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Evaluating finite-difference operators applied to
wave simulation

John T. Etgen

ABSTRACT

The continuous wave equation can be Fourier transformed over all spatial
variables and over time, and then solved for w as a function of spatial wavenum-
ber. From the dispersion relation, phase velocity or group velocity can be ob-
tained. This procedure can also be applied to discrete, finite-difference approx-
imations to the acoustic or elastic wave equation. Finite-difference solutions to
the wave equation have different dispersion relations than the continuous wave
equation. The differences between the numerical and exact phase velocities lead
to errors commonly observed in finite-difference generated wave fields. Under-
standing and counteracting these errors will lead to more accurate and efficient
techniques for solving wave equations on discrete grids.

INTRODUCTION

The explicit in time finite-difference method has become a powerful tool for
computing solutions to the acoustic and elastic wave equations. The accuracy and
efficiency of these solutions can be enhanced by using high-order spatial differenti-
ation operators (Dablain, 1986). The optimal temporal and spatial finite-difference
solution to a wave equation depends on the characteristics of the velocity model, the
spatial frequency content of the wave field, and also on the computer architecture
used. For accuracy’s sake one desires a difference equation that closely matches the
desired continuous differential equation over all frequencies of interest. Also, the
number of grid points required to model wave propagation in a given region should
be as small as possible for economy’s sake. In general, the accuracy of a spatial
difference operator is directly related to the length of the operator. On many com-
puters, the cost of the method is also directly related to the length of the operator.
One is forced to compromise between the accuracy of the derivative operator and
the cost of the implementation. On one extreme, the Fourier method (Kosloff et

SEP-57




Etgen 244 Difference operators

al., 1984,1985) can compute spatial derivatives accurate to spatial nyquist, but on
many computers is more expensive than a convolutional operator 8 or 10 points
long (Mora, 1986). On the other extreme the standard first-order finite-difference
approximation to first derivatives (Kelly et al., 1976) can be inexpensive to apply,
but its accuracy is poor if there are wavelengths present that are sampled fewer
that 10-16 times per wavelength (Marfurt, 1984). The accuracy of the time differ-
encing also plays an important role in the overall accuracy of the solution. Because
of errors inherent in time differencing, even the Fourier method which has perfect
space-difference operators cannot match the true differential equation at all spatial
wavelengths. As more accurate spatial derivatives are used, the accuracy of the
time differencing becomes paramount. One cannot simply ignore the errors caused
by discrete time finite-difference methods.

The most common errors of finite-difference solutions to wave equations are
known as grid dispersion and grid anisotropy. These errors are due to the devia-
tion of the numerical phase velocity of a finite-difference method from the phase
velocity of the wave equation one wishes to model. The continuous scalar acoustic
wave equation and isotropic linear elastic wave equation both have phase velocities
that are independent of direction or wavelength in a homogeneous medium. If a
discrete approximation to these equations has a phase velocity spectrum that de-
viates from the constant phase velocity of the continuous equation, the wave field
computed from the discrete equation will increasingly deviate from the continuous
wave field as it propagates through the grid. The waveform distortion is known as
grid dispersion. If the phase velocity is a function of wavelength the wave pulse will
disperse as the distance it propagates through the grid increases. If phase velocity
is a function of the direction the wave propagates through the grid, the wave field
will be increasingly advanced or retarded from the true wave field as distance prop-
agated through the grid increases depending on the direction the wave is traveling.
The discrete solution will be anisotropic while the continuous, exact solution is
isotropic. For explicit finite-difference techniques discussed here, phase velocities of
waves propagated on a discrete grid are real, i.e., there is no attenuation or growth
as long as the method is stable. For the remainder of this paper the accuracy cri-
terion for a finite-difference algorithm is taken to be the deviation of the numerical
phase velocities from the theoretical phase velocity as a function of wavelength and
direction. I choose the phase velocity rather than the group velocity, because it is
possible to model wave fields using the phase velocity spectrum. These modeled
wave fields show the effect of propagating waves with a given numerical scheme for
an arbitrary distance. The wave fields can then be examined for deviation from
the analytical wave field in simple cases. It is also possible to do an analysis of
finite-difference methods based on group velocities (Holberg, 1987).

