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A calculus for layered elastic media

Francis Muir & Joe Dellinger

ABSTRACT

Group theory provides a framework for deriving the properties of the homo-
geneous elastic medium which is statically equivalent to a suite of anisotropic
layers. Properties of a layer map reversibly to an element of a commutative
group, where adding elements gives the group element for the homogeneous
medium equivalent to the combination of two layers, and subtraction corre-
sponds to the removing of layers. Fractures are also representable as group
elements, allowing fractures and rocks to be manipulated together in a uniform
manner. A well-defined subgroup structure helps sort out the special properties
of symmetry classes.

INTRODUCTION

Previous work

The groundwork for this paper was laid in a previous report (Muir, 1987) which
concluded

The Diz and Backus models—particularly in their extensions—are
most stmply manipulated, and their computer codes most simply main-
tatned, when they are mapped over into their group representations.

At much the same time, Schoenberg (Schoenberg & Douma, 1988) had modified
and extended Backus’ results in several ways.

1. Simplified the algebra by using a matrix formulation.
2. Extended the anisotropy model from Transverse Isotropic to Triclinic.

3. Included discussions on cracks and fractures.
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Muir and Dellinger 180 Layered elastic media

This allowed Schoenberg and Muir to join forces and put together a rather general
paper (Schoenberg & Muir, 1988) that cast these extended results in a group theo-
retic framework. In addition, they saw that there were useful connections between
symmetry systems and subgroups. This paper, then, is a condensed version of the
S&M paper which awaits publication.

Two models

The need to adopt a more complex model than the transverse isotropic one
became clear at the Houston SEG Convention in 1986. Previous to this there had
been two established points of view. On the one hand many workers in the oil
industry saw transverse isotropy with a vertical symmetry axis as the principal
useful model, with marine shales as the type rock. On the other hand Crampin
and his followers, drawn generally from the global seismic and earthquake field, saw
transverse isotropy with a horizontal axis as the important model, with vertical
micro-cracks as the determining cause.

Reconciliation

Our thinking was changed by surface data presented by Alford, Lynn & Thom-
sen, and Willis &al; and VSP data presented by Johnson, and Becker & Perelberg.
(All are reported in the SEG Extended Abstracts (1987).) These data indicated that
both points of view are valid, and it is now clear that shear-wave splitting for verti-
cally traveling waves is common in sedimentary basins, and that lack of splitting—
the degenerate case—is the exception rather than the rule. The conclusion is that
material in sedimentary basins will often require at least an orthorhombic model if
elastic wave data is to be properly interpreted.

Fracture alignment

This splitting phenomenon is of special interest. If it results from aligned vertical
cracks as proposed and discussed by Crampin (1985) and Crampin & Atkinson
(1985), then not only is it useful to explorationists, but it also provides a new tool
for development geologists and engineers in their reservoir modeling studies.

STATIC BEHAVIOR OF LAYERED MEDIA

Consider a medium made up of homogeneous layers with welded interfaces and
let the zs-axis be perpendicular to the layering. Assume that there are n different
constituents. Each constituent has a relative thickness h;, i=1,...,n (with h; + ...+
hn = 1), a density p;, and an elastic modulus tensor, ¢y, Which relates stress,
Opgi» With strain, €,,; according to the generalized Hooke’s law 0,5 = Cpgrai €rsi-
In condensed notation, where c,,, — ¢;; according to the usual convention, and
omitting for now the layer indicator subscript ¢, the stress-strain relation in a layer
may be written
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[01] [c11 €12 €13 €14 €15 €16 [€1]
o2 C21 C22 C23 C24 C25 C26 €2
O3 | _ |©s1Cs2 Cs3 C34 C35 C36 €3 (1),
O4 C41 C42 C43 C44 C45 C46 €4
Os €51 €52 C53 Cs4 C55 Cs6 €5
| O¢ | €61 C62 C63 Co4 Ce5 Cesl L €g
where o ) o 3 _
01 (011 €1 €11
(4] 022 €2 €22
O3 — O33 and €3 - €33 ]
o4 023 €4 2€33
og 031 €5 2€3;
L 06 | [ 012 ] [ €6 | 2€;2

