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Wave-equation tomography - II

F. Rocca and Marta J. Woodward

ABSTRACT

Using simple geometrical techniques, we analyze the Fourier spectrum of the
backprojection of an acoustical wavefield gnerated by a point source and recorded
by a point geophone. We show that the spatial width of the backprojection, in the
seismic range of frequencies (the width of the seismic ray), is not negligible so that it
is useful to consider the effects of dispersion due to lateral inhomogeneities of the
medium. We then show the correspondence between bandpassed traveltimes analysis
and the Rytov approximation; finally, we analyze the null space of the extended
traveltimes inversion and find that it is dependent on the time windowing of the

reflected arrivals.

INTRODUCTION

Wave-equation migration techniques have recently been re-analyzed in terms of
inversion theory (Cheng and Cohen, 1984). A satisfying situation appears to have been
reached. Actual industrial practice can be seen as the first of a series of steps that can
lead to full inversion of the data set: i.e., determination of the petrophysical properties of
rocks, consistent with recorded data and with a priori hypotheses based on geological
judgment. Seismic velocity analysis is still far from this optimum frame; it has been
extended to two-dimensional media by means of the technique known as seismic tomog-
raphy. Traveltimes of reflections are used as constraints to determine the interval veloci-
ties of the inhomogeneous medium. It is not yet clear what can be obtained from inver-
sion, in that eigenvectors and eigenvalues of the matrix relating interval velocities to
measured traveltimes depend on the position of the reflectors. This leads to unavoidable
ambiguities. Moreover, the use of geometric acoustics does not clearly identify the null
space of the transformation, and causes problems in the inversion as a result. From one
side, wavenumbers of the object spectrum are, in fact, inverted where no information is
really available, generating artifacts and instabilities that must be removed via ad hoc
smoothing techniques. On the other side, the data are not used optimally. Traveltimes
are only a crude approximation of the action of the scatterers on the waveshape of the
first arrivals; lumping all available information into a single number, i.e. the differential
traveltime with respect to the unperturbed ray, entails losing data that could be very

useful for the successive inversion.
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The aim of this paper is to use diffraction tomography, as introduced by Devaney
in the early 80’s (Devaney, 1982, 1983), to establish a bridge between ray tracing and
first arrival inversion techniques based on the wave-equation. Up to now, diffraction
tomography has been mostly analyzed in the wavenumber domain. As the ultimate goal
of our work is an inversion of the bandpassed traveltimes of the seismic reflections, we
transferred the analysis of diffraction tomography to the space domain, in order to be
able to select couples of sources and geophones and to window events in time. As in
seismic tomography, our data will be mostly nonlinearly related to the recorded
wavefield, even if the nonlinearity will not be as crude as the traveltime picking process.
Moreover, we shall make use of the wave-equation. Hence, the name wave-equation

tomography is given to the process.

Using only very elementary techniques, so that we will be able to be completely
supported along the way by physical intuition, we shall analyze the effects of Born and
Rytov approximations techniques (Born, 1959; Rytov, 1937). These techniques approxi-
mate how the scatterer’s distribution affects the phases, amplitudes, and then travel-
times of the wavefield. The results of the analysis will indeed be that ray tracing and
traveltime inversion on one side neglects the existence of a quite noticeable null space
induced by the limited cable and survey length. All available data are not used, on the

other side.

This paper is organized as follows: we first derive the Fourier transform of the
monochromatic backprojection using elementary geometry. We do so to avoid obscuri-
ties deriving from complex mathematics. Monochromatic backprojection is defined as the
most probable distribution of scatterers consistent with a single frequency measurement
for a single couple of source and geophones. We then extend this analysis to multiple fre-
quencies and to multiple locations of sources and geophones. From the multifrequency
analysis we are able to derive the width of the ray, i.e., the lateral extension of the area
where we can impose a constraint on the scatterer’s distribution if the transfer function
between source and geophone is a pure delay. We shall see that this width is indepen-
dent of the central frequency of the radiation, and is inversely proportional to the
bandwidth of the measurement, an intuitively satisfying fact. After a short summary of
the Rytov approximation, and presentation of a simple example of its implications, we
shall then see how seismic-traveltime tomography can be linked to the wave-equation via
the diffraction tomography of the seismic sources reflected by plane layers and the Rytov
approximation. We shall see how traveltime inversion is only a crude approximation.
Moreover, we shall see that it is not possible to consider the reflected sources to be ident-
ical to real buried sources; we cannot apply diffraction tomography to them without
some time window. The time windowing is aimed at selecting events consistent with the

hypothesized travelpaths.

