Wave-equation tomography: I

Marta Jo Woodward

ABSTRACT

Wave-theoretic, diffraction tomography is usually formulated in the spatial-
frequency domain. This paper reformulates the method in the space domain, for
the purpose of clarifying its relation to ray-theoretic tomography. Where ray-
theoretic tomography projects traveltimes back over raypaths, space-domain,
wave-equation tomography projects differential wavefields back over wavepaths.
Comparison of raypaths and wavepaths reveals the different assumptions the
two methods make about the seismic experiment: specifically, about ampli-
tudes, frequency dispersion and event discrimination. Through examination of
these assumptions, wavepaths are identified as monochromatic raypaths, and
bandlimited raypaths are defined as wavepaths averaged over frequency. Exam-
ples of ray-theoretic and wave-equation tomographic inversions are shown for a
finite-difference data set.

INTRODUCTION

Seismic tomography iteratively reconstructs a velocity field from integrals through
the field. When the field varies slowly on the scale of the source wavelengths,
phase velocity and group velocity are equivalent; the medium is nondispersive and
ray-theoretic, traveltime tomography may be applied. For each event and each
source-receiver pair, a single traveltime delay is picked and backprojected over the
corresponding raypath. When the field varies rapidly on the scale of the source
wavelengths, phase velocity and group velocity are not equivalent; the medium is
dispersive and wave-theoretic, diffraction tomography must be applied. The scat-
tered wavefield is backpropagated using the scalar wave equation, after linearization
through application of either the Born or Rytov approximation.
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Diffraction tomography has usually been presented in the Fourier domain, for
single frequency sources (Devaney, 1982; Slaney, 1984; Wu and Toksoz, 1987). This
paper formulates diffraction tomography as a multifrequency backprojection prob-
lem in the space domain. Just as traveltime delays are projected back over source-
receiver raypaths in ray-theoretic tomography, scattered amplitudes and phases may
be projected back over source-receiver wavepaths in wave-equation tomography. The
wavepaths are described by elliptical, multiple-Fresnel-zone patterns, calculated for
each source frequency to accommodate dispersion.

This paper is organized into six main sections. The first four discuss the theory
of wave-equation tomography: they derive ray-theoretic and wave-equation tomog-
raphy in a parallel fashion, then compare their respective raypaths and wavepaths.
The fifth section introduces a cross-hole geometry, finite-difference data set, and
examines wave-equation tomography as a forward-modelling method similar to ray-
tracing. The sixth section addresses the sampling problem in space-domain, wave-
equation tomography, and shows inversions of several subsets of the data set. This
paper is meant to complement another in this volume (Rocca and Woodward, 1988),
which presents many of the same ideas from a different viewpoint.

TOMOGRAPHIC EQUATIONS

Ray-theoretic tomography

Seismic tomography reconstructs a velocity field from integrals through the field
(Fawcett and Clayton, 1984). In ray-theoretic applications, the integrals are trav-
eltimes measured for shot-geophone pairs (s,g). They correspond to integrations
along raypaths through the velocity field expressed as slowness (w):

t(g|s) = / w(r)L(r|s, g, w)dr. (1)

Because L(r)—the raypath—is a function of w, the problem is nonlinear. The
equation is generally linearized in two steps. First, the slowness field is decomposed
into a background field plus a perturbed field:

to(gls) = / wo(r) Lo(r|s, g, wo) dr (2)

At(gls) = / Aw(r)L(r|s, g, w)dr. (3)

Second, using Fermat’s principle, the raypath is approximated by the raypath
through the background field:

At(gls) = / Aw(r) Lo(r|s, g, wo)dr. (4)

Consideration of a number of shots and geophones generates a system of equations—
LAw = At—that can be solved by any of a number of matrix methods. The non-
linear part of the problem is attacked iteratively, by forward modelling (raytracing)
through the updated field after each linear step.
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Wave-equation tomography

Wave-theoretic tomography may be formulated in an analogous fashion. The
equations are developed here in two ways: the first leading to a linearization of
the scalar wave equation with the Born approximation; the second leading to a
linearization with the Rytov approximation.