The stiffness matrix is symmetric, so there can be at most 21 independent elastic
constants. The elastic moduli for the equivalent medium can be expressed in terms
of thickness-weighted averages of functions of the elastic moduli of the constituents.
Since we are assuming static equilibrium, stress components normal to the layering
and strain components tangential to the layering are the same in all layers, i.e.,

O33i = 03; = O3, O3 = O4i = Oyg, O13 = 0O = O, (2)
€11;i = €3 = €, €3 = €4 = €, 2€12i = € = €6 .
The other stress and strain components, 01; = 01, 225 = 025, 012 = Oei,

€33; = €3i, 2€23; = €4;, and 2 €13; = €5;, may differ from layer to layer but will be
constant within a layer. A concise way to find the effective moduli, even when
constituent layers are anisotropic, is through a matrix formulation which follows.

The stress-strain relations (1) in the ith layer, taking the symmetry of the stiff-
ness matrix c;i; into account, may be written

O1i = C11i€1 + Ci12i€2 + Cii€6 +  C13i€3; + Ci14i€4i + C15i€55 ,
O = C12i€1 + C2€2 + Co6i€6 +  C23i€3; T Ca24i€4y T C25i€5;
Osi = C1ei€1 1 C26i€2 1+ Cosi€6 +  C36i€3i Tt C46i€4i + C56i€si » (3)
O3 = C13i€1 + C23i€2 + C3ei€ +  C33i€3; + C34i€4;i + C35i€5; ,
04 = C14i€1 + C24i€2 + Cygi€6 +  C34i€3; + Cuqi€4i + Cy5i€si ,
Os = C15i€1 T C25i€2 + Csei€6 T  C35:€3i + C45i€4i + Cp5i€si -
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Defining the following stress and strain vectors

O1¢ Og €1 €3¢
Sy = |ox |, S = |og}, Ey, = |e|, Ex = | ey (4)
Ogi Os €e €54

allows the stress-strain relations in the ith layer to be rewritten as

ﬁp‘ = Mi El + Pi Ezi (50')
and
T
ﬁz = P,‘ .-_E_l + Ni Eﬁ ’ (Sb)
where
C11¢ C12i Cies €33¢ C34i C354 C13¢ C14i Cisi
M; = | c12i €22i €260 | » Ni = | C34i Caai Ca5i | » Pi = | casi €a4i €25 | . (5¢)
Ci6s C26i Ce6s €355 C45i Cs554 C36s C46i Cs6i

Superscript T denotes the matrix transpose. M; and N; are symmetric with
6+6=12 independent constants; P;, which is not symmetric, has 9 more so the
total is 21.

n
Now denote the thickness weighted average Z hi () as < - >. The moduli of
=1
the equivalent homogeneous medium are found by averaging. Averages of products
of any of the 3 x 3 stiffness matrices M;, N;, or P;, which differ from layer to layer,
with either S;; or E,;, which differ from layer to layer in an unknown way, are

indeterminate. It is necessary to solve Egs.(5) for S,; and E,; before averaging.

To do this, premultiply (5b) by the matrix inverse N !, solve for E,;, substitute
the result into (5a) and collect terms. The resulting expressions are

Sy = [Mi - P.'N,-_IP.T] E, + P,N;!S, (6a)
and
Ey = -N;'P{ E, + N;' 8,, (65)
which when averaged give
<8 >=[<M> - <PN'P">]E + <PN'> g, (6¢)
and
<E,>= —-<NWI'>E + <N!'>g,. (6d)

We have made use of the fact that S, and E, are constant to pull them outside the
brackets. Note that since the matrices M;, N;, and P; are known, all averages on
the right hand side are well-defined.

