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Simulation of fluid-dynamic processes with a
probabilistic lattice gas

Lin Zhang

ABSTRACT

In recent SEP reports, Muir has developed a sequence of new lattice gas
models with M2 as representative. In this paper, based on a simple proof of
the existence and uniqueness of a solution for M2, a Steepest Ascent method is
developed to solve nonlinear problems and obtain numerical solutions. Several
fluid-dynamic processes are simulated for sound wave modeling and an incon-
clusive result for a vortex problem.

INTRODUCTION

Lattice gases represent a new and interesting way of modeling fluid-dynamic
processes. Several models, such as HPP (Hardy, 1976) and FHP (Frisch, 1986), have
been proposed and tested. These models describe the individual particle motion,
and in order to show macroscopic behavior, a very large number of particles must
be considered, which in turn requires powerful computers such as the Connection
Machine, even for 2-D problems.

Muir reported a new model, M2, which treats the lattice gas as an ensemble,
and calculations are carried out on probability values rather than on individual
particles. This gives a tremendous saving of space and time in the computer and
make it possible to do simulations on an ordinary machine. Muir and Sword have
previously worked on a linear variant, M3, which models infinitesimal perturbations
from a relaxed state. However, a complete solution of M2 is subject to a proof of
uniqueness and existence of solution and the development of a numerical algorithm
for this nonlinear problem.
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M2 MODEL

A lattice gas describes how particles move along grids and defines collision rules.
Contrary to some other lattices gases which make a point of reversibility, M2 re-
quires that at each collision particles will move away all possible directions with
equal probability. The objective function is the entropy function of state. The rule
says that the next state will maximize the entropy under mass and momentum
conservation constraints. Clearly this rule can be applied to any lattice structures
including those in higher dimensions. For simplicity, I will focus on the two dimen-
sional hexagonal grid as an example.

Let u; be the probability that a particle moves towards a node in the ith direc-
tion. The evolution of the lattice gas involves two processes: a collision and a shift.
Figure 1 shows how particles travel on the hexagonal lattice.

Conservation constraints

Let us define a probability vector
u=(u; uz ... u,,)T. (1)

u describes the state of a vector. Three physical quantities: mass m, horizontal
momentum p, and vertical momentum p, can be represented as

m
Cu=|p, (2)
by

where C is a constant matrix. It is required that these three quantities are con-
served during the collision process, so we have

Cu = Cu’ (3)
where u® and u are probability vectors before and after collision.

Collision rule

Let u® be a probability vector before collision
w=(ud Wl ... u)T (4)
with 0 < u? < 1. M2 states that after collision the new probability vector will be
u=(u; uy ... uy)" (5)
with 0 < wu; < 1, such that the entropy of the state

H(u) = 3 h(w) ©)
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FIG. 1. Hexagonal lattice notation: (a) previous state, (b) collision process, (c)
shift process.
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is maximized under the conservation constraints
Cu = Cu® (7)

where h(z) is the entropy function

h(z) = zlog(5) + (1 — 2)log(;—)- (8)

-z
Meaning of objective function

Since u;’s are independent, the state probability (joint probability) is their prod-
uct. So the entropy of the states is

H(u) = E{logg( ) = E[Zlogg Zh (us). (9)

( )
UNIQUENESS AND EXISTENCE OF SOLUTION

Before trying to solve this nonlinear problem, it is necessary to examine the
validity of the solution. It is known that any strict convex downward function has
unique maximum value. We will show that our objective function is strictly convex
downward in the constrained domain.

Convexity of objective function

Define a domain
Di={u|0< u; < 1i=1,...,n}. (10)

We know h(u;) is a strict convex downward function of u;, but not strict in D;. For
any u} , u? and any scalar a, b with0< a,0< landa+b=1

ah(u;) + bh(uf) < h(ay; + bu), (11)
the equality holds only when u}! = u?, therefore

aZh —{—bZh 2)<Zh (auj + bu?) (12)

for any u' # u®. So H(u) is a strict convex downward function in D;. Now let us

look at the constraints
Cu = Cu°. (13)

Let
u=u’+ du (14)
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Here Ou represents the change of probability vector. Now we have
Cou=0 (15)

that is, du is in the null space of C. Consider E, the generating matrix of this null
space,

CE =0, (16)
then we can write
u=u’+Ex (17)
here x is a vector.
Define another domain
D;,={u|0< u; < 1;u=nu’+Ex} (18).

