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A model for phase balancing and velocity filtering

Willstam S. Harlan

ABSTRACT

Hyperbolic reflections and convolutional wavelets are fundamental models for seismic
data processing. Each sample of a “‘stacked’ zero-offset section can parametrize an impul-
sive hyperbolic reflection in a midpoint gather. Convolutional wavelets can model source
waveforms and near-surface filtering at the shot and geophone positions. An optimized
inversion of their combined modeling equations makes explicit any inter-dependence and
non-uniqueness in these two sets of parameters.

First, I estimate stacked traces that best model the recorded data and then find non-
impulsive wavelets to improve the fit with the data. These wavelets are used for a new esti-
mate of the stacked traces, and so on. Estimated stacked traces model short average
wavelets with a superposition of approximately parallel hyperbolas; estimated wavelets
adjust the phase and amplitudes of inconsistent traces, including static shifts. Deconvolution
of land data with estimated wavelets makes wavelets consistent over offset; remaining static
shifts are midpoint consistent. This phase balancing improves the resolution of stacked data
and of velocity analyses.

If precise velocity functions are not known, then many stacked traces can be inverted
simultaneously, each with a different velocity function. However, the increased number of
overlain hyperbolas can more easily model the effects of inconsistent wavelets. As a
compromise, I limit velocity functions to reasonable regions selected from a semblance velo-
city analysis--a few functions cover velocities of primary and multiple reflections. Multiple
reflections are modeled separately and then subtracted [rom marine data.

Phase inconsistencies ought also to be recognizable over midpoint. Convolutional
wavelets can be constrained with surface-consistency. Alternatively, one can model two-
dimensional stacks as a sum of diffraction hyperbolas over midpoint, much as is done over

offset. Dip moveout makes the diffraction and normal-moveout velocities equivalent.
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INTRODUCTION

Hyperbolic reflections and convolutional wavelets are fundamental models for the
processing of seismic data (see Robinson, 1983, for example), yet the two are rarely con-
sidered together. Deconvolution can improve the quality of hyperbolic stacks and of
semblance velocity analyses by making the recorded seismic wavelets shorter and more
consistent from trace to trace. However, deconvolution does not customarily consider its
effects on stacking, nor does deconvolution use the information gained by stacking and
velocity analysis.

The normal-moveout (NMO) model assumes that the earth’s impulse response is a
sequence of hyperbolas in common-midpoint (CMP) gathers. Convolution models only
wave sources and filtering that are near the surface, linear, time-invariant, and isotropic.
Deeper and non-isotropic filtering depends on the path and the angle of incidence of a
wave. Convolution cannot model angular changes in reflection coefficients if more than

one reflection appears in the data.

For reflections to be expressed as a sum of hyperbolas, root-mean-square (rms) velo-
cities must adequately parametrize the traveltimes of waves. Local seismic velocitics
must change slowly both vertically and horizontally. Fortunately, a linear superposition
of hyperbolic reflections can also model reflections from dipping, curved, and diffracting

interfaces.

Static shifts are usually treated independently because they are a simpler special
case of the convolutional model. (A static shift is a convolution with a shifted delta
function.) Ronen (1985) and Rothman (1986) have shown how to make static correc-
tions directly dependent on the quality of the hyperbolic stack at chosen velocities.
Simultaneous (residual) velocity analysis has been difficult, unless structure is assumed

flat (Shultz, 1985).
An “NMO correction” of a CMP gather flattens hyperbolic reflections and makes

structural information more accessible. Wavelets, on the other hand, are distorted by
NMO. Claerbout (1986) suggested simultaneous deconvolution of CMP gathers before
and after NMO corrections to distinguish the effects of a source wavelet from that of
predictable reflection coefficients (short-period multiples). He concluded that the over-
simplicity of NMO corrections as a downward-continuation process limited the ability to

. . . M . .
discriminate structural and source information.

This paper does not aim immediately to go beyond the assumptions of the hyper-
bolic and convolutional models, but rather to find the simplest means of considering the

two together. Instead of defining the stacked section and deconvolution wavelets
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directly, I shall treat them as parameters in equations that model the data. Inversion of
the equations by optimization then requires considering the effect of each process on the
other.

The common procedure of “velocity filtering’’ attempts to suppress multiples from
CMP gathers by linear filtering along carefully chosen hyperbolic paths. Hutchinson and
Link (1984) and Thorson and Claerbout (1985) demonstrated that multiple reflections
are better suppressed by first modeling them with a superposition of hyperbolas and
then subtracting them from the data. The addition of independent wavelets for each
trace should increase the accuracy of modeled reflections.

A damped least-squares objective function will be minimized by iterative estimates

of the parameters with a conjugate-gradient algorithm. Accurate estimation of stacking

velocities will be made unnecessary by including a number of stacks with different stack-

ing velocity functions.

ASSUMPTIONS OF THE NORMAL MOVEOUT AND CONVOLUTIONAL MODELS
A hyperbolic normal-moveout (NMO) ecquation makes very restrictive physical
assumptions, but it can be extended for more complicated reflections. Common mid-
point (CMP) gathers include all shot positions, s, and geophone positions, g, with identi-
cal midpoint coordinates, y == (s -+g¢)/2. Each gather is arranged by the offset coordi-
nate h = (g —s). If an impulsive source passes through a medium of constant velocity v
and reflects off a flat reflector, then the traveltime t is given by the following moveout

equation:
t2=tf + = . (1)

to is the traveltime at zero offset.