This paper is meant to complement another, in this volume (Woodward, 1988),

which presents many of the same ideas from a different viewpoint along with numerical
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numerical examples.

SCATTER IN THE WAVENUMBER DOMAIN

Let us consider a monochromatic source radiating acoustic energy at frequency w.
In the (x,y) plane Source S is located in (-D/2,0); Geophone G is located in (D/2,0). The
scatterer varies sinusoidally with the space coordinates; it is thus characterized by a sin-

gle wavenumber in the Fourier domain of the object (Figure 1).

/s G .
D/2 D/2

FIG. 1. Location of source and geophone in the uniform medium.

If we decompose (Devaney, 1982, 1983; Miller et al., 1987, Wu and Toksoz, 1987) the

source signal into planar waves that make real angles with the coordinate axes we have:
Yy () =expj(-wt +u(z +D/2)+ v, y) (1)

where u, , v, are the components of the wavevector of the signal generated at the
source location. We postpone the mathematical analysis of the complex angles and

evanescent waves to a later occasion. Let the scatterer be:
r(z,y) = Ae’ Pexpj (uoz +voy). (2)

We will suppose that the scatterer is very weak, so that we can superpose effects;
thus, we can keep the reflectivity complex. A real reflectivity will be obtained by com-

bining two conjugate functions. The scattered field measured at the geophone site is:

Y, (D /2) = Ae” Pexpj [(ugtu, )D /24u, D 2-wt]. (3)

SEP-57



Rocca and Woodward 28 Wave-equation tomography - 11

The phase difference between the scattered field and the source is
¢, = D (u, +uy/2) + ¢
Defining
Uy =U; +Ug ; Uy =V; +Vg

and using polar coordinates, we now have

g

W W . w _w
U, = — —c—smas Uy = — —SINQ, Uy = —COSQ, U, = —COSQ,

c c 4

(6)

where o, and a, are the real angles that the incident and the scattered wave make

with the x axis. Equation (5) becomes:

g~ a, ta
Uy = 2% sin [ 2 | cos( ooy = pcosf
c 2 2
a, — o, o
vy = 2% in [ 2 | sin (o +ary) = psind,
c 2 2

where (Figure 2)

scatterer
A: evanescent waves

scatterer

B : propagating waves

FIG. 2. Scatterers in the wavenumber domain.
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o, —Q
p = Qﬁsinls_l_l_ (8)
c 2

oy +ag

0 =
2

The Jacobian of the transformation from o, , o, to u, , v, Is:

2

w .
J = ——§-s1n|a8 —a
c

w [
o= =rq /1~ £ (9)

40

This implies that if we have an uniform distribution of the source angles (isotropic point
source), and wish the radiation impinging on the geophone to have no preferential direc-
tions, then the distribution of the scatterers’ wavenumbers should peak at p==0 and
p=2w/c . In fact, the spectrum should be proportional to the inverse of J. If we meas-
ure a phase ¢, at the geophone, then the phase of a candidate scatterer at the spatial

frequency that has polar coordinates p and 6 is :

D . w . /4 C7p
¢0 = ¢, _?(us +ug) - ¢s + 7D sind 1- 402 ’ (10)

Equations (9) and (10) provide the basis for the determination of amplitude and phase
respectively of the Fourier anti-transform of the monochromatic backprojection that we

will discuss in the next section.

THE MONOCHROMATIC BACKPROJECTION

We have seen in the previous section that if there is a sinusoidally-varying scatterer
like the one represented in equation (2), then we will measure a signal with the phase
given by (10). On the other hand, if we measure a phase ¢, and let it be zero without
loss of generality, equation (10) gives the phases of the candidate scatterers (in the spec-
tral domain) congruent with that measurement. We will obviously be unable to deter-
mine the wavenumber of the scatterer if we hypothesize isotropic sources and geophones.
Rather, we have to recur to the same sort of statistical argument that is used for tomog-
raphy and for diffraction-scatter summation. If we have an impulsive source and receive
a pulse at time T, then we can hypothesize a distribution of scatterers along the ellipse
with foci in S and G and major axis length ¢T. We assume that the scatterers in all
other locations have zero amplitude. Similarly, we could now suppose we have scatterers
with wavenumbers in the circle with radius 2w/c with phases according to (10) and
amplitudes according to 1/J. The scatterers will be reconstructed superposing the back-
projections from measurements at different frequencies and locations of sources and geo-
phones. Further criticism is necessary to determine the effects of windowing in the spa-
tial as well as in the wavenumber domain. Moreover, the causality condition implied by
the point sources has to be applied, and will have important consequences for the recon-

struction.
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Using elementary techniques, we analyze the spatial structure of the anti-transform
of the function characterized by the phase function of (10). The discussion is implied by
results that have recently been obtained in three dimensions by Tygel and Hubral (1985)
and in two dimensions by Wengrovitz and Oppenheim (1987). This derivation offers the
advantage of providing geometric insight; it establishes a bridge with diffraction tomog-
raphy.

