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Interval velocity estimation from beam-stacked
data — an improved method

Biondo Biond:

ABSTRACT

Low-wavenumber components of the velocity function can be tomographi-
cally estimated from beam-stacked data. The velocity estimation method does
not require data picking; rather it maximizes beam stack energy at traveltimes
and surface locations predicted by the velocity model.

The gradient of the objective function with respect to the velocity model
is explicitly computed using ray tracing. The objective function is maximized
by applying a conjugate gradient algorithm and a quasi-Newton algorithm se-
quentially. The former converges to a robust estimate of the low-wavenumber
components of the velocity model; while the latter resolves the finer components
of the velocity model determined from the beam stacks.

The inversion method is successful in estimating the velocity function from
synthetic data in a horizontally-layered medium.

INTRODUCTION

In a previous report (Biondi, 1987) I presented a method for estimating the
velocity model in the presence of lateral variations in velocity as well as geological
structure. The method I described is based upon a tomographical inversion of
beam-stacked data. The inversion did not utilize picked data, like most tomographic
methods (Bishop et al., 1985; Sword, 1986; Sword, 1987); it ,by contrast, maximized
the beam-stack energy at traveltimes and surface locations predicted by the velocity
model. In this respect my inversion method resembled the approaches of Toldi
(1985) and Fowler (1985), who maximize stacking power as a function of stacking
velocity and of migration velocity. Picking avoidance renders the algorithm more
robust with respect to multiples and noise in data. In particular, multiples create
local maxima of the objective function but do not influence the global solution. On
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Bionds 100  Velocity estimation from beam stacks

the other hand, using all the transformed data for the inversion, without picking
events, increases CPU-time and memory requirements of the algorithm.

The objective function I used in the previous report is too sensitive to the beam
stack artifacts, causing oscillatory behavior of the velocity model. Here I define a
new less sensitive objective function with more stable maximization. Therefore I
can partially relax the smoothness constraints on the velocity model, and increase
the resolution of the resulting velocity estimates.

I use a gradient algorithm to maximize the objective function. For this reason
I have developed a scheme for explicit computation of the gradient of the objective
function with respect to the velocity model. Explicit computation of the gradi-
ent is significantly more efficient than the computation of the gradient using finite
difference that I used in the previous report.

THE INVERSION METHOD

The proposed velocity estimation is carried out in beam-stack domain. Beam
stacks are a variation of local slant stacks (Harlan and Burridge, 1983; Sword,
1984), and are described in SEP 51 (Kostov and Biondi, 1987). Beam stacks differ
from local slant stacks because the stack-trajectory is hyperbolic instead of being a
straight line.

Beam stacks are function of five variables: midpoint y, half offset h, midpoint ray
parameter p,, offset ray parameter p, and travel time t. The amplitude of beam
stack can be simply the square of the sum of the amplitudes along the stacking
trajectory or the value of a coherency function, such as semblance, computed on
the stacking trajectory. The amplitude of Beam(y, h,t,p,,ps) is proportional to the
energy of the reflected waves propagating with ray parameters p, and pj, recorded
at midpoint y, offset A and traveltime ¢.

Figure 1 shows a synthetic common midpoint gather generated by way of an
acoustic finite difference modeling program. The earth model is a stratified medium
composed of six layers. Only five of the reflections are primaries; all the others are
multiples. Figure 2 shows the value of the semblance of a beam-stack decomposition
of the gather shown in Figure 1 for a fixed offset ray parameter and null midpoint
ray parameter. Energy is localized in a wedge-shaped region around the peaks;
this area corresponds to reflections traveling with the specified ray parameter. The
traveltime and the offset of the peaks is dependent upon the velocity model.

Modeling beam stacked data

The inversion principle is a tomographic fitting of traveltimes along the beams to
beam-stacked data . The basic procedure of the inversion is therefore modeling the
propagation of beams in a given velocity model m. I use ray tracing to propagate
beams. Simplicity and lower computational cost comprise the rationale for using ray
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Synthetic CMP gather
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FIG. 1. Synthetic common-midpoint gather generated assuming a stratified medium
ccl)mpose of six layers. Only five reflections are primaries, all the others are multi-
ples.
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FIG. 2. Beam stacks of the gather shown in Figure 1, for a fixed offset ray parameter
and null midpoint ray parameter. Energy is localized in a wedge-shaped region
around the peaks; this area corresponds to reflections traveling with the specified
ray parameter. The traveltime and the offset of the peaks is dependent upon the
velocity model.