For a dipping layer, the equation remains exact if v is set equal to the constant
velocity divided by the cosine of the layer’s dip (Levin, 1971). Alternatively, reflection
times from a horizontally stratified medium (layers are flat; velocity changes only verti-
cally) can be approximated to second order in h if v is replaced by the root-mean-square

(rms) veloaity:

{’Urms (z )]2 - ’ (2)

{[v (z")dz"

where z is the vertical depth. A combination of the dip correction and rms velocity is
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common.

A convolutional model is, by definition, linear and time-invariant. Convolutions
cannot depend on the raypath or on the angle of arrival because these parameters
change with time. All such filtering must occur isotropically at the surface, the only
points common to all raypaths. The NMO model assumes that the data represent an
impulse response; that is, the shots and geophones have impulsive radiation patterns.
Surface-consistent convolution assumes that the earth’s impulse response has been

filtered independently at the shot and geophone positions to create the recorded data:
data(s g ,t) = impulse(s ,g ,t) * wy(s,t) * w,(g,t) .

The stars indicate convolution over time. w,(s,f) models the shot waveform as
filtered by the near surface; w, (g ,t) models filtering at and by the geophone. If one con-

siders only a single midpoint gather at at y, , then
data(h ,t ) = impulse(h ,t) * w(h,t),
where w(h,t) = w,(s =yo—h,t)* w,(9 =yo+h,t) . (3)
The wavelets w (A, ) share no common surface-consistent wavelets.

The usual goals of these two models is (prestack) deconvolution and the NMO
stack. To see the implicit constraints on the data, one can imagine reversing the normal
processing sequence to reconstruct the data from the stacked data and convolutional

wavelets.

Imagine that a stacked seismic profile represents (as post-stack migration assumes)
a zero-offset impulse response. Each stacked trace can be stretched according to its
NMO velocity function to model an entire midpoint gather. The stack does not preserve
information on changes in amplitude and phase with offset, so the stretching must make
simple assumptions on the geometric spreading of reflections, frequency absorption, and
changes in reflection coefficient with angle. If more than one stacked section is available,
then one can sum their modeled gathers to create reflections, such as primaries and mul-
tiples, that arrive simultaneously with inconsistent velocities. Finally, each trace can be
convolved with corresponding wavelets. This sequence of steps will be defined next with
simple modeling equations.

v
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A MODEL FOR MIDPOINT GATHERS

Let us begin with a model for a single midpoint gather. Choose a set of rms velo-
city functions v;(to) that cover all reasonable primary and multiple velocities. Let
ri(to) be the corresponding “deconvolved, stacked” traces that parametrize the ampli-
tudes and zero-offset arrival times of reflections--call them reflectivity functions. The

following equation maps each point of a reflectivity function to a hyperbola over offset:

hypy(h ,t) Zf‘” -Vt - h2 /vt o)lr ri(to)dty - (4)

If the reflectivity function contains an impulsive delta function, then the impulsive
hyperbolic reflection is constant in strength over offset. This model is similar to that
used by Thorson and Claerbout (1985). They express the zero-offset traveltime in the
reflectivity as a function of the traveltime (with some differences in amplitudes) and use
a continuous range of constant velocities.

For sampled data, function (4) will be convolved by a stretched sin(t)/t function (a

sinc function) that is bandlimited to the Nyquist frequency of the data (see Bracewell,
1978). Equivalently one can replace the delta function in equation (4) by a sinc.

As an simple example, the reflectivity functions in figure la are mapped to the
hyperbolas of figure 2a. The two non-zero reflectivity functions correspond to constant
velocities of 1.4 and 2 (labeled in squared reciprocal velocity, or squared slowness). Only
three nonzero samples (reflections) appear--two with the same velocity, two with the
same zero-offset traveltime. Note that the length and amplitude of the sinc wavelet is

constant with offset, unlike an NMO stretched wavelet.

To model one common-midpoint gather, convolve each trace of the hyperbolic

reflections in (4) with a wavelet:

dajtal(h )t) =w (h 7t) * hypl(h 7t) ;

or da{tal(h,t:t')zgfw [, t=t"—\/t> + B2/ (te) ] r;(to)dty . (5)

Clearly, this modeling equation is not completely invertible. The transformation
destroys information in the phase and amplitude spectrums of the convolutional
wavelets and reflectivity functions. For instance, the phase of the reflectivity functions
and wavelsts could be simultaneously reversed without affecting the modeled data. Fre-
quencies missing from wavelets will be difficult to recover in the reflectivity without

using statistical constraints.
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FIG. 1. (a) Two non-zero reflectivity functions with velocities of 1.4 and 2 (squared
slownesses of 0.5 and 0.25). (b) Convolutional wavelets, three of which are inconsistent

in phase.

Figure 1b contains a set of convolutional wavelets; three are inconsistent in phase.
Figure 2b shows the convolution of these wavelets with the corresponding traces of
figure 2a. Many high frequencies are lost, and the zero-offset traveltimes of the

reflections are more ambiguous.

Some: problems posed by one-dimensional deconvolution can be ameliorated by
inversion o\f the two-dimensional model. Any single trace of figure 2b could be regarded
as having a lengthy wavelet and one reflection coefficient. One could also subdivide a
wavelet and claim more than three reflections. Because different hyperbolic reflections
converge with increasing offset, inversion of the two-dimensional model can avoid fewer

than three reflections by encouraging wavelets to be as consistent as possible. Within a
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FIG. 2. (a) Three hyperbolic reflections modeled from equation (4) and the reflectivity
functions in figure la. Convolution with sinc functions avoids aliasing. (b) A convolu-
tion of the reflections in (a) with the wavelets in figure 1b. High frequency information
is lost, and zero-offset arrival times are more ambiguous.

single reflection, the lobes of long consistent wavelets remain parallel--an easier appear-
ance to model with convolution than with reflections at different velocities. Statistical
methods of one-dimensional deconvolution might tell us that three reflections were most
probable, depending on the assumptions. But with more complicated wavelets and

reflection sequences, the difficulties of one-dimensional deconvolution would increase.