To find the effective average stress-strain relationship for the stack of layers, we
need to get (6c) and (6d) back into the form of Egs. (5). To do this, we premultiply
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(6d) by < N~! >7", solve for S,, substitute the result into (6¢c) and collect terms.
This gives
<8;>=[<M>-<PN'P?T> + <PN!><N'>'< NPT >| E,
(7a)
+ <PN!'><N!'>71'E,,

S, =<N1!1>"«N'PT>E, + <N!'>1E,. 7b
2

Eqgs.(7) are the correctly averaged stress-strain relations for a medium equiva-
lent to the n interleaved constituent anisotropic media. The elastic moduli of the
equivalent medium are obtained by comparison of Egs.(7) with Egs.(5), i.e.,

<8;>= ME, + P <E;>, (8a)
S, = PT E, + N <E,>, (8b)

where
N =<N1>71, P =<PN!'> N, (8¢)

M=<M>-<PN!'"PT> 4+ <PN!> N <N!'PT> .

The density of the equivalent medium is given by < p >.

GROUP THEORY

Geophysics is often viewed as a soft science in that it makes statements that
are only more-or-less true about things that are only more-or-less clearly defined.
One way around this mire of imprecision is to define a model and then discuss
exact properties of the model. How well the model approximates the real world
can then be separated out and left for discussion at another time and in another
place. To some extent previous workers (including one of the authors) in this field
have been negligent in introducing an approximating concept (long wavelength) at
the beginning of discussions, which then taints any further arguments based on it.
(Once an assumption has been made, it’s usually impossible to see what would be
changed if you tried to relax it again at some later point.) The attraction of group
theory is that it enables us to make useful, precise statements about the behaviour
of a precisely defined model: elastic layers in static equilibrium.

The elements of group theory as they apply to layered media were discussed in
a previous paper (Muir, 1987), but it may be useful to recall the five properties of
objects which form an Abelian group.

closure Layers add to form layers. To an external observer, the static behaviour of
a set of heterogeneous layers is indistinguishable from that of the equivalent
homogeneous layer.
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association Too “obvious” to be deep?

commutation An external observer cannot distinguish how layers are ordered. A
major analytical simplification that is true, curiously, both at the low and
high frequency limits, but nowhere else inbetween.

identity element The “no layer”. As a layer becomes increasingly thin, its influ-
ence disappears.

inversion A layer of negative thickness. The basis for subtraction.

COMBINING ANISOTROPIC LAYERS

A given anisotropic constituent, say the ith, is distributed in fine layers through-
out the total thickness of a given region. Let the total thickness of all layers of the
ith constituent in the region be H;. Let this ith constituent medium have density
pi, and three 3 x 3 modulus matrices N;, P; and M;. These five quantities, two
scalars and three 3 x 3 matrices, can be thought of as physical model parameters.
Two of the matrices, N and M, are symmetric, and one of the matrices, N, is
invertible. For any such set of quantities, we can construct a new set of quantities
Gi = [gi(1), 9:(2), 8:(3), gi(4), 8:i(5)] consisting of two scalars and three 3 x 3
matrices. The mapping is given by

H; g:(1)
H; p; g:(2)
HN;! - | @ | - (9)
.H,‘ P" N:l g (4)
H;[M; — P,N;'P]| g:(5)

Note that g;(1) has dimensions of length, ¢;(2) has dimensions of length times
density, g;(3) has dimensions of length per stress, g;(4) has dimensions of length,
and g;(5) has dimensions of length times stress. Also note that g;(1) is the total
thickness of the ith constituent, g;(2) is the total mass of a column of unit area of
the ith constituent and that g;(7), 7 = 3,4,5 are H; times coefficients that occur
in Egs.(6a) and (6b).