Obviously D, is a subdomain of D;. For any two points u!, u? in D,, i is any point
on the line segment connecting these two points,

i = qu' + bu? (19)

where a, b are scalars with 0 < ¢,b < 1and a+ b = 1. It is easy to show 1 is
in D;. Then inequality (12) holds for any u' # u? in D,. Thus H(u) is a strict
convex downward function in convex domain D;. Therefore we have proved that
there always exists a unique solution for M2.

Two equivalent conditions
We can obtain this solution in two ways
¢ Find max{H(u)} point in D,.

¢ Find zero gradx{H(u)} point in D,.

NUMERICAL ALGORITHM

There are many algorithms for solving nonlinear problems. I prefer considering
stability first. In fact, five numerical algorithms are programmed and compared.
They are

e Picard’s method
e Muir’s method
e M3 method (linear method)

e Steepest Ascent method
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e Improved method

Here I will only describe Steepest Ascent method in detail and let the reader refer to
the references for other methods. Again I will use hexagonal lattice as an example.

Steepest ascent method

The steepest ascent method is a standard method to solve maximization prob-
lems. It is quite easy and safe to apply to our problem because of the nice convexity
of the objective function and domain. Since the solution path follows a gradient
direction, it is expected to converge quickly.

We try to maximize H(u) with u = u® + Ex, where

x= (21 T ... Tn-3) . (20)
Let
gu = gradu{H (u)} = (log(1%) ... log(ista)), (21)
gx = gradx{H(u)}, (22)
then
gx = guE. (23)

Starting from an initial state, we iterate
xH =+ K7, (24)
and equivalently
T
ut! = u' + KEETg!,". (25)

K is an important factor which controls the speed and stability of the process. We
can choose K to maximize H (u'*!) locally along gradient direction.

Expand H(u'*!) = H(u' + Kg;T) as a polynomial of K in the neighborhood of
K =0, and ignore the third and higher order terms.

T dH (u' 18%H (u'
H(u’+g§( ) k’H(u‘)-{-%K"F 5—%1{2 (26)

We can also derive

0H (u'
1) _ g prel”, (27)
82H i
—r Ig‘) = g,EE"B'EE"g,” (28)
where B! is a matrix with elements

d?H (u')

bl =—_"\"7
4 au.-au,- (29)
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B turns out to be a diagonal matrix,

1
b= 6. 30
bl =~y (30)

Set OH (ul+1)

u
——7 =0, 31
3K (31)
then we get
g, EETB'EETg}T

An example of C and E matrices
In the case of the hexagonal lattice gas,

11 1 1 1 1
c=|21 -1 -2 -1 1. (33)
01 1 0 -1 -1

1 0 1
-1 1 -1
0 -1 1
E= i 0 -1 (34)
-1 1 1
0 -1 -1

Generally, E is not unique for a given C. But this will not affect the solution
and also it is not difficult to find a simple one.

Some protections

Notice two places in the algorithm that may cause problems: discontinuity of
the objective function and poor choice of K. Both these situations could cause the
algorithm to give a solution which violates condition 0 < u; < 1. The first problem
can be solved by setting a bound for u;, anything beyond the boundary values will
be changed to the nearest boundary value. To solve the second problem, we need to
constrain K. Whenever the current value of K causes a violation, reduce K to half
its value and check again. Numerical experiments show that this situation rarely
happens, probably because of the convex property.

Linear solution is given by
u = Au’, (35)

where A is collision matrix. Let

A=1+D, (36)
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then
D=A-1, (37)
u =u’+ Du’, (38)
I is identity matrix. Clearly
CDu’ =0, (39)
then
u=1u’+ KDu° (40)

satisfies contraints, it is not a optimum linear solution but is meaningful for proper

constant K.