The NMO equation (1) describes only the initial arrival times of the wavelets, not
the tails. The best-fitting hyperbola to the tails of wavelets corresponds to a lower velo-
city than a hyperbola fitting the first arrival times. This difference in velocity is small
when wavelets are short, so a reflectivity function can still model much of the phase of

consistent short wavelets.
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AN OBJECTIVE FUNCTION

Optimization methods improve endlessly, so let us first define an inversion of (5) in
terms of an objective function rather than by a specific algorithm. This function meas-
ures the least-squares error between the recorded and modeled data and constrains the

unknowns with two penalty functions (scaled by small constants a, and a, ) to insure

stability:

J = ff [error(h ,t ))2dhdt + a, Zf )2dt g + ay, ff 2 dhdt

where error(h ,t ) = data(h ,t ) — data,(h ,t) . (6)

The optimal r;(to) and w (h,t) should minimize J. (For convenience I shall con-
tinue to write s, ¢, y, and h as continuous variables. Their integrals can in all cases
be replaced by a sum over sampled data points.) The effect of the two penalty functions
can be compared to adding a small constant to the diagonal of a possibly singular matrix
before inversion (prewhitening).

Note that J is a quadratic function of the reflectivity function or of the wavelets,
but not of an array that contains both functions. Thus, quadratic optimization
methods, such as conjugate-gradient descent (Luenberger, 1984) can minimize the two
functions independently, but not simultaneously. If the wavelets are not allowed to

change, then the optimum reflectivities are a linear function of the error, and vice versa.

Minimizing this least-squares objective function equivalently maximizes the proba-
bility of the data, assuming that noise, the reflectivity, and the wavelets are all Gaussian
and white (see Kendall and Stuart, 1979, for example). More justifiable statistical

assumptions can be imagined, but the quadratic form is a convenient first choice.

OPTIMIZATION

Quadratic objective functions are ideal for gradient-descent methods of optimiza-
tion because the required gradients are linear functions of the data. The gradient of the
objective function with respect to the wavelet function (array) includes a correlation of

the data error defined by equation (6) and the impulsive hyperbolas modeled by equation
(9

Sy = I el = "t error(h = )Y ay w(h =),

The penalty term on the energy of the wavelet adds a term proportional to the reference
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value of the wavelet.
The gradient with respect to the reflectivity includes an NMO stack that uses the
reference wavelets as interpolation functions:
&

—ff wlh,t =t —\/t02+h2/vj(t0)2]error(h,tzt’)dt’dh +a, r;(ty) . (8)

If objective function (6) has a broad flat minimum, then gradient descent methods
cannot reach the vicinity of the global minimum in a small number of steps. The
parameter penalty functions will not much affect the results of an incomplete optimiza-

tion. Different optimization methods will, in practice, constrain the solution differently.
A simultaneous steepest-descent perturbation of both sets of parameters unfor-
tunately requires an expensive line search to scale the combined gradients (7) and (8). If,
however, either parameter is optimized independently, the necessary scale factor can be
calculated from simple dot products (see Luenberger, 1984, on quadratic objective func-
tions).
[ optimize objective function (6) alternately with respect to the wavelets and
reflectivity:
1. Assume that wavelets are impulse functions with zero lag and find the optimum

reflectivity functions.

2. Leaving reflectivity functions unchanged, find the optimum wavelets. If unsatisfied,

go on.
3. Re-estimate the reflectivity functions with the new wavelets, then return to step 2.

Each step solves an overdetermined least-squares problem. This procedure has little
chance of optimizing the objective function completely. The first estimated wavelets will
explain only what the reflectivity cannot; the next estimate of the reflectivity explains
what these wavelets cannot, and so on. The procedure will not work at all if phases are
too Inconsistent: step 1 will be unable to fit anything with hyperbolas and step 2 will

have nothing to improve upon.

The feﬂectivity and wavelets in figures 3a and 3b were estimated by three such
cycles. Each least-squares optimization used four conjugate-gradient steps. The
modeled data are barely distinguishable from the original data when plotted on the same
scale. The energy (the sum of squared amplitudes) of the difference between the

modeled and original data is 1% the energy of the original data.
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FIG. 3. (a) Estimated reflectivity functions from minimization of objective function (6).
(b) Corresponding estimated convolutional wavelets. Reflectivity functions model the
average phase of the reflections; estimated wavelets have approximately zero phase and
differ only to adjust inconsistent traces. The modeled and original data are barely dis-
tinguishable.