Grid dispersion and grid anisotropy are not the only errors present when the
finite-difference approximations to the wave equation are solved in inhomogeneous
media. Depending on the implementation and the equation being solved, there
can be errors in reflection coefficients at interfaces, errors in applying boundary
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conditions at the free surface, and instability due to rapid variations in velocity.
None of these errors will be considered here; analyzing these errors requires detailed
study of the complete algorithm for specific velocity models.

DISPERSION RELATIONS FOR DISCRETE WAVE EQUATIONS

By analyzing the phase velocity spectra of a given finite-difference scheme, one
can decide if the method will produce results of the desired accuracy without hav-
ing to implement the method and examine the results of calculations. Wave prop-
agation through a homogeneous medium with a finite-difference method can be
simulated by phase shifting the wavenumber components of the Fourier transform
of the source pulse by the appropriate distance determined by the phase velocity
spectrum. Determining the errors of wave propagation through an inhomogeneous
medium, usually requires solving the difference equation and examining the results.
To find the phase velocity one must find the numerical dispersion relation obeyed by
waves propagated with the given finite-difference equation. For the 1-D, continuous
scalar wave equation, the dispersion relation can be found by Fourier transforming
the wave equation over z and &.

W—Cﬁ@W—C’CZ. (1)
The phase velocity is defined as
w(k
Cphaae(k) = (T) =C. (2)

In a similar fashion, we can derive the dispersion relation and phase velocity for
a given finite-difference approximation to the 1-D wave equation. Again, taking
Fourier transforms in z and ¢ we arrive at the double Fourier transform of the
discrete wave equation. Let 2(w) denote the temporal Fourier transform of the
time difference operator D? and let (k) denote the spatial Fourier transform of the
spatial difference operator D?.

DU = C*DIU <= Q(w) = C*k(k) . (3)
Solve for w(k) and Cppase,
w(k) = 07YC*k(k)) ; Cprase(k) = Q7H(C?x(k))/k . (4)

For simple operators in space and time, the transformed operators can be found
analytically; for more general operators the transforms can be found using an FFT.
If we consider the standard second-order time derivative often used in explicit finite-
difference schemes, the operator 1(w) can be found analytically

D} f(t) = =5 17t + At) = 27(8) + £t~ A)] (5)

SEP-57



Etgen 246 Difference operators

1
At?
When necessary, a similar analysis allows the computation of 2-D and 3-D phase
velocity spectra. These phase velocity spectra will be a function of k, and k, or k.,
k,, and k.

[7(t+ At) ~ 27(6) + (¢ — Af)] 4= O) = 72[eos(wA) =1] . (6)

EXAMPLES

It is possible to evaluate the dispersion properties of many different explicit
finite-difference methods for both the acoustic and elastic wave equations, by con-
sidering simple 1-D and 2-D scalar wave equations. The behavior of the more com-
plicated equations can be inferred from the simple results. To study grid dispersion,
a 1-D scalar wave equation will suffice. To study grid anisotropy it is necessary to
examine the behavior of a 2-D scalar wave equation. As a canonical example, I will
consider scalar wave propagation on a grid with Az = Az = 1, C = 1, for vari-
ous At’s and various different spatial finite-difference operators. The correct phase
velocity is the phase velocity for the corresponding continuous equation which is a
constant = 1 for all wavenumbers.

Specification of an accuracy criterion is arbitrary for finite-difference methods, a
method that may suffice for one size model will be inappropriate for a larger model.
In general, for increasing distances the waves will propagate (in number of grid
points) the greater the absolute accuracy of the phase velocity must be to obtain
satisfactory results. Common models encountered usually have several hundred grid
points in each direction, so absolute deviation of the numerical phase velocity from
the correct phase velocity of 1 per cent or fractions of a per cent will usually ensure
that no wave number component is shifted more than a grid point or fractions of a
grid point from the exact solution. This translates to less than a wavelength shift
for all spatial frequencies that can be represented on the grid. The resulting wave
form can still be distorted if there is oscillation of the phase velocity curve; different
spatial frequencies bands will “beat” together to produce a distorted wave form
even though the absolute deviation from the correct phase velocity is small.