An easy way to estimate the anti-transform of (9) is to calculate, for each 8, p the
gradient of the phase (the equivalent of the group delay) with respect to u, , v, , or in

polar coordinates, with respect to p and 6. Rewriting (10), with ¢, =0, we have:

do(p,0) = + %D sindy / 1- 04;2 . (11)

Normalizing the frequency scale with respect to 2w/c¢ , and the length scale to D/2, we

have, in that scale and neglecting the subscript,

0<p="L% <1 12
P= (12)
¢ = sinﬁ\/l—p 2
The components of the gradient in polar coordinates are
d¢ P . .
— = - —L___ginf = - ¢sinf (13)
ap \/l—p 2
106 _ cot
p 06 q
y —
g = tan I 8 g | 14

2 \/l_p 2 )
If we call €, n the spatial cooordinates of the point of the plane identified by the

gradient, in the wavenumber domain we have:

£ = — ¢ sinfcosf — L sindcos (14)
q
cos0

q

The anti-transform in €, 5 is directed along a line orthogonal to the direction ¢ locally.

n = — ¢sin?f +

If we now pose

a
q = —-1 15
sin% (15)
sin“d
p = 1- ’
a2

the family of curves described by equation (14) for different values of @ will be a set of

SEP-57



Rocca and Woodward 31 Wave-equation tomography - II

confocal conics, with foci in +1 and - 1, (the location of source and geophone in the

scaled coordinates), and equation:

RS Y (16)

=

FIG. 3. Migration ellipses in the wavenumber domain ( @ >1). Values of a smaller
than 1 correspond to nonphysical hyperbolas. The outer circle corresponds to zero offset

or to a =00 .

These curves (Figures 3 and 4) are ellipses when the parameter a is greater then 1,
and hyperbolae otherwise. The value a =1 corresponds to the straight line linking S to
G. The sine of the half offset angle A (Claerbout, 1985) can be seen to be equal to
sinf/a . Therefore, if we look at Figure 5 we see that the hatched region corresponds to
the hyperbolae, i.e. loci of time subtraction rather than time addition. In other words,
in this region the direction of the plane wave propagating from the source, impinging on
the sinusoidal scatterer, and returning to the geophone implies a retrograde path, l.e.
corresponding to evanescent waves (Figure 2). The other region corresponds to the phy-

sical backprojection, i.e. to a set of monochromatic ellipses.
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FIG. 4. Migration ellipses in the space domain. The hyperbolas ( ¢ €1 ) correspond to
non physical arrivals.

FIG. 5. Born and Rytov regions in the wavenumber domain. Region B (dashed)
corresponds to values of a greater than v2 ; region R (dotted) corresponds to the ray.
The part of region R close to the outer circle refers to scatterers very close to the source
and the geophone, seen under a small offset angle.
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The parameter a can be related to the normalized offset wavenumber H (Dere-
gowski and Rocca, 1981; Claerbout, 1985):

k
=22 (17)
2w

Following that notation and now using migration terminology, that is k= half offset,

t = time of arrival of the reflection, we have:

k
= %sinzﬂ — e

. 18
ct 2w ( )

However, in our present notation, a=ct /2h. Thus, equating v with k, , and v with

k

., we have :

H 1
P = kz2+kz22% - 1 X 20 - ’ (19)

an expression that we also find in Clayton (1981). Up to now, this formula was explored
for high values of the parameter a , ie. close to zero offset (Stolt, 1978). We are, how-
ever, interested in the opposite situation, one in which the parameter a is close to, but
higher then 1: the analysis of the unperturbed arrival. Referring to Figure 5, we have
dashed the region relative to the usual reflection experiment. We will call the dashed
region the B (Born) region. It is delimited by the circumference p =1, and by the value
of a that corresponds to a reasonable maximum half offset angle, say 45°. The dotted
region that we shall call region R (for Rytov), extends from the origin of the coordinates
to a smaller value of a, that we will now take to be equal to 1.1. This region
corresponds to waves that arrive in a short time window (10% of the traveltime) after
the time of arrival of the unperturbed wavefield. We have already seen that the area in
the two circles hatched in Figure 5 (a smaller then 1) corresponds to non-causal arrivals.
This can be seen again, when the gradient of the function in equation (11) is considered
with respect to w. This will give us the delay of the wave with respect to the unper-
turbed arrival, if the traveltimes are so scaled that the direct arrival arrives at time 1.