The three reflections appear in the reflectivity functions with the average phase and
amplitude of the wavelets, unlike the original impulses. The estimated wavelets are
approximately zero-phase after time shifting, unlike the original wavelets. The
reflectivity: functions model a consistent average wavelet with a superposition of approxi-
mately parallel hyperbolas. As expected, the estimated wavelets model only relative
changes in phase and amplitude that cannot be modeled by the reflectivity. Because
hyperbolas at a single velocity converge at high offsets, reflectivity could not model

wavelets of indefinite length.
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PHASE-BALANCING DECONVOLUTION

Assuming that the estimated wavelets express relative changes in phase and ampli-
tude, one can use them to estimate what data would have resulted from a single con-
sistent wavelet (although unknown). Such a process can be called phase balancing. To
partially invert the convolution with known wavelets, minimize the following damped
least-squares objective function:

Min ) ff[data(h t) —decon(h ,t) * w(h,t)]?dhdt + a4 ff[decon(h ,t)]2dhdt. (9)

decon(h ¢
The gradient of this objective function with respect to the deconvolved data,
decon(h ,t), includes a correlation of the known wavelet with the difference between the
original and modeled data. Again, four conjugate-gradient steps were used. Figure 4
shows the result of deconvolving the original data of figure 2b with the estimated
wavelets of figure 3b.
This deconvolved gather is far from the ideal impulsive reflections of figure 2a, but
the wavelets are now consistent. A second “spiking” deconvolution could use the same
wavelet for all traces. Consistent wavelets are also essential if one is interested in angu-

lar (not convolutional) changes in reflection coefficients.

INVERSION WITH UNCONSTRAINED AND APPROXIMATE VELOCITIES
The preceding example demonstrates that information about the absolute phase of
wavelets is lost in the data modeled by equation (5). In fact, some information is also
lost about relative differences between wavelets when stacking velocities cannot be
chosen with precision.
Processing of midpoint gathers customarily begins with a semblance velocity
analysis. The following equation evaluated the semblance panel in figure 5a from the

data in figure 2b:

[[data(h ,t == \/to* + mh?)dh]? (10
[idata(h t = \/tF + mhO)2dh

The squargd slowness, m = l/v2 , has the useful property that the resolution is approx-

semb(m ,t ) =

imately the same at both high and low values. The panel ranges over squared slownesses
of 0.75 to 0, and velocities of 1.2 to infinity. The sixth and eleventh traces correspond to

the two velocities used in the original model.

The panel shows high semblances at incorrect velocities. Even zero slowness

(infinite velocity) has a substantial amplitude. One cannot expect to choose perfect
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FIG. 4. A deconvolution of the data in figure 2b with the estimated wavelets in figure
3b. Reflections are not impulsive as in the ideal data of figure 2a, but wavelets are now
consistent.

velocity functions for reflections from this panel, though one can place reasonable limits
on their values.

Even more dramatic is the result of stacking the data over the same range of velo-
cities. Each trace of figure 5b was created by summing the data over oflset along hyper-
bolas with-the corresponding zero-offset time and slowness. Because all hyperbolas have
low dip at low offsets, all stacks show substantial amplitudes at incorrect velocities.
This can b\e bad or good depending on whether one wants a stack to discriminate against

bad velocities or to see as many reflections as possible.

To test an extreme case, | invert model (5) with velocity functions that lie over the

same range of squared slownesses as the semblance panel:
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FIG. 5. (a) A hyperbolic semblance stack of the data in figure 2b. Traces are sampled
evenly over squared slowness (the reciprocal of squared velocity). (b) An additive stack
of the data over the same range of velocities. Amplitudes are high at incorrect velocities
because of the similarity of hyperbolas at low offsets.

[v;((g))P =mo+iAm ; my=075 and Am = —0.05 .

The corresponding estimated reflectivity functions appear in figure 6a. Note that much
energy appears in traces with incorrect velocities, though not as much as in the stack in
figure 5b. Reflectivity functions discriminate against reflections with incorrect velocities
better than does a stack because the former must describe reflections at all offsets. This
panel of réﬂectivity functions could be used as a velocity analysis that preserves phase

information: a slice through the panel at the best velocities gives the optimum stack.

When combined with the convolutional wavelets in figure 6b, these reflectivity

functions model the data as well as do the more constrained results in figure 3. The
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FIG. 6. (a) Estimated reflectivity functions over the same range of velocities as the
stacks in figure 5. (b) Corresponding convolutional wavelets. These estimates model
data as well as the results in figure 3. Wavelets no longer accurately model inconsistent
phase at high offsets because the additional overlapping hyperbolas can also model these
differences.

greater number of variables has increased the nonuniqueness of the modeling equation
(56). The inconsistent wavelets have been estimated poorly, particularly at high offsets,

because the greater number of overlapping hyperbolas can also model these differences.

The two extremes of these synthetic examples suggest the following rule: the more
constraints placed on the velocities of reflections, the easier it is to recognize inconsistent
wavelets at high offsets. (Note that surface-consistent shot and geophone wavelets affect

both high and low offsets in different midpoint gathers.)

As a compromise, three velocity functions were chosen about each of the two

correct velocities. The estimated reflectivity functions in figure 7a show large amplitudes
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at the incorrect velocities. Again the modeled data are very good. This time, however,
the estimated wavelets in figure 7b are only slightly inferior to those of the well-
constrained estimate in figure 3b. A perfect knowledge of velocities would then seem to

be unnecessary to estimate relative changes in convolutional filtering from trace to trace.
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0.8 0.6 0.4 0.2 0

SWT} 3}9SJJO-OIDZ
‘T
va
4

(a)

FIG. 7. (a) Estimated reflectivity functions at six velocities near the correct values. (b)
Corresponding estimated convolutional wavelets. Substantial amplitudes appear at
incorrect velocities in reflectivity functions, but wavelets now model changes in phase as
well as did the more constrained estimates in figure 3.
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VELOCITY FILTERING

To demonstrate loose constraints on velocities, I use the recorded marine midpoint
gather in Figure 8a (provided by the Geophysical Research Institute in Zhuoxian China).
Most of the reflections are sea-bottom primaries and multiples with velocities near that
of water. The last strong reflection is a pegleg multiple of the primary reflection arriving
at zero offset in 1.8s. The strength and phase of wavelets show some change with offset.
Amplitudes of traces have been scaled with time to compensate for the effects of

geometric spreading and the absorption of energy.