SEP-57



Biond: 103 Veloeity estimation from beam stacks

FIG. 3. The paths of the down-going ray and of the up-going ray traced from the
reflector position R(z,z). The dashed lines are the modified raypaths when the
velocity model has been modified.

tracing. Ray theory is a high-frequency approximation of wave propagation, while
the waves propagating in the Earth are band-limited in frequency. One drawback of
the high-frequency approximation is that the Fresnel zones of reflections are reduced
to points. Itake into account the width of Fresnel zones when I compute beam stacks
using many traces, but I neglect it when I model beam propagation by ray tracing.
The tomographic back-projection operator derived with geometrical rays is singular.
The velocity model must therefore be constrained with a smoothness condition that
guards against instability during the inversion procedure. These problems could
be avoided modeling beam propagation by the wave-theoretical rays proposed by
Woodward (1988).

Figure 3 shows ray tracing geometry. Rays are traced from each reflector point
R;(z;,2;) to the surface, fixing both the midpoint ray parameter p,, and the offset
ray parameter p,. The down-going ray has ray parameter p, = (p, — pr)/2, and the
up-going ray has ray parameter p, = (p, + p.)/2. Tracing the up-going ray yields
the shot horizontal position z,(R;,m) and the traveltime t,(R;,m). Tracing the
down-going ray yields the receiver horizontal position z,(R;,m) and the traveltime
t.(Rj,m). The total travel time ¢, midpoint y, and half-offset A corresponding to
the reflector R; are, respectively,

t;(R;, m) = t,(R;, m) + t,(R;, m); (1a)
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v (Rjym) = 2 (2 (Ry,m) + o.(Ry,m)) (1)

and
h;(Ry,m) = - (2, (B;, m) - z,(R;, m)) (1¢)

These relations implicitly define the function ¢t = t(y(R, m), h(R,m), m), that
represents a manifold in the data space.

If velocity along the beam path is correct, and a reflector exists at R;, the beam
stack value Beam(y;,h;,t;(yj, hj,m),py,pp) is not zero. If the velocity along the
beam path is wrong, by contrast, the value of the semblance of beam stack at
predicted traveltime and surface location is about zero. The goal of inversion is to
determine that velocity model that maximizes energy of beam-stacked data along
the manifold ¢(y, h,m). The inversion can therefore be formulated as maximization

of the total energy

E(m) = ZZZBeam(yj,hj’tj(y:iahjam)’pv’Ph)' (2)

Py Ph J

Robust objective function

My 1987 report presented a similar formulation of the inversion as a simple fitting
of traveltimes. This approach has a major drawback; the objective function is overly
sensitive to artifacts of beam stacks. This problem can be avoided by devising a
more robust objective function. The time axis is transformed accordingly to the

relation
T =1t — pph. (3)

Offsets at constant 7 are fitted instead of fitting traveltimes at constant offset.
A change of variables of the offset axis of beam-stacked data is convenient for

saving memory needed to store the data themselves. Such a change of variables is

Phr Vo2
4

¢=h-Prloy (4)

where Vj is a constant average velocity. The purpose of this change of variables is
to localize non-zero data around £ = 0 and then safely discard many zeros.

Given transformations (3) and (4) as well as the results of modeling by ray
tracing (1), we can compute the relations

7;(Rj, m) = ¢(R;,m) — pxh(R;,m) (5a)

and

& (R, m) = h(E;,m) — P20 4(R m). (5t
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Together with the ray tracing results (equation 1b), these relations define the
function ¢ = £(y(R, m), (R, m), m) implicitly. The value of semblance for a partic-
ular reflector point, and for fixed ray parameters, is Beam(y;, £(y;, 7j, M), Tj, Py, Pr),
where the bar is a reminder that the data has been transformed following equations
(3) and (4). When all reflector points and all ray parameters are considered, inver-
sion can be formulated as the solution of the non-quadratic optimization problem
of finding the maximum with respect to the velocity model m of the total energy

E(m) =)%Y Beam(y;, (yj, 7, m), 7}, Py, Pn), (6)

Py Pr

or in more compact notation

E(m) = ZBi(fi(m)), (7)

where 1 is the index of the data points used, including all reflector locations R; and
all ray parameters p, and pj.