We then have:

8¢: sinf — (20)
a(IJ \/l_pg ’

The imposition of a >1 , is required since we are discussing the effects of scatterers
in an uniform medium. Therefore, the conclusions of this section on the geometry of the
monochromatic backprojections are the following:

1.) For physical experiments, the amplitude of the backprojection is zero in the

hatched area of Figure 5.
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2.) The spectrum of the monochromatic ray that links source and geophone is
non-zero along the straight line u=0, but not only there. It corresponds to the

horizontal raypath y=0.
In fact, the spectrum extends far outside the line u =0 . If we look at the region
labeled as R, it appears that the spectrum of the wavefield, time windowed after
the unperturbed arrival, extends to the region close to p =1 , even for values of a
close to 1. This is theoretically correct, but we have to notice that this part of the
region R refers to scatterers close to source and geophone, and seen under a very
small offset angle. Thus, we can neglect this part of the spectrum since it does not

refer to the medium spanned by the ray.

If we do not time window the arriving wave immediately after the unperturbed
arrival, but encompass progressively all the successive time events, then the 2-D spec-
trum of the ray will get wider and wider before arriving at the unit circle (a =o0) . In
conclusion, the actual spectral width of the ray is not well-defined on the basis of the
considerations that we have made up to now. This point will be discussed in the next

section.

WIDEBAND BACKPROJECTIONS; RAYS

Multifrequency experiments
Let us suppose that we have a pure delay multi-frequency, wideband experiment, as
usual in seismics. In other words, at the geophone location, we are able to measure the

phase of the scattered field at several frequencies. Let this phase be:

¢s=—%;L=aD. (21)

Then we measure an impulsive wave shape. To get a picture of the scatterer’s distribu-
tion that is consistent with the phase measurements, we have to combine several mono-
chromatic backprojections.

An easy way to be able to evaluate the answer is to total the corresponding back-
projections for different values of w , and to use the stationary phase principle for that.

For each frequency, the phase of the estimated scatterer is:

wlL wD . cp
= &= L 2 sinb 4 /1- ]
do(w) . + . Sin " (22)

Substituting for w from the stationary phase equation

2 —0; w=Lix—>X (23)
hd 2 - sin“f
(12

o = ~ p—g-\/a %_sin?0. (24)

SEP-57



Rocca and Woodward 35 Wave-equation tomography - II

This phase function will anti-transform into the usual migration ellipse. The amplitude
distribution across the ellipse depends on the relative weights given to different frequen-

cies, and therefore to the source wavelet.

It is also evident that, if we did not have an impulsive arrival, but rather had
dispersion, we would have back-projected that measurement into a dispersed ellipse, one
which depended upon the phase vs. frequency behavior of the measured direct arrival. It
is relevant to observe that for a =1, that is for the unperturbed ray, the stationary
phase approximation of the anti-transform gives two spikes located at the source and
geophone and not, as we might have wished, the line linking S and G.

In conclusion, to be able to calculate the width of the ray, we need further analysis.

The analysis is carried out in the next section.

The width of the ray

Let us suppose that the phase measured at the geophones exactly matches the trav-
eltime correspondent to the unperturbed arrival. This implies that we know that the
medium is devoid of scatterers in a region that is comprehensive of source and geophone.
How wide is that region and does it depend on the central frequency of the radiation? In
this section, we show a simple way to answer this relevant question. We calculate the
backprojections at different frequencies, and total them without considering frequency
dependent weights. Therefore we neglect effects due to the jacobian or to the source
wavelet. The modulus of the sum of the backprojections, in the spatial domain, will be

seen to converge rapidly to zero outside a region whose width will be calculated.