Ten velocity functions were chosen through the semblance contour plot in Figure
8b. The first five functions pass through the water velocity reflections (the first is a pri-
mary); the second five pass through higher velocity reflections. The corresponding
reflectivity functions and wavelets were estimated with the same algorithm used for the
synthetic examples. The modeled data appear in figure 9a. The difference between
figures 8a and 9a shows the uninverted reflections in figure 9b. Higher frequencies were
uninverted in the first arrivals, perhaps because the wavelets were not allowed to change
their spectra with time. Other previously unseen reflections with high velocities appear
in the residuals between 2s and 2.5s. These reflections appear as small peaks in the sem-

blance panel of figure 8b, but they were not included in the velocity functions.

Because the lower and higher velocity reflections are not of equal interest, I model
the data again in figure 10a with only the five lower-velocity reflectivity functions. Fig-
ure 10b shows the original data minus these low-velocity reflections. The remaining data
contain the high velocity reflections as well as all uninverted reflections. One can now

view the weaker primary reflections without the distraction of water-bottom reflections.

REMOYVING STATIC SHIFTS BY PHASE BALANCING

The preceding marine-data example emphasizes the use of reflectivity information
to distinguish reflections with different velocities. Convolutions were necessary only to
model reflections with greater accuracy than do impulsive hyperbolas alone. Land data
are less likely to have multiple reflections than do marine data; instead, filtering at the
earth’s weathered surface 1s more likely to create static time shifts such as seen in the
midpoint gather in figure 11. (These data were recorded in the Williston Basin by
Western Geophysical.) The roughly hyperbolic shapes of the reflections are distorted by
static time shifts of traces up and down. The shifted traces contribute destructively to
hyperbolic stacks of the data over offset. The mind’s ability to imagine hyperbolic
reflections makes the static shifts visible to the eye. Similarly, constraints on the hyper-

bolic shapes of reflections help estimate the wavelets that describe these shifts.
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(b)

(a) A marine midpoint gather provided by the Geophysical Research Institute in

Zhuoxian China. The last strong reflection is a pegleg multiple of the primary reflection
arriving at zero offset in 1.8s. (b) A contour plot of a semblance velocity analysis of (a).

Five chosen velocity functions pass through water-velocity reflections; another five pass

through higher velocity primaries.

FIG. 8.

Phase balancing and velocity filtering
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(a) Reflections modeled by estimated reflectivity and convolutional wavelets.

The difference between the recorded data in figure 8a and the modeled data in

Reflections with high velocities not included in the model appear between 2s and 2.5s.

FIG. 9.

(b)
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(b) The

Weaker primary reflections

(a) Reflections modeled only by the five lower velocity functions.

difference between the recorded data (figure 8a) and (a).

become more visible.

FIG. 10.
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FIG. 11. A midpoint gather recorded on land in the Williston basin (provided by
Western Geophysical). Reflections are severely distorted at the uneven surface by static

time shifts.

Automatic picking of velocity functions

Since the exact modeling of reflections is less important now than estimating the
inconsistent filtering of traces, a single optimum velocity function is used. This function
is chosen for each midpoint gather--a troublesome job if done by hand. Instead, a
modified \;érsion of Toldi’s (1985) one-dimensional “velocity analysis without picking” is
used. o

First, a semblance velocity stack is calculated for each gather, as in figure 12. (The
numerator and denominator of the semblance equation (10) are smoothed by convolution
with a windowing function approximately the length of the wavelet.) A relatively

optimum stacking velocity function (also shown in figure 12) would pass through as
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many of these peaks as possible, maximizing the line integral of the semblance along the

path. The velocity function still requires some constraints of smoothness and continuity.

slowness squared (s/km)**2
0.25 0.1 0

1 | 1
\Y4 -

FIG. 12. A hyperbolic semblance stack of the data in figure 11 appears as a function of
squared slowness (squared reciprocal velocity) and zero-offset time. An automatically
picked velocity function passes through the largest peaks in the panel.
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Toldi used the one-dimensional rms velocity equation (2) to parametrize the stack-
ing velocity. A small but abrupt change in rms velocities can correspond to an enormous
change in interval velocities. Limiting the range of acceptable interval velocities will
encourage smoothness in the rms velocity function. Physical constraints on interval
velocities also encourage rms/stacking velocities to describe only useful primary
reflections and not multiple reflections and noise. Let us then find an interval velocity
function whose corresponding rms squared slowness maximizes the total semblance:

to

Max f semb(m z{if[v (to' )]2dty 72, to)dty . (11)
v (to) tO 0

Semblance stacks do not contain information about abrupt changes in interval velo-
cities with depth, so there is no point in allowing them in our model. Toldi measured
the smoothness of the estimated interval velocities with a penalty term that integrated
the square of the velocity function’s derivatives. This penalty term was added to the
objective function (11) with a scaling factor that decided the relative weight given to
smoothness and total semblance. If an assumed amount of smoothness (a minimum spa-
tial wavelength Atf,) is acceptable, then I prefer to put it explicitly into the calculation

of rms slowness:

to

m :{%{ [v(tg') * smooth(ty /Ato)Pdt ),

where smooth(z ) = e 2% for example.

I optimized the stacking velocity function in figure 12 with a steepest descent algo-
rithm and explicit line searches. In the early iterations the semblance panel must be
smoothed over slowness. Interval velocities were allowed to range between 2km/s and
7km/s. Aty equaled 0.2s. The velocity function passes through most peaks of the sem-

blance panel but avoids the inconsistent peak just before 2.5s.