When an a priori estimate mg of the velocity model and of its covariance matrix
Co exists, the objective function becomes

Q(m) = 3~ Bi(&(m)) — (m — mo)" Cn ™ (m — mo). (8)

Computing the gradient of the objective function

The maximum of Q(m) can be found using a gradient algorithm. Implementa-
tion of a gradient algorithm requires that the gradient of the objective function be
computed with respect to the model. The gradient can be expressed as

dB;(&(m - ¢ 9B;(& -
VQmZE%‘FZCm l(m—mo)zzam ag)+2Cm l(m—mo)z

s t

GT D, — 2Cyy, " (m — my), (9)
where the derivatives are computed at fixed y, 7, p, and p.

The vector D, is easily computed from beam-stacked data with a finite-difference
approximation of the derivative operator. This vector represents the interaction of
the inversion algorithm with the actual data.

Computing the matrix of the Frechet derivatives GT is more complicated. The
total derivative of ¢ with respect to the velocity model, computed at fixed reflector
point R and velocity model m, can be derived applying the chain rule to the implicit
function ¢ = é(y(R,m),7(R,m), m), and its result is

s¢ ¢ ¢
ém (R,m) dy (R.m) or

o7
ém

9¢

om

_ %y

= , 10
am  om (10)

(g.,7,m) (p.r.mn) (7.7.m)
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where § = y(R,m), 7 = 7(R,m). The only unknowns in this expression are the
Frechet derivatives ¢/8m, which can be evaluated rewriting the previous formula

as

bt

9¢ _ 6T
ém

dy

o¢

9¢
or

om

_ %

(grm) oM

_ by
ém

(11)

(Rm) (Rm) (y,r1m) (R,m) (g,r.1m)
Partial derivatives 3¢/dy and 3¢/ can be evaluated using finite difference on

the manifold defined by ¢ = &(y(R, m),7(R, m), m).

Total derivatives, with respect to the velocity model, of the transformed offset
¢, of the midpoint y, and of the transformed travel time 7, are related to the
total derivatives, with respect to the velocity model, of the travel times t, and
t,, and of the arrival locations z, and z, of the down-going and up-going rays.
These derivatives can be evaluated by ray tracing as presented in Appendix A.
The formulae relating total derivatives are easily drawn from equations (1) and (5).
They are:

6 _ Sh AL _
ém (R.m) ém (R.m) 4 ém (R.m)
1 (51, 5.’13, ) phV02 ( 5tc 6tr ) (12 )
hl — — ; a
2\ ém (R.m) ém (R.m) 4 ém (R.m) ém (R.m)
by 1/ 6z, 6z,
A B ; (120)
Mgy 2 (‘5“‘ (Rom) Om (R,m))
and
67 ot 6h
ém| .. ém|... Pém|. .
(R,m) (R,m) (R,m)
( 6t, 6t, ) 1 (6:1:, 6z, (12¢)
— ph= - ] c
ém (R.m) ém (R.m) 2\ ém (Rm) ém R

A priori assumption of velocity-model smoothness

Tomographic inversion only resolves the low-wavenumbers of the velocity model
because it is based on traveltimes, integral measures of velocity. Furthermore ray-
tracing modeling renders the back-projection operator G singular. The poorly re-
solved components of the velocity model must be constrained so as to avoid insta-
bility during the inversion process. A common approach for constraining poorly
determined components of the velocity model is to impose a smoothness condi-
tion using a derivative operator as the inverse of the model covariance matrix Cy,
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(Toldi, 1985). This approach is straightforward and easyly implemented but it has
the disadvantage that the optimization problem is solved for many more unknown
parameters than are needed to describe a smooth velocity model. The cost of each
iteration is therefore higher than necessary.

I use a parametrization of the velocity function that takes the smoothness con-
dition into account implicitly. I parametrized the velocity function with B-spline
basis functions that have a continuous second derivative (Diercks, 1975).

OPTIMIZATION ALGORITHMS

The optimization problem of finding the maximum of the objective function (8)
can be solved sequentially using two different algorithms. The first converges to a
robust estimate of the low-wavenumber components of the velocity model starting
from an initial model that is generally different from the true model. The second
converges to the best estimates of the velocity model that is consistent with the
beam stacked data; starting from a nearly correct initial model. The first algorithm
is more reliable in solving a global convergence problem, while the second is more
efficient in solving one of local convergence.