The set of all possible G = [g(1), g(2), g(3), 8(4), g(5)], consisting of two
scalars and three 3 x 3 matrices with g(3) and g(5) symmetric, forms an Abelian
group under addition. That is, the following group properties hold: 1) closure, 2) as-
sociativity, 3) commutativity, 4) the existence of a unique zero element [0,0, 0, O, O],
and 5) for every group element G, the existence of a unique inverse in the group,
—G. Call the Abelian group G. Eq.(9) is a mapping from a physical model to a
group element and hereafter will be called the “group mapping”.
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For any G; such that g;(1) # 0 and g;(3) is invertible, we can return to the set
of physical model parameters by the “inverse group mapping” from group element
G; to physical model. This inverse mapping is given by

g:(1) H;

gs (2) /gl(l) Pi
gt(l)gs( ) - Ni (10)

5(4)8,(5) P,

[8:(5) + &i(4)2:(3) ' &:(4)"1/:(1) M;

The group has been chosen in this way in order that the combination operation
in the group be addition of the respective scalars and matrices, and that this should
correspond to interleaving fine layers in the space of the physical model parameters.

n

To see this consider the group element G = Z G; so that
=1

= Yol = LA,
o) = Lal2) = LHon,

= Sal) = LN, (11)
5(0) = Lal0) = LHRN?,

g(5) = Eg, (5) = ZH[M - P;,N;'PT],

=1 =1

which on mapping back to physical model parameters according to (10) gives

o = 9(2)/e(1) = i:H.-p.-/iﬂ.- —<p>,

N = g(1)g ZH (ZHN =<N1>71, (12)
t=1
P = g(4)g( ZHPN (ZHN ! =<PN!>< N1,
1=1

= [8(5) +8(4)8(3) "8(4)"1/9(1) .

S HIM, ~ PNPT] 4 3PN (L END) (S RN | 38
t=1

=1 =1 i=1

SEP-57



Muir and Dellinger 186 Layered elastic media

=<M>-<PN'PT>+<PNI1><N!1><«NPT>

which correspond to the rules derived previously, Egs.(8).

Adding group elements that correspond to stable elastic layers results in a new
stable elastic layer. An elastic layer is stable if its 6 X 6 modulus matrix is positive
definite. However, once we “subtract” layers, i.e., add the inverse group element
that corresponds to the physical layer, G — G, = Gy, the remaining group element
G, need not correspond to a physical layer. That is, even if g,(1) # 0 and g(3)
is invertible so that operation (10) can be performed, the result could have non-
positive thickness, i.e., H, < 0; non-positive density i.e., pp < 0; and/or be unstable,
i.e. have a set of matrices [N, Py, M,| such that the overall 6 x 6 modulus matrix
is not positive definite. However, if after subtraction G, gives a stable medium b,
it follows that G, and G, are a valid layer decomposition of the original medium

corresponding to G.

FRACTURES AS GROUP ELEMENTS

A set of parallel fractures can be treated as the limiting case of a set of layers
whose elastic moduli approach zero as the thickness of the set of layers approaches
zero (Schoenberg & Douma, 1988). Such a fracture system can be anisotropic in that
it is not symmetric about an axis normal to the fractures. When the fracture set is
symmetric about an axis normal to the fractures, Schoenberg & Douma have shown
that it is indistinguishable from a dilute system of small, parallel, circular cracks
as described by Hudson (1981). The two fracture system compliances, one normal
and the other parallel to the fractures, are both proportional to crack density.

We next show how to transform a set of parallel fractures to a group element
and thus how to fracture rocks. Let a particular constituent medium of a layered
region of total thickness H be denoted with subscript f and have total thickness
Hj, with hy = Hy [H. Further assume that its density and elastic moduli may be
written py = hyp, Ny = th Py = h,P and My = th As hy — 0, this con-
stituent approaches a soft medium with negligible inertia occupying a total region
that becomes infinitesimally small, as the in-filling medium of a set of fractures.
Hence the layers of this constituent become infinitely long fractures, each of which
behaves as a linear slip interface. Across each slip interface, traction components
os; are continuous, as they are across any single layer in the static limit; but the
components of displacement u; need not be continuous, indicating that the strains
in the fractures can become infinite as the moduli approach zero. The group map-
ping of physical properties of such a constituent that approximates a fracture set
into a group element is
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g(1) hyH 0
9(2) h3H p 0
g(3) = HN™1 — HN-1 as hy — 0. (13)
g(4) hyHPN-1 o
g(5) h:H[M — PN-'P7| o

Thus a fracture set made up of infinite, parallel slip joints can be characterized
by at most a symmetric 3 X 3 matrix N-! and depends on 6 scalars. This is the most
general anisotropic fracture set. We define N-1 = Z. Z is the excess compliance
matrix from the fracture set, hereafter called the fracture set’s compliance matrix.