We use for the backprojection in the spatial domain the product of the Green’s
functions, centered in S and G. The Green’s functions change a little depending on the
dimensionality of the space, but this effect will be seen to be minor. To avoid confusing
calculations, we evaluate the backprojections only along the axis of the segment connect-
ing S and G. If we use the asymptotic expansion of the Green’s function in space, we see
that the phase of the monochromatic backprojection is, in the location distant d from
the SG line (d << D /2) (fig. 6),

¢ = - %x[D—\/D2+4d2]. (25)
Averaging the frequencies in the bandwidth we have that the multifrequency back-

projection B (d) is, if Q. and Q.. are the frequencies edges of the band and if we

approximate the square root:

Qmax
1 2wd?
Bd)= —— d 26
(4) Qmm_nmxﬂﬁn exp(j=25-)d (26)
Xmax
B(d)= —1 eixd

Xmax Xmm X min

SEP-57



Rocca and Woodward 36 Wave-equation tomography - II

| D/2 D/2 I -

FIG. 6. Spatial width of the wideband backprojection.

Xmax—Xmin

sin - j(Xm+Xnﬁn)
Bld)=——2 x¢ 2 (27)
X max~Xmin
2
where with ¥ we indicate
_ 2wd ?
X cD

We see thus, that the amplitude of the multifrequency backprojection decays much
faster then that of the monochromatic one. This happens if all the backprojections have
the proper phase. If we take the position of the first zero of the modulus of the sum as
the effective width of the wideband backprojection we have:

2d?

D X(f max'“f min) =1

_ <D _ DX,
2B 2

Now X, 1is the wavelength corresponding to the bandwidth and not to the central fre-
quency. This also corresponds to the Fresnel zone of the central frequency, in the case
where 1., is equal to O.

The key point of this section is the following: the width of the multi-frequency
backprojection is inversely proportional to the bandwidth. The wider that band, the

closer we get to ray theory. The central frequency is irrelevant.
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With a quick calculation, we can see that this width is not negligible at all, for
seismic data. Let us suppose that the seismic band extends from 10 to 70 Hz; that is, we
have an equivalent Fresnel frequency of 30 Hz. If the distance SG is, say 5 km, (in the
case of reflected sources, that is the most interesting for our purposes) and if the medium
velocity is 2.5 km/sec, then the backprojection width is 600 m. The equivalent
beamwidth of the ray is close to 14° . We should better consider this, prior to backpro-
jecting along very thin lines ( 0° aperture) as is usually done in seismic tomography.
This fact has been discussed previously (Woodward, 1986; Woodward, 1987).

If we now take into account this width, we know that there is going to be some
dispersion, since the variation of the medium velocity will not be negligible on this scale.
This entails even wider backprojections; thus we see how informative it should be to
measure the actual phase of the windowed wavefield, instead of lumping all these meas-

urements into the single reading of a traveltime.

In conclusion we have indicated that the usual lateral variation of velocity is
sufficient to generate enough dispersion of the seismic ray to be measurable. These meas-
urements should be helpful for the inversion. Moreover, the effects of a measurement at
a geophone location are backprojected on a very wide area. All this is equivalent to say-
ing that traveltime tomography has to be extended to bandpassed traveltime backpro-

jection, or Rytov approximation.

BORN AND RYTOV APPROXIMATIONS

Up to now, we referred implicitly to the Born approximation. We shall now see
that in the case of the analysis of the direct arrivals, or as we shall see later, the direct
arrivals of the reflected sources, the Rytov approximation is more valid. Hence, the name
given to the region in the spectral domain relative to the direct ray is R region, (for
Rytov). This region mostly occupies the space close to the origin of the coordinates, i.e.

the low wavenumbers ( p = 0).

Following Slaney (1984), the limits of the two approximations are:

L% < % (Born ) (29)
% < (%Aq&s )2 (Rytov). (30)

In (29), L is the width of the zone where the velocity v changes. In other words, the
velocity variations with respect to the background should integrate to less than a =

phase shift for the Born approximation to be valid.

In the case of the Rytov approximation, the integral can be large, but it is the
change of phase per unit distance A¢$, times one wavelength that limits the validity of
the approximation. In one case, fast but small changes can be accepted; in the other, big

but slow changes are expected.
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but slow changes are expected.

In the case of the Born approximation, the background velocity has to follow the
real one closely so that the updating velocity field found in the inversion stage, (the gra-
dient), at least has the correct sign. The usual way (Tarantola and Valette, 1982; Kolb
et.al., 1986) to solve this problem is to to build up the velocity field starting with the
lower frequencies and then progress to the highest, adding more and more wavenumbers.
This process can be very slow.