Global convergence to the maximum of the objective function

The objective function of equation (8) is highly non-quadratic. The fitting func-
tions B;(¢;) are non-quadratic and often they are not even unimodal because of
local maxima caused by multiples and artifacts. Further, the modeling functions
¢;(m) are not linear because traveltime is not a linear function of velocity.

For highly non-quadratic optimization problems algorithms with the best global
convergence properties are those based on the first derivatives of the objective func-
tion. Among the several gradient algorithms I choose a version of the conjugate
gradient algorithm derived by Polak-Ribiere (Luenberger, 1984) that is particularly
efficient in solving non-quadratic problems.

The objective function has many local maxima that must be avoided so as to
converge towards the global maximum. Some of these local maxima result from the
dependence of the raypath upon velocity. Raypaths are most strongly influenced
by low-wavenumber components of the velocity model. It therefore is fundamental
to determine these components before attempting to resolve higher wavenumber
components of the velocity model. One heuristic solution to the problem of local
maxima is thus starting the optimization from the low-wavenumber components of
the velocity model and slowly increasing the bandwidth of the model. Following
this procedure also prevents from converging towards the local maxima caused by
the multiples. These local maxima usually correspond to interval velocity func-
tions varying rapidly. Constraining the solution to be stiff until the algorithm has
converged to a model that approximately predicts the traveltimes of the primaries,
avoids the following of local maxima caused by multiples. In other words, I constrain
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the velocity model to predict &; that are close to the maxima of the fitting functions
B;(&;) correspondent to the primaries, preventing the solution from following the ¢;
close to local maxima resulting from multiples.

In practice, I start the inversion algorithm using few B-spline basis functions
for describing the velocity model. When the conjugate gradient algorithm has
converged to a maximum for the current parametrization I increment the number of
basis functions and restart the iterative algorithm. This procedure can be repeated
until the solution has the desired bandwidth. The scheme of the algorithm that I
used for achieving global convergence is thus

Set initial parametrization and starting model my = 1m.

[ Set k = 0.
Compute the gradient go = VQ(my) = GID; — 2Cp, "} (mg — m).

Set the search direction émg = go.

Find ay that mazimizes Q(mg + opémy).

Update the model m; = my + agémy.

[ Set k =k + 1.

Compute the gradient g, = VQ(m;) = GID; — 2Cp, ! (m; — m).
Compute the search direction ém; = g; + ﬁg—"}g—"ﬂﬁﬁéSmk_l.

Bi_18k—1
Find a; that mazimizes Q(m; + oz6m;).

Update the model my,; = my + odmy.

Check for convergence.

Increase the bandwidth of the parametrization.

Set mg = my,;.

| Check for convergence.

The line search is an expensive part of this algorithm as it requires tracing the
rays from all the reflectors for each evaluation of the objective function. There
are many algorithms for accurately estimating the stepsize that require a limited
number of function evaluations. I used an iterative line search algorithm that fits
a quadratic function to the objective function and evaluates the objective function
at the maximum of this quadratic curve (Luenberger, 1984).

Local convergence and resolution

The previous algorithm converges to a model close to the true model; however
near the solution its rate of convergence can be improved using the second deriva-
tives of the objective function with respect to the velocity model. Improving the
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convergence rate of the algorithm saves a considerable amount of computation time:
each iteration requires many ray tracings through the entire model.

The Hessian of the objective function can be derived from the gradient in equa-
tion (9):

92 0%B;(&; _
H(m) = 5% = 5 PR 20wt =
3¢, 9B;(&) d¢ 0*Bi(&) 9& -1 _
Zi: am? 9¢; + ; dm 98¢ Om = 2Cm =
S D, + G'D,G — 2C,, . (13)

The first term in the Hessian depends on the second derivatives of ray tracing
with respect to the velocity model. I drop this term because it is too expensive
to compute. Dropping this term implies the approximation of ray tracing with a
linear function. Another reason for neglecting the first term is that it also depends
on Dy, that decreases as the velocity model approaches the true velocity model.