The background medium is the medium before it is fractured. We denote its
parameters with subscript b. Consider such a medium of thickness H into which is
introduced a set of parallel fractures with compliance matrix Z. The group element
for this fractured medium is G; combined with Gy, yielding

H
Hp,
H(N;' + Z) . (14)
HP,N;!
H(M, - P,N;'PT)
The inverse group mapping of (14), the set of parameters of the equivalent
homogeneous medium, is by (10)

H
P
(N;' + 2)™? : (15)
PyN; ' (N +Z)?
M, — P,)N;'PT + P,N;1(N;! + Z)!N;'PT
which corresponds to results of Schoenberg and Douma (1988).
Noting that (N;! + Z)™! = N, (I + ZN, ), the changes in the moduli due

to the fractures are
AN = N [(I+ ZN,,)'1 - I},
AP = Pb[(I—i-ZN;,)_l—I], (16)

and
AM = P,[(I+ ZN,)™ - I|N;'PT .
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SYMMETRY SYSTEMS AS SUBGROUPS

Schoenberg & Muir (1988) present specifics on various symmetry systems and
how they relate to a certain subgroup structure; we will not repeat that here. We
shall discuss instead some more general ideas on subgroup structure and symmetries.

Although our group elements contain 29 numbers, the two scalars and three 3 x 3
matrices, symmetry conditions on two of the matrices reduce the maximum number
of independent elements down to 23, corresponding to the thickness, density and
possibly 21 independent elastic constants of the subject elastic medium. It follows
that we can further abstract and simplify our group theory discussions by mapping
each group element into an element of a new group of 23-vectors of reals. The
combination operation is now vector addition, the inversion operation is vector
negation, and the null vector is the unique identity element.

A particularly interesting class of subgroups is those that can be represented as
a set of linear constraints on the vector element. Remembering that subgroups all
share the identity element of the group, the null vector, we can see that the linear
constraints must also be homogeneous. We conjecture that two more qualities are
true of any subgroup that represents a symmetry.

1. Some constraint equations will have one unity weight and the rest zero.

2. The balance of the constraint equations will have one unity weight, one minus
unity weight, and the rest zero.

In simple terms, elements of a vector will be unconstrained, equal to zero, or equal
to another element. If this is true, then we have a simple way of categorizing
anisotropy systems as they affect their static layered behaviour.

CONCLUSIONS

We have shown that each constituent layer of any anisotropy system can be
mapped to an element of an Abelian group. This enables us to use elementary
arithmetic to assemble and disassemble such systems,

rock + rock < rock
and should simplify algorithmic design and maintainance. The decomposition prop-

erty is reminiscent of Dix’ velocity rule, and it should come as no surprise that this
rule also has an Abelian group representation (Muir, 1987).

Since systems of parallel fractures may also be represented as group elements,
rocks can be fractured and unfractured '

fracture system + rock < fractured rock
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and this formalism extends to modeling rocks with more than one system of frac-
tures. To model two sets of fractures, we rotate (back in model space) a rock with
a single set of fractures to a coordinate system appropriate to the second fracture
system, and then “add” the second set. As an example, two or more oblique sets of
parallel vertical fractures, with or without horizontal bedding planes, give rise to a
monoclinic medium with a vertical two-fold symmetry axis.

The representation of some symmetry systems, such as TI (transverse isotropic),
as subgroups

TI 4+ TI — TI

also much simplifies what otherwise is a quite cumbersome description of symmetry
system hierarchy.
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