Phase balancing of common-midpoint gathers

Having chosen a velocity function, we can now attempt to model the common-
midpoint gather of figure 11 with convolutional wavelets and a single reflectivity func-
tion. I used four iterations of the previous algorithm to estimate the reflectivity function
in figure 13a. Only the most important reflections are modeled in figure 13b by this
reflectivity. The difference between the original and modeled data appear in figure 13c.
Modeled changes in reflection strengths with offset do not entirely match those of the

recorded data.

SEP-57



Harlan 335 Phase balancing and velocity filtering

offset (km) offset (km)
-2 0 2 -2 0 ?

T IR
NI | 4
S BSRITET

N TN N
- -

7

0, _‘;Yii !_o: {_
it A
i) IR

Kimmeesiilll | |
S %%&?3?&3% DR | RS

(s) aut?

B

52

Nt

» 134‘ ._03‘, 2%
BT

=0

PSRN

2 :
AR
IS0

S5

el
RSN

(c)

FIG. 13. (a) The estimated reflectivity function. (b) The corresponding modeled data.
(c) The difference between the recorded and modeled data. Only the most important
reflections are modeled, but static shifts are modeled well.

But the static shifts, our present goal, are modeled well. These static shifts show
up clearly in the estimated wavelets in figure 14. When the original gather is decon-
volved with these wavelets (figure 15), the resulting reflections are strikingly hyperbolic.
A second velocity analysis (figure 16) is contoured at the same semblance values as figure

12. The reflections stack much more coherently than before.

How much of this increased hyperbolicity is reliable? The convolutional wavelets
tried to accommodate the chosen velocity function, so the deconvolution naturally
encourages hyperbolas that fit this function. On the other hand, the deconvolutions are

one-dimensional, and the wavelets are short. There is no explicit mixing of information
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FIG. 14. Estimated convolutional wavelets for each trace. Static shifts are plainly visi-
ble.

across offset, so it is difficult to create reflections that did not exist. Only the hyperbolic
curvature remains in doubt. Convolutions cannot alter the curvature of one reflection
without altering the rest as well. The convolutions must explain as many reflections as
possible, so random errors in the chosen velocity function should tend to cancel each

other out.

In any event, I use the same velocity functions to stack (sum) the midpoint gathers
over offset, so phase-balancing will make these stacks as coherent as possible. (A stacked
section 1s a function of midpoint and zero-offset time.) Figure 17a shows the result of
stacking 44 adjacent common-midpoint gathers with individually picked velocity func-
tions. The velocity functions are smoothed over midpoint (by leaky integration) to
avoid abrupt changes. All gathers are phase-balanced by deconvolution with individu-
ally estimated wavelets and stacked again (figure 17b). Although deconvolved traces are
renormalized to the strength of the originals, the stacked traces increase in amplitudes
by about ﬁ%O%. Reflections are cleaner because shifted reflections no longer sum destruc-
tively. Each gather becomes internally consistent over offset after the phase-balancing
deconvoldt\i;n, but midpoint-consistent static shifts remain, thus the parallel appearance

of the stacked reflections.

As an alternative stack, the estimated reflectivity functions for each gather are

shown in figure 17¢c. The reflection at 2s has increased dramatically in amplitude with
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FIG. 15. Deconvolving the data in figure 11 with the estimated wavelets in figure 14
greatly enhances the hyperbolicity of the reflections.

respect to the other reflections. An extra double peak appears in this reflection as well.
This double peak was visible in the midpoint gather in figure 11 (the third trace in the
stack), but not in either stacked section (figures 17a and 17b). Stacking implicitly
stretched and blurred the detail of this reflection. On the other hand, the reflection just
before 2.5s corresponded to an unreasonably low (multiple?) velocity that was missed by
the velocify function in figure 12. This event still contributes significantly to the stack
in figure 17b because all hyperbolas are almost flat at low offsets. This reflection weak-
ens in the estimated reflectivity in figure 17¢ because the corresponding modeled
reflection must fit the data at all offsets. (Compare the synthetic examples in figures 5b

and 6a).
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FIG. 16. A hyperbolic semblance stack of the phase-balanced data in figure 15 shows

much higher resolution than before.

To see how midpoint-consistent the remaining static shifts are, each corresponding

trace of the three stacked panels in figure 17 were shifted by equal amounts so as to

maximize the flatness of the strongest reflectors (figure 18). Making one event flat

indeed apypears to make all reflections flatter.

Estimating the residual midpoint-

consistent static shifts requires additional physical constraints over midpoint.

SEP-57



‘sI07)eS oUIES 91} 10§ SUOIOUNY LJTATJOIRL pajemysd oy, (o) “Burouereq oseyd Iojye
s1o1[ye8 oures oy} jo oejs Y (q) ‘sioyjes jurodprur jusdelpe pj Jo YorIs Y (®) 21 DIJ

Phase balancing and velocity filtering

339

Harlan

(2) (9)
(A UMTIHOUHTIET [ ST TR
a@%ﬁ mgﬁ EERIRTEAIE nwﬂhvw
{ MWM L mmwmwum«m
f ey &awav
- w D) i
. Ty
2 :,A%Eﬁ@%ﬁﬁm@w
V =1 : | ,.\wm .mwwv"ﬁwvwv.vvv :
widi il
R Rttt | [ e et el et LTt
ULt e O LA e S
(Tt ]| [Tt eeet A L eTedley | LI lgel il sredeter

(uy) jutodpTur (ux{) jutodpTu (un{) jutodprw

SEP-57

(s)

time



“)U9)SISUOD jutodplul Ud9aq A% 0} readde s9J1ys 019B)S [BNPISFY "SUOIIIIPAI
jo speued 92143 oYL 8T "OId

