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Thin layer filtering and the O’Doherty-Anstey
approximation

Niki Serakiotou

ABSTRACT

Plane waves are normally incident on a sequence of horizontal layers. If
the layers are lossless the shape of the frequency spectrum of the reflection
response depends on the reflection coefficient series. The law of dependence can
be found by solving the wave equation for the boundary and initial conditions
of the seismic experiment. The O’Doherty—Anstey formula is an approximation
to this law, and its validity would imply a lowpass spectrum of the reflection
response if the reflectivity power spectrum has a highpass trend.

INTRODUCTION

A plane wave generated by a surface source is normally incident on a sequence
of horizontal layers. Let the wave be a unit impulse in zero time. The pulse travels
down through the layers and primary and multiple reflections generated within the
horizontal interfaces are recorded as they arrive back at the surface. The recording
starts at zero time (so the first event recorded is the incident pulse) and lasts
for some finite time interval. Assume that there is no intrinsic attenuation (heat
loss), so the amplitudes of the arriving reflections depend only on the reflection
coefficients of the interfaces. If the whole earth below the recording location had
constant impedance, the incident pulse would be the only recorded event. Then the
frequency spectrum of the recorded time series would be white.

The existence of primary and multiple reflections when the earth is layered
creates “notches” and generally “shapes” the frequency spectrum of the recorded
time series (Schoenberger, 1974). That is, each of the frequency components of
the incident pulse is subjected to a different gain and phase shift and the recorded
reflection is the sum of these modified components. So each component is attenuated
differently and this dissipation of energy is not caused by a physical process like
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FIG. 1. Filtering of the incident pulse as it is transmitted below the layer sequence.

heat loss, but by constructive or destructive combinations of wave amplitudes in
time. So it is reasonable to call this process “layer filtering” and we expect the
filter to depend on the characteristics of the layers (impedances and thicknesses).
These characteristics are described by the one-way travel-time series of the reflection
coefficients, with the sampling interval a parameter.

LAYER FILTERING

N horizontal layers of equal one-way travel time Az are “sandwiched” between
two halfspaces with absorbing interfaces. A unit pulse is normally incident on the
top of the first layer. The problem and the initial and boundary conditions are
described in the paper preceding this in detail. (See also Claerbout, 1976, Chapter
8 and Resnick, (1986)).

Transmission filtering

The transmittance 7(t), which is the downgoing wave at the last interface (at
one-way travel time £ = (N + 1) * Az), is given in the Z-domain by

ZN/2H£’=0(1 +Pk) (1)

Taowny (Z) = FN(Z)

where Fi(Z) are given by equations (11),(12), and (13) of the previous paper. Fig-
ure 1 gives a “systemic” representation of the above equation that describes the
sequence Of thin layers as a transmission filter. Tj,uny(Z) is then the (transmis-
sion) response of the filter of N layers, that is the output of the filter when its input
is a unit pulse at zero time.

Reflection filtering
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FIG. 2. Filtering of the incident pulse as it is reflected by the layer sequence.

The reflectance r(t), which is the upcoming wave at the first interface (at one-
way travel time z = 0) is given in the Z-domain by

(e = §: T2

(1o o7 Tl @
k=1

where T, (Z) is given by equations (9) to (13) of the previous paper. Figure 2
gives the “systemic” representation of the reflectance, as the (reflection) response
of the filter of N layers.

THE O'DOHERTY-ANSTEY APPROXIMATION TO THE FILTER

Let p;, 1 =0,...,N be the reflection coefficient series of the NV layer sequence.
This is a discreet one-way travel-time series whose sampling interval is Az. Its
power spectrum then is

3

N N-n
PN(Z) = Z z" Z PmPmin (3)
n=0 m=0

s

»

Transmission filtering

Resnick (1986) derive the O’Doherty—Anstey formula in a deterministic way:
Under the assumption that |p;| < 1 they approximate equation (1) by
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Then the transmission filter response is given by

TdownN (Z) = ZN/2 ﬁ (1 + pk) exp(—PN(Z)) (4)
k=1

In the stochastic derivation of the formula, Banik, (1985), make the same as-
sumption that the reflection coefficients are small and the extra assumption that the
impedance is a stationary process. Then they solve the stochastic wave equation
by mean field methods.

Reflection filtering

The same approximations as in the transmission filtering give the reflection filter
response in the deterministic approach of Resnick et. al.:

Bu(2) = 3 m7* TL1 - o) exp(—Pu(2) ~ Pecs(2) ®)

HOW GOOD AN APPROXIMATION?

It has been demonstrated that the power spectrum of the reflection coefficient
series is not white but has a droop in low frequencies (< 100Hz) (Velzeboer, (1981),
Walden,(1985)). If this is so in most cases and if the Anstey approximation is also
valid in those cases, we come to the conclusion that the transmission and reflection
(layer) filters both attenuate high frequencies (Ziolkowski, (1985)).

In Figures 3 and 4 we show the reflection response given by the exact solution and
the difference between this and the one given by the Anstey approximation for the
reflection coefficients of Log A (see previous paper). Note that the approximation
error is about 10%.

In Figure 5 we give the amplitude of the frequency spectrum of the reflection
response for a number of reflectivities. Each reflectivity contains all the coefficients
of the previous one and some more until we finally construct the reflectivity of Log
A.

MULTIPLE SUPPRESSION

In the paper preceding this, (Serakiotou, 1988), we present the idea for a tech-
nique that'would partially suppress multiples caused by a thin layer sequence. One
of the experiments we did was to compute the (one-dimensional) reflection response
of velocity Log A (Figures 3 and 5 of previous paper) and of Log B (Figure 4 and
6 of previous paper) with the assumption of constant density. Then we subtracted
the response of Log B from the response of Log A to get a better image of the
isolated reflectors (Figure 7 of previous paper).
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FIG. 3. The reflection response of Log A given by the exact solution and the
difference of this and the Anstey approximation.

SEP-57



Serakiotou 338 Thin layer filtering

Reflection response of Log B

—

two—way travel time (sec)

Exact response — approximate response

—
-
4
-
-

two—way travel time (sec)

N

FIG. 4. The reflection response of Log B given by the exact solution and the
difference of this and the Anstey approximation.
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Reflectivity amplitude of reflectance spectrum
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FIG. 4. The amplitudes of the frequency spectra of the reflectivities in the left are
shown in the right column, computed by both the exact solution and the approxi-

mation.
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FIG. 5. The reflection response of Log A and the remainder of the subtraction of
the response of Log B from Log A. Compare with the results of the exact solution
in Figures 5 and 7 of the previous paper (Serakiotou, 1988).
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Here we repeat the same experiment using the O’Doherty—Anstey approximation
to do our computations. The results are very good and are shown in Figure 6. The
computations are done faster than when using the exact formulas. Even the aliasing
problem in the remainder of the subtraction seems less severe but this is expected,
since the amplitudes of the wave train are underestimated by the approximation.
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