In ray tracing tomography, by contrast, the correction to the velocity field is a
linear function of the traveltimes, that are a nonlinear function of the data. With correct
time picks, the velocity will be properly corrected and the sign of the update will not be
mistaken., We see that it can be useful to merge these two types of corrections so that
the convergence to the final solution is as fast as possible. In order to have a correct
merger, it is necessary to reconcile traveltime tomography with the wave-equation. This

will be carried out using diffraction tomography applied to the reflected sources.

It is easy to see that the Born approximation is very poor in the case of direct
arrivals. For example, a layer 100 m thick, that has a velocity 700 m/sec different from
the background, will introduce a phase shift to a crossing ray that reaches 7 at the fre-
quency of 32 Hz (obviously much beyond the Born limit). For these situations, we have
to use the Rytov approximation. If equation (30) is satisfied, the Rytov approximation
implies that the logarithm of the spectrum of the scattered wavefield, if transformed
back in time and convolved with the unperturbed wavefield, is a linear function of the
velocities. Using the Born approximation, we backproject the difference between per-
turbed and unperturbed fields, and the update of the velocity field is linearly related to
the input data. Using the Rytov approximation, we backproject in the same fashion the
anti-transform of the log of the ratio of the two fields in the frequency domain. To clar-
ify this concept, we give an example of what this means in the next section. In practice,
we backproject the unperturbed field scaled with the differential traveltimes, that could
be frequency dependent. The update of the velocity field is now non-linearly related to

the input data.

Rytov approximation and the traveltimes

Here we summarize the Rytov approximation, and then interconnect it with travel-

time tomography. Following Slaney again, the perturbed wavefield is
W(r w) = ¢ ¥ w) (31)

where ¢ is a complex function of space and frequency. If we decompose the wavefield in

the frequency domain multiplicatively, we get:
O(r w) = Py(r ,w) + ®,(r w), (32)

where ®, corresponds to the unperturbed field and ®, is the differential phase shift,

therefore proportional to the differential traveltime. In the case of pure delays, we get:
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exp|-j wr{z )] = exp[-j wro( )] exp[-j wry (2 )], (33)
where the 7{z)’s are the effective traveltimes in the perturbed medium and 7y and 74
are the unperturbed traveltimes and the perturbation, respectively.

The Rytov approximation implies that

2 '
S,(r)= \jtfc(:)xflG(r—r’)\I/(r’)ATv(—éf;—)ldr’, (34)

where G is the Green’s function and ¥(r ) is the incident wavefield and kg=w/c . Let
us now suppose that the unperturbed wavefield is a pulse arriving at time 7o(z ). Decom-

pose the perturbed wavefield measured at the abscissa x in a sum of spikes:
r(t 2 ) = Zry (23 )6[t —mi (21 )-ro( = )]- (35)
In the frequency domain we then have:

R (z; w) = Xr; ¢TIV g duw), (36)

It can be shown (Angeleri, 1983):
sinw(7,, -7, )

AT —=Tn )

pw) ~ = Jw(THEr, ry Ty ) (37)
where

2
ri'T

7
ETi

T=1Ty+ 2 (38)
Apart from the term jw that has to be combined with the Jacobian of the transforma-
tion and that can be modified by considerations based on the signal to noise ratio, we see
that the wavelet u(t) (anti-transform of p(w) ) is approximately a pulse with amplitude
7T, the average differential traveltime, to which several square wavelets are added. The
square wavelets have a duration of 2(r,, -7, ) and amplitude r, r, 7, . Thus, if we use
traveltimes only, we neglect these wavelets. Besides, we should evaluate the traveltimes
according to (38). Otherwise we can try to determine directly the unwrapped phase
characteristic ®,4(r ,w) and log amplitudes from the scattered wavefield and use their
antitransforms. Cellular automata techniques for two-dimensional phase unwrapping are
now available that could help solve this problem (Ghiglia et.al. 1987).

MULTIPLE SOURCES AND GEOPHONES

If we had several sources and geophones, we could find the results of wave-number
domain diffraction tomography again, provided that we had enough of them to be able
to generate plane waves or to receive only along plane waves. This is the case for a dis-
tribution of geophones and sources all along a seismic line. In the latter situation we
have many backprojections, each one of them being a constraint upon the spectrum of

the scatterers.
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If the constraints are linearly independent, i.e. if the linear transformation is well-
conditioned, then we can find the spectrum of the scatterer in this region. This is exactly
the plane wave experiment that we considered in the first section. However, we are now
in the situation where both o, and «, could be perfectly determined; therefore the

measurement would refer to a particular point of the object spectrum.

The previous discussions show that it is not really so. A muting velocity vy will
keep a greater than ¢ /v, ; for example, if vo=c /\/5 then a >v?2 | so that we recover
the spectrum of the object in the region B of Figure 5, only.