Phase balancing and velocity filtering

340

Harlan

1s08UOIYS oY) ULS)IRY Jey) SHIUS DIIBIS I93fE LT 2In3y

1.5

(0) (9) (®)

% T T [T e R T Teer ] [ T el
ittt T [ stadliasdliediieqliltiolll] [l ltacdliG]
w ﬁ% = s e e ;
S (Rl ite ¢ p 3

mmmmmwmmmmw T
BAaoPhons %ﬁﬁ%ﬁ%ﬁ%% )
u Gl WM@%
4
TRt | [rlaieamiemiia | [T seamatilicad;

R ERMAMRRRTRRCRTRTGRRARY St RSO RAL Bt TR RE
ST ettt e ST e ottt AU o

8 9 14 (4 0 8 9 14 4 0 8 9 14 4 0

(uy) 3jutodpTuw (uy) jutodpTu (u) utodpTul

(s)

time

SEP-57



Harlan 341 Phase balancing and velocity filtering

CONSTRAINING REFLECTIONS OVER MIDPOINT

So far I have treated midpoint gathers as if they were independent. In fact they
are linked by both their overlapping shot and geophone positions and their strongly
correlated reflectivity functions. Surface-consistent filtering convolves each trace with
wavelets at each shot and geophone position. If propagation velocities vary as smoothly
laterally as we have assumed them to vary vertically, then reflections can be described as

a sum of diffraction hyperbolas over midpoint.

Constrain wavelets or reflectivity?

Surface-consistency has been a popular constraint on prestack deconvolution and
static corrections because it (1) reduces the dimensionality of unknowns and (2)
encourages consistency and continuity over offset and midpoint. Reducing unknowns
increases the data redundancy and helps the estimation of wavelets. Two one-
dimensional arrays of wavelets replace one two-dimensional array. Spatial consistency
makes the data more coherent for stacking and migration. The addition of strong physi-
cal constraints on reflections over offset has already made the first reason unnecessary.

A similar constraint over midpoint could make the second reason unnecessary as well.

A simple experiment showed that surface consistency does not constrain the
wavelets as much as one might hope. The wavelets estimated for the land data in the
previous section were decomposed by least-squares into shot- and geophone-consistent
wavelets. Deconvolution with this smaller set of wavelets had the same effect on the
data as the original estimates: static shifts were corrected over offset but not over mid-
point. When included in the decomposition, midpoint-consistent wavelets did little but

scale amplitudes.

In a medium with gently varying velocities, zero-offset reflections can be described
as a superposition of diffraction hyperbolas. Hyperbola curvatures are determined by
velocities analogous to the rms values used for normal moveout. Rather than invert for
reflectivity functions that vary arbitrarily with midpoint, one could invert for migrated
sections, each point of which maps to a diffraction hyperbola over midpoint. The
stacked septions in figure 17 would be difficult to create as a sum of hyperbolas. Migra-
tion, the iI;verse of diffraction, would interpolate across short gaps in reflectors and turn

the edges of broken reflectors into large ellipses.

Surface-consistent estimation of the residual midpoint-consistent statics is limited
to spatial wavelengths less than the range of offsets. The resolution obtained from con-
straints on reflectivity, on the other hand, depends on the width of diffraction hyperbo-

las, which become larger with depth.
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A surface consistent model

Surface-consistent convolutions of traces are independent within a single midpoint
gather (see equation [3]). Adjacent midpoint gathers duplicate most of the same shot
and geophone positions, but each gather pairs the positions differently. (Midpoints usu-
ally divide into even and odds sets, each with an independent set of shots and geophone
positions.)

Using more than one midpoint gather increases the available information, but
wavelets must also be defined separately for shot and geophone locations. Reflectivity is

a function of the midpoint y:

hypo(y b ,t) = E f&[t -Vt~ h2/vi*(y to)] rj(y,to) dig , and
7

datag(s ,g,t) = w,(s,t) * wy(g,t) * hyply=(s +¢)/2, h=(9-s), t] .  (12)

The two-dimensional reflectivity functions r;(y,to) can be treated as unmigrated
stacked sections, each corresponding to a different velocity function v;(y,ty) . An
optimum stacked section can be interpolated through the alternative reflectivity func-
tions. Notice that the model makes no assumptions about structure of the two-

dimensional reflectivity functions.

A damped least-squares objective function similar to equation (6) defines an esti-
mate of the unknowns, but the shot and geophone wavelets cannot easily be optimized
simultaneously. As before, one could alternately estimate reflectivities and shot and geo-

phone wavelets by holding the other two sets of parameters constant.

Deconvolving midpoint gathers independently avoids the programming difficulties
of moving the larger data set in and out of computer memory. As a compromise, over-

lapping sets of two or more gathers could be deconvolved together.

Dip moveout corrections

Because reflections may be steeply dipping, the two-dimensional stacking velocity
functions used in equation (12) cannot be used directly for the migration of the
estimated reflectivity functions. Estimating reflectivity functions (or stacking data) with
velocities ‘corresponding to flat reflectors will filter out dipping events that show
artificially*higher stacking velocities (Hale, 1983b). A dip moveout (DMO) correction
makes stacking velocities independent of the angle of reflection; corrected velocity func-

tions become more continuous over time and midpoint.
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Stacking velocity is related to the constant migration (propagation) velocity of a
medium by the following “cosine correction” (Levin, 1971):
Ustack = vmig/0059 (13)

6 is the angle of the dipping reflector from the horizontal. (Root-mean-square velocities

describe low-order changes in traveltime with offset as though the medium were constant
velocity.)