For the Born approximation, the differential traveltimes of ray-theoretic tomog-
raphy are replaced by complex numbers. These are differential, frequency-domain
wavefields—A(w)—measured for shot-geophone pairs. The monochromatic analog
of Equation 3 is:

au(gls) = [ O()G(g - r)¥(xls, O)dr, (5)
(Slaney, op. cit.). Here G is the free-space Green’s function: for 3-dimensions,
G(r) = eikolrl; (6)
4r|r|
for 2-dimensions, .
G(r) = H (kolrl). (7)

(H(gl) is a zero-order Hankel function of the first kind and ko = w/vo.) O(r) is known
in the literature as the object function, the differential velocity field expressed as

or) = 2k§%. (8)

Interpreted physically, Equation 5 says the anomalous wavefield at a specific geo-
phone is generated by superposition: each point in the medium acts as a scatterer,
with a magnitude equal to the product of the full wavefield and the object function
at that point. Interpreted algorithmically and rewritten as:

av(gls) = | Av(r) i g, v)dr, (9)

v(r)

the equation says the differential wavefield is an integration through the differential
velocity field over the monochromatic wavepath L. As in the ray-theoretic applica-
tion, £ (specifically, ¢) is a function of O, and the problem is nonlinear. Under the
Born approximation, the equation is linearized by assuming the wavepath £ to be
independent of the differential velocity field, yielding the analog of Equation 4:

Ay(gls) = / L?:EI(’;) Lo(r|s, g, vo)dr. (10)

For a point source at s, 1, is the free-space Green’s function, and

Lo(r|s) = 2k3G(g — r)G(s — r). (11)
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The Born approximation applies where the magnitude of the differential field
(Av) is smaller than that of the incident field (1o)—implying the change in phase
between the incident field and the wave propagating through the object is less than «
(Slaney, op. cit.). In practical terms this restriction means the Born approximation
can deal with large deviations in the velocity field, confined to small regions in space.
This last requirement corresponds poorly with the assumptions of ray-theoretic
tomography. Wave-equation tomography under the Born approximation and ray-
theoretic tomography cannot usually be applied to the same velocity field.

For the Rytov approximation, the traveltimes of ray-theoretic tomography are
replaced by the differential complex logarithm (A¢ = In(¢¥/vy)) of the frequency
domain wavefields—measured for shot-geophone pairs. The monochromatic analog

of Equation 3 is:

G(r)o(r|s

a(ls) = [ CEIUE) (9(ag(ris, 0))2 + O@)ar, (12)
Po(gls)

(Slaney, op. cit.). This equation is more difficult to interpret physically than the

Born equivalent. However, under the Rytov approximation, (V(A¢))? is assumed

to be much smaller than O, and Equation 12 becomes

Glg —
2d(el) = [ o) HEIE) (13)
This equation may then be rewritten as:
Ad(gls) = / Av’zg) Lo(r|s, g, vo)dr (14)

—and the differential complex phase again viewed as an integration through the
differential velocity field over a wavepath. For a point source at s, v is the free-
space Green’s function, and

G(g—-r)G(s—r)
G(s — g)

Lo(rls) = 242 (15)

The Rytov approximation holds where the change in the logarithm of the scat-
tered wavefield over one wavelength is small (Slaney, op. cit.). While the approxi-
mation works best in applications where velocity variations are small in magnitude,
no limitations are placed on the spatial extent of the anomalous velocity field. The
Rytov approximation is more likely than the Born approximation to apply where
the assumptions of ray-theoretic tomography are met.