The search direction of the quasi-Newton method I used is the solution of the
linear system

[GT(-D2)G +2Cm '] 6m = G"D; — 2Cp ™} (m — my). (14)
The solution of this system is equivalent to the least-squares solution of the system

v-D.G (vV-D3) 1D,

ém ~ , (15)

v/2Cm™? —1/2Cpn " (m — my)

that can be efficiently solved using a conjugate gradient algorithm as LSQR (Paige
and Saunders, 1982). To solve the system in (15) it is necessary to use the covariance
matrix Cp, to damp the solution because the back-projection matrix G is singular.

The second derivatives D, estimated from the data are not reliable enough to be
used in equation (15). Generating the example that I present in the following section
I used a constant value for the second derivatives. Probably a better solution is to
set the second derivatives to be inversely proportional to the depth of the reflectors,
because the width of the peaks in the beam stacks is proportional to the width of
the Fresnel zones of the reflections.
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The scheme of the quasi-Newton method that I used is

Set starting model my.
Set k = 0.

[ Compute the search direction
6m,, = [GI(~D3)Gy +2Cm "] [GID; ~ 2Cm ™} (my — my)) .
Find a; that mazimizes Q(my + o46my).
Update the model my,; = my + o édmy.
Check for convergence.

Setk=k+1.

In the quasi-Newton algorithm I use the same line-search scheme that I used in
the conjugate gradient algorithm. At this stage of the inversion, when the current
model is close to the true model, I could save computer time evaluating the objective
function using the gradient of ray tracing with respect to the velocity model instead
of tracing rays for each a;. Therefore, to evaluate the objective function I could use
the approximation

J
Q(my + arémy) Z B; (Es m;) + akg%&nk)

(mk + ak5mk - mo)TCm"l(mk + akémk — mo). (16)

RESULTS OF 1-D INVERSION OF SYNTHETIC DATA

I tested the inversion scheme of the previous sections using the synthetic CMP
gather shown in Figure 1. I computed the beam stacks for 10 values of the offset
ray parameter ps; doing this only for a null value of the midpoint ray parameter
Py, because the medium is laterally homogeneous. The beam stack were slightly
smoothed in time and space before being utilized by the inversion algorithm.

Figure 4 shows the result of 11 iterations applying the conjugate gradient algo-
rithm in the inversion of data shown in Figure 1. The true model is indicated by a
dashed line; the result of the final iteration is shown by a thicker line. I started the
algorithm using one basis function every 240 meters; the final solution was found
using a basis function every 120 meters. I tried the procedure with different starting
velocity models and the algorithm always converged to a solution similar to that of
Figure 4. The final iteration does not resolve the low velocity layer well. However
the final model is a good approximation of the true velocity and it could be used
as starting model for a more powerful, but also less robust, algorithm.

Figure 5 shows the contour plot of a slice taken at constant offset ray param-
eter of beam-stacked data I used for inversion. Traveltime curves as a function
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of transformed offset are superimposed on the contour plot. The traveltime curve
correspondent to the last iteration is drawn using a thick line. The algorithm con-
verged from a velocity model that did not predict the traveltimes of the beams to
a solution that predicts the position of the peaks in the data fairly well. The slow
increase of the model bandwidth has prevented the iterative inversion from being
influenced by the data peaks caused by multiples. Nevertheless, the final solution
did not accurately predict the position of the maxima corresponding to the first
and second reflectors. The data contains more information on the velocity within
the first and second layers than what the inversion algorithm was able to extract.

Figure 6 shows the result of 3 iterations of the quasi-Newton algorithm starting
from the final iteration result of the conjugate gradient algorithm shown in Figure
4. The true model is indicated by a dashed line and the result of the last iteration is
shown by a thicker line. The velocity model was parametrized using a basis function
every 120 meters. The algorithm converged to a good, smooth approximation of
the true velocity model.

Figure 7 shows the contour plot of a slice of beam stack taken at constant offset
ray parameter. The traveltime curves as a function of the transformed offset are
drawn for each iteration. The traveltime curve correspondent to the final iteration
is indicated by a thick line. The final solution predicts the peaks position of beam
stacks almost perfectly.

CONCLUSIONS

I have presented a theory for estimating the lower wavenumber of the veloc-
ity model from beam-stacked data. The method is valid in presence of geological
structure and lateral velocity variations and does not require to pick events in the
data.