1-D phase velocities

Figure 1 shows a waveform in space that will be used for propagation in the
Fourier domain with the phase velocity spectrum from each derivative operator.
Also shown is the spectrum of the wavelet. Figure 2 shows the phase velocity spectra
and resulting wave fields after propagation with the 1-D, second-order in space and
time finite-difference method, for various time step sizes. It is interesting to note
that the accuracy of the standard second-order in space and time method increases
as the stability limit of the method, vAt/Az = 1 is approached. At the stability
limit, the time and space discretization errors exactly cancel each other and the
resulting solution is exact. At smaller time step sizes, the phase velocity decreases
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FIG. 1. Spatial wavelet used for dispersion studies and its spectrum. Most of the
energy is below 1/2 nyquist, but there is energy up to almost nyquist.

with increasing wavenumber. The wavelet shape shows the higher wavenumber
components of the source wave trailing the lower wavenumbers, the pulse is highly
dispersed. Since the phase velocity curve does not oscillate, the dispersion is simply
an increasing delay of the higher wavenumbers.

Figure 3 shows phase velocity spectra and resulting wave fields after propagation
with a finite-difference method that uses second-order in time differencing and space
operators designed by inverse transforming ¢tk and windowing with a gaussian taper
(Mora, 1986). The first derivative operator was 8 points long, giving a second
derivative that is effectively 15 points long. The results of using three different
time step sizes are shown. Increasing the time step size raises the phase velocity
more at increasing wavenumbers. For this finite-difference method, there are phase
velocities above and below the correct phase velocity. The distortion of the modeled
pulse is mainly due to the middle and high wavenumbers traveling faster than the
low wavenumbers, but the oscillation of the phase velocity curves also contributes
to the dispersion of the pulse. The oscillation is aggravated by increasing time step
size. There is no long tail as in Figure 1, but the results are inadequate at the
distances used in this example.

Figure 4 displays the phase velocity spectra and wave fields after propagation
with a finite-difference method similar to the one used to produce Figure 2. Again
the first derivative is 8 points long. The derivative operator was constructed by
Francis Muir using his “beat the central limit theorem” method (Dellinger and
Muir, 1986). Unlike the derivative operator of Figure 2, the phase velocity spectrum
of this operator is flat for low wavenumbers and diverges from the correct phase
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FIG. 2. Phase velocity spectra for 1-D acoustic wave equation using second-order
in space and time differencing. The plots on the left are the phase velocities as
a function of wavenumber for different time step sizes. On the right are the cor-
responding wave fields after propagation for the number of time steps required to
take the exact solution 500 normalized meters. The upper and lower bounds of the
phase velocity plots are the two percent relative error lines.
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FIG. 3. Phase velocity spectra for 1-D acoustic wave equation using second-order

in time differencing with space operators designed by Pete Mora, obtained by in-

verse transform and windowin% 1k. The plots on the left are the phase velocities
0

as a function of wavenumber

r different time step sizes. On the right are the

corresponding wave fields after propagation for the number of time steps required

to take the exact solution 500 normalized meters. The up
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the phase velocity plots are the two percent relative error fines.
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velocity only at high wavenumbers. The effect of the time step size is to pull
the phase velocity spectrum increasingly above the correct value as wavenumber
increases until the increasing error of the space operator causes the phase velocity
to decrease as nyquist is approached. The phase velocity curve does oscillate if large
time step sizes are used, but the oscillation is not a severe as Figure 2. For small
time step sizes, the phase velocity curve matches the exact phase velocity curve over
the middle and low wavenumbers and becomes less than the exact phase velocity
at high wavenumbers. The only dispersion is the highest frequencies trailing the
main pulse. As time step size increases, a band of middle and higher wavenumbers
travels with greater phase velocity. The dispersion then becomes those wavenumbers
preceding the main pulse and distorting it.

Figure 5 shows the phase velocity spectra obtained using a second-order in time
differencing combined with spectral space derivatives (Kosloff et al., 1984). For
a small time step size the method is accurate for all wavenumbers that can be
represented on the grid. As the time step size increases, the accuracy of this scheme
deteriorates more and more because the time differencing error dominates. There is
no error in the space derivatives to cancel the time error. The dispersion is always
due to the highest wavenumbers preceding the main pulse and eventually distorting
the main pulse.