Indeed, we could use the direct arrival as we do in refraction statics. Seismologists
use normal mode theory to derive information on the vertical layering from the phases of
the refracted arrivals. In principle, we could do the same thing in exploration seismics. In
light of this it could be interesting to analyze the phases of the refracted waves to see if

we could gather more information from their dispersion.

However, the normal industrial practice is to recover the trend of the velocities,
that is the low wavenumber region in Figure 5, from velocity analyses that could be gen-
eralized to traveltime tomography (Schuster, 1988; Toldi, 1985). This corresponds to
using the images of the surface sources (as they are reflected on flat subsurface layers) as
buried sources (Mora, 1987; Mora, 1987b). We could investigate the phases of these

arrivals, besides their traveltimes.

If we had a perfectly horizontal layer, then the secondary sources would appear all
along the thin line in Figure 7. We will not discuss now the problems of ambiguity due
to the lateral changes of this layer (Stork and Clayton, 1986, 1987).

Surface X
>

reflecting layer

line of reflected sources

FIG. 7. Surface sources reflected on a flat layer.
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Diffraction tomography can be directly applied to this geometry; this is the crosshole
geometry (Miller et al. 1987; Wu and Toksoz, 1987), on the folded medium (Fawcett and
Clayton, 1984). This geometry could induce us to believe that we could recover the
spectrum of the scatterer in a region identical to that hatched in Figure 5. We could
then fill the seismic gap in the object wavenumber domain, i.e. the gap between the
wavenumbers that can be determined using reflection seismics and those that can be
found from extended velocity analyses. Unfortunately, this is not the case, as we shall

soon see. Buried sources in a crosshole experiment are much better then reflected sources.

The first problem results from the limitation of the cable length. This limits the
observation angles, and therefore delimits the angular width in the spectral domain
where we can carry out the inversion. A second problem, also relevant, is that Region B
in the spectrum of the secondary source backprojections really corresponds to reflections
of reflections: in other words, it describes second order multiples. Even though multiples
can be a source of severe problems, they are not sufficiently reliable that we can count

on them to carry out an inversion.

Later signals may not be due to reflections coming from the source reflecting on the
same layer, but most probably from completely different types of arrivals, i.e. reflections
of the same source but on other layers, and therefore equivalent to different sources. In
fact, we must not mix travelpaths correspondent to the same (reflected) source and
different scatterers with travelpaths corresponding to different (reflected) sources. Hence,
to select the proper events, the wavefield has to be windowed in a rather short time win-
dow after the arrival of the reflection. Alternatively, one could use wavefield decomposi-

tion techniques like those proposed by Harlan (Harlan, 1988).

If we limit this window to say, 109 of the traveltime, we conclude that we can
expand the domain of inversion relative to traveltime tomography, but not as much as
we would have liked. The situation is much better if we can use reflected sources up to
a=Vv2. In Figure 8 we show the spectrum of the backprojections of reflected arrivals
windowed with @ =1.1 (A) or a =v?2 (B). The downgoing rays make an angle with the
vertical smaller than 30° . To avoid a cluttered picture we have restricted the beamwidth

of the backprojection to 30° .

We have to remark here that P. Mora (1987) in his thesis also used reflected sources
for inversion. He also advocated to boost these reflections of reflections by dividing by
the reflection coefficient of the flat layer that reflects the source. The very interesting
results that he achieved may also be due to the quite noticeable reflection coeflicient he
hypothesized in his simulation. This effect i1s illustrated in his Figure 5.6, where the

second order multiple appears at about 1 sec traveltime in the middle of the section.
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FIG. 8. Spectrum of the backprojection of the reflected arrivals, windowed out after
10% (A) or 41% (B) of the traveltime. Downgoing rays make an angle with the vertical
smaller than 30° .

MODELLING AND INVERSION WITH WAVE-EQUATION TOMOGRAPHY

The analyses carried out in the previous section could have noticeable implications
for a better modeling of first arrivals. They might improve upon current ray tracing
procedures. First and foremost, it is necessary to average the medium according to
equation (27). At the same time, the inhomogeneity of the medium should be taken into
account since the backprojections change with frequency. Instead of rapid traveltime
variations, we should thus see continuous phase shifts in the modelled data. At the
same time, this technique will make clear the impossibility of recovering the spectrum of
the object in the null zone; in the case of the analysis of the traveltimes of reflections off
plane layers, the width of the null zone has, however, been seen to be dependent on the
time windowing of the reflections and therefore upon the presence of other nonrelated
reflections. There is no absolute way of finding out how wide this null zone may be. We
must examine the real data case by case. Again, the problem of ambiguity between mir-
ror and medium should be studied, too. These observations could simplify the pseu-

doinversion, and allow introduction of a more physical parameterization of the data.