Synthetic data results show the validity of the theory in the simple case of a
layered medium. So as to I need to test the method with field data and to generalize
the implementation of the algorithm to the 2-D case.
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FIG. 4. The result of 11 iterations of the conjugate gradient algorithm applied to
the inversion of data shown in Figure 1. The true model is drawn with a dashed
line; the result of the final iteration is shown by a thicker line. The inversion started
using one basis function every 240 meters to describe the velocity model; it ended
with one basis function every 120 meters. The final iteration did not resolve the
low velocity layer well.
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Traveltime curves at fixed ray parameter

FIG. 5. Contour plot of a slice of the beam-stacked data taken at constant offset
ray parameter. The traveltime curves as a function of the transformed offset are
superimposed on the contour plot. The traveltime curve correspondent to the last
iteration is drawn using a thicker line. The inversion converged to a solution that
redicts fairly well the position of the peaks in the data starting from a velocity
unction that is distant from the true model.
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FIG. 6. The result of 3 iterations of the quasi-Newton algorithm applied to the data
shown in Figure 1. The true model is indicated with a dashed line; the result of the
final iteration is shown with a thicker line. The velocity model was parametrized
using a basis function every 120 meters. The inversion converged to a good smooth
approximation of the true velocity model.
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Traveltime curves at fixed ray parameter

FIG. 7. Contour plot of a slice, taken at constant offset ray parameter, of the
beam-stack data. The traveltime curves as a function of the transformed offset are
drawn for each iteration. The traveltime curve correspondent to the last iteration is
drawn with a thicker line. The result of the last iteration predicts almost perfectly
the peaks of beam stacks.
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APPENDIX A

RAY TRACING IN A LAYERED MEDIUM

In inverting beam stacks I need to perform ray tracing as shown in Figure 3. The
down-going and up-going rays are traced, starting with assigned ray parameters
and from an assigned reflector point, until they reach the surface. This is not a
classical two points” ray tracing because the arrival point is unfixed. Therefore,
Fermat’s principle cannot be invoked for a simple computation of the gradient of
the traveltimes ¢, and ¢, with respect to the velocity model. The effect on the
traveltime of the changes of the ray path caused by velocity variations is not of the
second order any longer, and therefore must be taken into account for a correct
gradient computation. Further I need the gradient of the arrival points z, and z,
with respect to the velocity model to compute the gradient of the objective function.
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I developed a simple algorithm to perform the ray tracing needed by the inversion
in a layered medium. The algorithm I devised for the general 2-D case is more
complicated and not yet fully-tested; I postpone its presentation to a future report.

Rays are traced in a horizontally-layered medium with slowness function S(z; m),
where z is depth and m is the vector of velocity parameters. The slowness function,
or more precisely slowness squared, is parametrized using B-spline; that renders the
evaluation of the function easy and accurate. The evaluation of its derivatives with
respect to the spatial axis or with respect to the model parameters is equally easy.

A ray of ray parameter p is continued upward from the location (zx_1,2k-1) to
the location (zy, 2;) using Snell’s law. That is to say:

Azp
Ty = gy + (41)
SE —p?
where Az = z; — 2,1 is constant, and Sy is the slowness at the intermediate depth
Z = (2k—1 + 2)/2. The whole path of this ray can be traced starting from the initial

reflector point R(z,,z,).

The total traveltime of the ray t(R,m) is the summation of the times along the

ray path,
Y. AzSE

N
t(Rom) =Y Aty =Y ——%
) kZ;l k kg 5

The gradient of the total traveltime with respect to the parameter m; of the
velocity model is thus

(42)

dt(R,m) i": AL, dSE ﬁ’: Az [ S ] dS} (43)
om; isi 0SE om; [\ /s p 2(SE —p?) | Om;’
The arrival point of the ray z(R, m) is
N N
A
z(Rom) =3 Azp =3 ——2 (A4)
k=1 k=11/S2Z — p?

The gradient of the arrival point with respect to the parameter m; of the velocity
model is therefore

dz(R,m) L 9Az, 85 X Azp  3S}

amj —-kgl 85‘,3 am,- “§—21/(Sz_p2)3amj'

Tracing a ray up from the reflector or down from the surface, yields to exactly
the same raypath. However in a general 2-D medium, the gradients of traveltime
and of arrival location depend upon the ray direction of propagation. In a layered
medium also the gradients are independent from the direction of propagation. In
a practical implementation of the ray tracing algorithm it is convenient to exploit
this property and to trace the ray downward instead of upward.

(45)
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