, the independent equations are:

n -1

m~1
NG = Eam H(l - 0]-)\,-2) A
J=0

m =0
The equation can be rearranged by adding (1 - 1):

. on-1 m -1
G = § :>\,.—2(1 ~(1-o0, x,-Q))H(l — o i NN
m =0

j=0

3

. "l m
= x,-QZ( 1-0;2%) - T -0 x,ﬂ))x,,
m =0 7=0 Jj=0

Most terms cancel each other out, leaving only:
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n-1

1- JJ(1-0;3?

\.C — 7=0
] >\,‘

The objective is to have k,-G% L over the desired eigenvalue range,
;

Amin < Ay < Apaxe This is best achieved by minimizing:

n -1
[I@-0;23 for: Apin < N < Apax-
J=0

By relating this equation to the Chebyshev polynomials, Olson (1987), determines the
optimal scale factors, o; so that the maximum value of the above polynomial is

roughly even over a specified eigenvalue range. They are:
2

2n +1)m
COS(_(———Q,N—))'(XHQIS,X_XIIQIHI) + ()‘n213x+)‘1121in)

0’n=
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