Simple geometry shows that the change in zero-offset traveltime with midpoint is

also a function of the dip angle and medium velocity:

p = dty/dy = sinf/v (14)

The combination of equations (13) and (14) with (1) produces the following moveout
equation:

2
t2=t02+h2/vr§ig —h2p . (15)
The reflections present at any particular dip can be separated by a linear dip filter of the

reflectivity functions (e.g. Hale, 1983a). Dip filters are more easily defined in the fre-

quency domain. For example:
ri(y,to) Fourier transforms to r';(k,f ), and
dipfil; (p ,y ,to) Fourier transforms to
dipfil,’ (p ,k,f ) = window[(k /] —p)/Ap] ;' (k,f ). (16)

k and f are the Fourier duals of y and t, . window(z) = e‘”z, for example. The
constant Ap gives the width of the dip filter. Each dip component can be modeled
separately with the dip-corrected moveout equation and then added together to produce

the desired impulsive hyperbolas:
hyps(y b t) =

> Z f 6t - \/?fo2 + hz/“;‘(y,to)Z ~h*p*] dipfil; (p ,y ,to) dto. (17)

Least-squares inversion of this modeling equation with respect to the reflectivity
function is straightforward. The adjoint equation is just a hyperbolic stack, a dip filter,
an adjustment of stacking velocities, and a sum of the different dip components. Now
that migration velocities are used, one could use a migrated section to parametrize the
two-dimensional reflectivity functions--thereby increasing the physical constraints on the

data.
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Other amplitude changes
The hyperbolic models (4) and (12) assume incorrectly that reflection amplitudes

are constant with offset before surface filtering. Spreading of wavefronts will, however,
decrease the amplitude with the distance propagated. If the data amplitudes are first
scaled by the time traveled, this effect should be approximately balanced. Experiment
has shown, however, that scaling by the second power of time comes closer to balancing
amplitudes (the case with data used in this paper), perhaps because of the absorption of
energy by an approximately constant Q material (Claerbout, 1985). Local rescaling of

amplitudes (automatic gain control) distorts wavelets and so should be avoided.

The previous models also assume that reflection coefficients do not change with the
angle of reflection. Convolutional wavelets cannot easily model angle-dependent changes
for many reflections at once. Angle-dependent changes are much more visible over offset
than over midpoint. Surface-consistent changes affect offset and midpoint equally. On
the other hand, r; (¢,) could model such changes if it were made a smooth function of
the radial parameter A /vt roughly the tangent of the angle of reflection from the verti-
cal.

A heterogeneous medium also affects amplitudes at intermediate depths between
the surface and reflecting layers. Neither convolutional nor angle-consistent parameters
are suited to the modeling of such changes. Kjartansson (1979) and Claerbout (1985)

explain how these changes depend on offset and midpoint.

CONCLUSIONS

The combined modeling equations for hyperbolic reflections and convolutional filter-
ing show what sort of data can be modeled by such parameters. The synthetic examples
of inversion demonstrate what information about the parameters can be recovered from

the data.

The parameters, though few, are flexible and immediately useful. The reflectivity
functions can be treated as implicitly deconvolved stacked traces, often the final result of
processing midpoint gathers. The convolutional wavelets model and allow removal of
inconsistel%t changes in phase from trace to trace--changes that are usually parametrized
as static shifts. The required velocity functions are the same as those required for stack-
ing; howe'\;e;r, the model can include additional velocity functions to model overlapping

reflections with different curvatures.

When midpoint gathers are processed independently, no assumptions need be made

about the changes in structure (reflectivity) from midpoint to midpoint. By contrast,
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many static-correction algorithms must assume relatively flat dip. The convolutional
wavelets have no explicit constraints except length. Optimization in the time domain
avolds the issue of phase-unwrapping. The convolutional form avoids the local minima

that arise when pure time shifts skip a cycle.

On the other hand, convolutional wavelets model only filtering of reflections near
the surface, not at intermediate depths. For rms velocities to adequately parametrize
reflection traveltimes, velocities must vary slowly with depth. The reflectivity functions,

as defined, cannot explain any changes in reflections with offset or angle.

The optimization method allows wavelets to explain only what cannot be easily
modeled by the reflectivity functions. The reflectivity can model relatively short con-
sistent wavelets with a superposition of approximately parallel hyperbolas. The absolute
phase of estimated wavelets is arbitrary--probably as close to zero phase as possible.
After a phase-balancing deconvolution, statistical methods can attempt to estimate a

single consistent wavelet for the entire gather.

The more exactly one constrains the velocity functions, the easier it is to distin-
guish the contributions of overlapping hyperbolas and inconsistent wavelets. On the
other hand, a range of velocities allows one to model and suppress less desirable
reflections, such as multiples. The structure of the modeling equations discourages

simultaneous optimization of precise velocity functions.

The least-squares inversion uses only the simplest of possible statistical constraints.
One could encourage simplicity and sparseness in the estimated stacked data, as do
Thorson and Claerbout (1985) or Harlan (1986). Limiting the number of modeled hyper-

bolas would require wavelets to model more of the phase of short wavelets.

The number of physical parameters can be increased or decreased as suits the data
or application. Gathers can be processed individually or in groups. Angular changes in
amplitudes, time-adaptive wavelets, and migrated stacks can all be introduced with new
parameters. This paper treats only two immediate applications of the combined hyper-
bolic and convolutional model. Most importantly, these examples show that the estima-

tion of waveforms, structure, and velocities need not be pursued independently.
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