Numerical results

A interactive program written in C reads in a desired input or generates random
input, and give a solution with bounded error. Figure 2 shows a set of typical
convergence curves. Table 1 gives the iteration number of 6 samples for different
methods.

Number of iterations for error < 0.0001
Sample | Picard | Francis | Linear | Steep | Improve
1 35 37 * 11 6
2 41 41 * 4 8
3 29 29 * 7 3
4 78 90 * 10 15
5 41 41 * 10 5
6 43 43 * 9 7
Number of iterations for error < 0.01
1 - - 1 4 1
2 - - 1 2 1
3 - - 1 4 1
4 - - * 7 7
5 - - 1 4 1
6 - - * 4 2

Table 1. Number of iterations

Clearly, Picard’s and Muir’s method have almost the same speed, while Steepest
Ascent is much faster. The linear solution usually gives a good approximation for
the first step but there it stops. This suggests using the linear solution as a first
step and then improving it by Steepest Ascent. I call this the Improved Method.
This often leads to a less iteration number, but not always. For safety, I choose
Steepest Ascent to perform the simulation which forms the rest of this report.
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SIMULATION OF FLUID-DYNAMIC PROCESSES

An interesting observation is that Muir’s method is constructed directly on the
irreversibility ideal of M2, and has a lot of physical meaning. Now it transpires
that it has the same solution as the other methods. This intuitively shows that
our object function does work well. However, is the irreversibility what we want,
in other words, does it really describe the physical phenomena? To answer this
question, we need to do more experimenting.

Problems involved in simulation

A simple application of M2 is to simulate fluid-dynamics in a medium with fixed
boundaries. As mentioned before, simulation includes two major processes: the
collision and the shifting process. Both have special cases at boundaries. Several
quantities should be considered.

1. dimension of data and computation time

These two quantities are related. Large dimension implies a long computation
time. The probabilistic approach of M2 greatly reduces the dimension, how-
ever in order to emerge certain details in a phenomena, a sufficient number
of vertices should be considered. To me 256 x 256 is probably a upper bound
(for computational reasons). To update all these vertices once requires about
2 minutes cpu time on our Convex.

2. boundary condition

An important point is that unlike other models M2 describes particle motion
with probability values. Thus the computation involved is completely deter-
ministic. For example, to describe a equilibrium state conventional lattice gas
models will have a random distributed moving particles with constant average
value. But in M2 only average values are considered, so we have a determin-
istic value as a function of position and directions. Therefore at equilibrium
state, the states of every vertex is unchanged, and boundary vertices should
not create disturbance. Now let us look at several boundary conditions. First
one is simply bouncing back along the same edge, as shown in Figure 3. In
this case, rigid boundary is assumed but reflection angle is ignored. It is very
easy to program so in the simulation it is always used. A better one will be
reflecting specularly by following Snell‘s law, as shown in Figure 4. In both
cases mass is conserved but momenta are not. Now suppose we want to simu-
late an infinite region, then periodic boundary conditions, as shown in Figure
5, are a good idea. Finally for a constant flow, add in a constant quantity of
momentum at one side and take out same quantity at the other.

3. velocity of sound wave

In lattice gas models, all particles move with the same velocity along edges.

Let this velocity be unity, the wave traveling velocity is derived to be %
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FIG. 3. Simple bouncing back boundary.

FIG. 4. Reflecting specularly boundary.

FIG. 5. Cyclic boundary.
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Three phenomena are simulated with hexagonal lattice structure which is two

dimensional.