Several applications can be envisaged: for example passive seismics, refraction data
inversion, and the use of wavefields generated by drill bit noise. In these cases, most of
the retrievable information comes from the inversion of direct arrivals. These sequences
may have great length, so that the phase shifts could be measured with great precision,

particularly in the case of harmonic or quasi-harmonic sources.

SEP-57



Rocca and Woodward 43 Wave-equation tomography - 11

It will be interesting to see, in these cases, if the Rytov inversion of the phase shifts
of the direct arrivals could be more effective than the Born inversion of delayed

reflections.

CONCLUSIONS

In this paper, we have tried to analyze the numerous problems that still have to be
solved to be able to better use the information carried by direct arrivals and direct
arrivals of reflections off flat layers. We were able to calculate the spectrum of the
monochromatic as well as the wideband backprojection. We do so not only when the
offset is small with respect to the depth of the scatterer, but also in the opposite case,
i.e. for the direct ray. Then, we have seen that the Rytov approximation is more con-
venient and we have seen how this corresponds to analysis of bandpassed traveltimes
and log amplitudes. In the seismic range of frequencies, the width of the backprojection
of the unperturbed wavefield is nonnegligible; consequently, dispersion phenomena have

to be modeled first and inverted thereafter.

In the case of sources reflected by flat layers, we have seen that while they might
not be as good as buried ones, they still carry relevant information, besides traveltimes.
This information has been neglected up to now. One problem to be addressed very care-
fully is the ambiguity between reflecting layers acting as laterally-varying mirrors and

the lateral variations of the medium.

Hope of filling the seismic gap is very small indeed. However, the feeling that we
are not doing all that we could is also very strong. Future research effort should be
intensely devoted to analyzing whether it is possible to reap good results from real data,

or whether these considerations have to be confined to synthetic examples.
APPENDIX 1

Convolution of Green’s functions in the frequency domain

Results obtained from the elementary techniques used in the section on the spec-
trum of the monochromatic backprojection can also be extracted from the observation
that the backprojection is the product of Green’s functions centered at the source and at

the receiver. In the Born approximation, the scattered field is

\I/(r)zf,O(r’)G(s—r’)G(r—r’)dr’ (A1)

and therefore the backprojection is:
B(r)=G(s-r)G(g-r). (Al2)

This expression was used in the section that dealt with the width of the ray. We can
now calculate, approximately, the Fourier transform of B(r) as the convolution of the

spectra of the Green’s functions. We shall approximate the result as follows: we know
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that the spectrum of the Green’s function will peak at the values of k, ,k, ,k, , satisfying

the dispersion equation in three or two dimensions, respectively:

2
b 2k kP = 2 (A12)
c
2 2 w?
The spectrum in 2-D is:
1
Hofky b)) = ——2—. (AL4)
w——sz—kz2
2
c
In three dimensions it is:
1
H3(kz 7ky 7kz) - w2 . (AI5)
2 5.2 52
7—1% —k, "k,

Approximating the spectrum with a circular annulus that has width d and radius 1/2 in
our normalization, and calculating the convolution, we see that the intersections of the

two annuli are located at (Figure All)

oY

FIG. AIl. Convolution of two Green’s functions in the wavenumber domain.
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w' = Lsing C‘;S“) Vip? (Al6)

v! = gcosﬁ -+ 51‘1;0 \/l—p 2

The amplitude and phase can be calculated by taking the phase shifts induced by the
centering at the source and geophone locations into account, and then evaluating the

area A of the intersection (Figure AI2):

FIG. AI2. Intersection of the two annuli in the wavenumber domain.

sin2~y
where
2w .
p = =Zsiny . (AI8)
c
Thus,
A = 1
1-£°
g 40?

The results are consistent with those found in the section on monochromatic backprojec-
tions. In the case of three dimensions we have spherical shells instead of circular annuli.

The volume of the intersection shaped as a torus with the section in Figure AIl and

radius \/1—p2c 2/4cu2 , Is proportional to A =1/p . This analysis could be made much
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more precise along the lines indicated in Wengrovitz et al., (1987), but the coincidence of

two approximate results obtained from independent evaluations is useful.
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