Spatial finite-difference operators usually lead to numerical phase velocities that
are less than the correct phase velocity. The error increases as nyquist wavenumber
is approached. Time finite-difference operators lead to numerical phase velocities
that are greater than the correct phase velocity. This error also increases as nyquist
is approached. The advantage of using imperfect space operators is now apparent.
The errors caused by time and space differencing have opposite effects and the error
due to the space differencing can be canceled by the error of time differencing to
some degree. The cancellation is best when the space and time discretization is the
same order. This was apparent in Figure 1 when the space and time errors exactly
canceled at the stability limit.

2-D phase velocities

A 2-D finite-difference wave equation can have a phase velocity spectrum that is
not only a function of wavenumber, but also a function of direction of propagation
through the grid. If the phase velocity only depends on wavelength of the wave,
but not on direction, the wave equation is isotropic. In general, finite-difference
wave equations will not be isotropic, but will have phase velocities that vary with
angle through the grid. This anisotropy is purely numerical and undesirable, just
as the dependence of the phase velocity on wavelength was undesirable, because the
computed solution will differ from the solution of the continuous wave equation.

Figure 6 shows a contour plot of the phase velocity of the second-order in space
and time finite-difference method for two different time step sizes. In 2-D the
stability limit decreases to 1/ V2 times the 1-D stability limit, so it is impossible
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FIG. 4. Phase velocity spectra for 1-D acoustic wave equation using second-order
in time differencing with space operators obtained by Muir and Dellinger’s “Beat
the central limit theorem” method. The plots on the left are the phase velocities
as a function of wavenumber for different time step sizes. On the right are the
corresponding wave fields after propagation for the number of time steps required
to take the exact solution 500 normalized meters. The upper and lower bounds of
the phase velocity plots are the two percent relative error fines.
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FIG. 5. Phase velocity spectra for 1-D acoustic wave equation usin%l second-order
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to use the time differencing error to cancel exactly the space differencing error
for all directions through the grid. The contours are not circular indicating the
method is not isotropic. The phase velocity along a 45 degree line through the grid
is significantly higher than along the coordinate axes. The grid anisotropy arises
because the Fourier spectrum of the 1-D spatial operator is not exactly flat.

Figure 7 shows the phase velocity of the finite-difference operators of Figure
2 applied to the 2-D scalar wave equation for two different time step sizes. This
operator has an oscillatory 1-D phase velocity spectrum, that causes an anisotropic
2-D phase velocity spectrum. Note however, that there is a large region of middle
wave numbers for which the phase velocity spectrum is nearly flat.

Figure 8 shows the phase velocity spectra of the finite-difference of Figure 3
by Muir. Because there is less oscillation of the 1-D phase velocity spectrum, the
resulting 2-D velocity spectrum is closer to isotropic. The operator is flat near zero
in k,,k,. Middle wavenumbers are pulled above the correct phase velocity by the
time derivative error. Finally at higher wavenumbers, the phase velocities drop
below the correct value. At high wavenumbers there is also significant anisotropy.

Finally, Figure 9 shows the phase velocity spectra for the second-order in time,
spectral derivative in space method for two different time step sizes. Because the
phase velocity of the 1-D method has no oscillation (perfect ¢tk was used for space
derivatives), the resulting 2-D scheme is exactly isotropic, although still dispersive.
The Fourier method for space derivative suffers mainly from the inaccuracy of the
time derivative. The other spatial finite-difference methods gain some advantage
(even if only slight) because the time error is canceled by the space error to some
degree at the higher wavenumbers. The Fourier method could be the method of
choice if an accurate and stable time derivative existed that was better than the
standard second-order time derivative.

CONCLUSIONS

The dispersion properties of finite-difference methods applied to the wave equa-
tion can be analyzed using phase velocities computed by Fourier transforming the
difference equation. It is hoped that the ability to evaluate the properties of a
finite-difference method rapidly will lead to better numerical modeling of acoustic
and elastic wave equations.

ACKNOWLEDGMENTS

Special thanks to Francis Muir for challenging me to look at finite-difference
operators one more time.

SEP-57



Etgen 254 Difference operators

2nd order wdt/dx=.4

2nd order wdt/dx=.2

1.02
1.02

phase velocity
1

phase velocity
1

0.98
0.98

i
1

¢

uL/poL 2y
4

w/pos zy

2nd order wvdt/dx=.2 2nd order wvdt/dr=.4
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1-D implementation of this method, since it is impossible to cancel all the space
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