Circular sound wave produced by a localized disturbance

A tightly-packed cloud of particles is placed in an equilibrium environment of
less densely packed particles. A compressed circular wave expands outward. The
boundary condition is set so that the equilibrium states are kept till the distur-
bance arrival. In this experiment, I use probability 0.9 for the disturbance and 0.1
for environment. 128 X 128 lattice gases form an array. The allowable error in a
collision process is 0.0001. Figure 6 shows a propagating wave. The wavelet has a
positive head and negative tail. The wave travel velocity is measured to be approxi-
mately 0.71, which is roughly equal to the theoretic value. The wavefront is a circle
because of the isotropic medium and the proper choice of rules. Figure 7 shows
the distribution of mass m, horizontal momentum p, and vertical momentum p,.
Figure 8 shows particle motions along six different directions. Similar experiments
using other lattice gas models are reported. In these other experiments the number
of gas particles involved is very much larger but with less macro resolution.

Plane sound wave reflected from rigid boundary

A plane wave is generated by a tightly-packed belt of particles. The wave travels
through less dense media and reflect from a rigid boundary. Here again I use
probability 0.9 for the disturbance and 0.1 for the background. 64 x 128 vertices
are considered. Boundary condition is simply totally reflecting. Allowable error in
the collision process is 0.0001. Figure 9 shows the wave propagation and reflection.
Velocity is measured to be 0.74, very close to the circular wave case. An interesting
point is that unlike the circular wave just shown the wavelet of this plane wave does
not have a negative tail. This is because the rigid boundary reflects all particles.
Wavefront remains planar except at the two boundaries.

Hydrodynamics — flow past an obstacle

This test attempts to simulate a non-linear phenomenon, vortex-shedding in
the wake of an obstacle to fluid flow. In order to show this, proper choice of
obstacle size, velocity of fluid flow and continuity of flow are important. Different
parameters may result in different phenomena. Figure 10 shows the distribution
of particles moving in six different directions. Figure 11 shows the distributions
of total mass m, horizontal momentum p, and vertical momentum py of the same
experiment. It turns out that vortex motion is not that obvious. Why is that? The
dimension of the obstacle and density of the lattice gases are possible causes. But I
think that symmetry and nonrandomness are important. As we mentioned before,
the computation of M2 is completely deterministic, so if we set a uniform initial
distribution and symmetric boundary the result will be a symmetric distribution
which in turn can not give rise to a turbulent phenomenon.
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FIG. 8. Distributions of particle motions in six directions.
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FIG. 10. Particle flow in six different directions.
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horizontal momentum

vertical momentum

FIG. 11. Distributions of mass and momentums in the flow.
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DISCUSSION

The results of these numerical experiments tell us that M2 can be used in the
simulations of fluid-dynamic processes and give similar results obtained by other
methods. Moreover, M2 has more potential.

What happens when in solid

An important application of wave theory appears in reflection seismology. In
this case, media are solid and we can have several kind of wave traveling with
different speeds. For example, S wave, particles moves perpendicular to the wave
propagating direction. If we look at the momentum perpendicular to the traveling
direction in the simulated results, we noticed that they are zero. So M2 represents
a P wave which is the only case in fluid. Now how to modify M2 so that it will work
for solid. Answer is unknown. But it seems that we need to add some constraints
on the motion of particles at neighboring vertices because S wave is caused by shear

tension.

How about other processes

The same scheme can be used for any processes which involve particle collision
and in which collision constraints are linear, for example the diffusion process. It
can also simulate processes between two extreme cases by alternatively use of two
different kinds of constraints.

Extension to 3-D

M2 rules are available for processes of higher dimensions. But computation be-
comes heavy in three dimensions. For a six-particle 2-D hexagonal lattice, to update
a 128 x 128 array takes about 1 minute cpu time. Think about three dimension
of 128 x 128 x 128 array with more particles, the computation for updating once
needs at least 128 minutes. Usually lattices need to be update to cover its full
length, so we need 128 x 128 minutes, which is up to 10 days. One possible way to
reduce computation time is to increase the allowable error of the collision process.
For example, we can try iterating only once at each time step.

CONCLUSION

In this paper, the existence and uniqueness of solution for M2 are proved and
a successful algorithm is constructed. The numerical experiments show that M2
provides an efficient way to do simulation in fluid-dynamic process. They also
show the potential of M2 in other processes. The same algorithm can be applied to
higher dimensions. But computation time gradually becomes a problem. To further
explore the power of M2, more experiment should be done.
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