Whereas ray-theoretic tomography forms a system of equations through consid-
eration of a number of shots and geophones, wave-equation tomography forms a
system of equations—LAv/v = Ay or LAv/v = Ad—through consideration of a
number of shots, geophones and frequencies. As before, the nonlinear part of the
problem is attacked iteratively, by wave-equation modelling through the updated

SEP-57



Woodward 5 Tomography

field after each linear step. The fifth and sixth sections of this paper show examples
of wave-equation tomography applied to forward modelling and inversion.

WAVEPATHS

Born and Rytov approximation examples of £ for monochromatic, 5 and 10 Hz
sources in a cross-hole geometry are shown in Figures 1a through 1d. The applicable
background velocity field is a constant 2000 m/s; the sources and geophones are sep-
arated by 2000 m, and the source wavefields are 2-dimensional Green’s functions.
Note that each wavepath has a real and an imaginary part. While the complex
absolute values of the wavepaths decay as 1/ \/ (g — r)(s —r), the phase of the pat-
terns oscillates from 7 to —w. Contours of the real and imaginary wavepaths yield
concentric ellipses, with sources and geophones located at the foci.

In the Rytov wavepath, phase and amplitude separate naturally—just as time
delay and amplitude separate in ray-theoretic tomography. When multiplied by
the object function, the imaginary part of the Rytov wavepath yields the phase
delay between 9(w) and ¥p(w); the real part of the wavepath yields the log of
the amplitude ratio, In(|y(w)|/|o(w)|). The imaginary part of the pattern passes
through zeroes at the boundaries between the first, second, third, etc. Fresnel zones.
A scatterer within the first Fresnel zone generates a wavefield reaching the geophone
within a half wavelength of the source wavefield: a low velocity scatterer produces a
phase delay; a high velocity scatterer produces a phase advance. A scatterer in the
second Fresnel zone generates a wavefield reaching the geophone between a half and
a full wavelength behind the source wavefield: a low velocity scatterer produces a
phase advance; a high velocity scatterer produces a phase delay. Similar arguments
about amplitudes explain the ups and downs of the real part of the Rytov wavepath.

In the Born wavepath, phase and amplitude are intermixed. When multiplied
by the object function, the real part of the Born wavepath yields Re(y(w) — ¥(w));
the imaginary part of the wavepath yields Im(y(w) — ¢(w)). Neither of these
quantities have analogs in ray-theoretic tomography. The quantities do have analogs
in migration theory, and the ellipses in the Born wavepaths are closely related to
migration ellipses.

WAVEPATHS VS. RAYPATHS: SPACE DOMAIN

Figure le shows a raypath, the ray-theoretic equivalent of the Rytov wavepaths
in Figures 1a and 1c. Three major differences between the raypath and the wavepaths
should be noted. First, while integration through a velocity field along a ray-
path yields one measurement—a traveltime—integration along a wavepath yields
two measurements—one real and one imaginary. Second, while ray-theoretic to-
mography projects information back over one raypath for each shot-geophone pair,
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Im(L) Re(L) £

a) 5 Hz wavepath: Rytov approximation

Im(L) Re(L) |£|

b) 5 Hz wavepath: Born approximation

FIG. 1. (a), (b) Rytov and Born approximation wavepaths £ for a 5 Hz source,
respectively. Parts (c), (d), and (e) are on the facing page.

wave-equation tomography projects information back over one wavepath for each
frequency considered. Third, while a raypath interrogates a small region of the
velocity field, a wavepath interrogates the whole field. Analysis of these differences
reveals the contrasting assumptions ray-theoretic and wave-theoretic tomography
make about the availability of information in the seismic experiment. The following
three subsections examine the implications of these differences.
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Im(L) Re(L) |Z]

c) 10 Hz wavepath: Rytov approxirhation

Re(L)

d) 10 Hz wavepath: Born approximation

L

e) raypath

FIG. 1. (c), (d) Rytov and Born approximation wavepaths £ for a 10 Hz source;
(e) the raypath L equivalent of L.
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Amplitudes

The first difference underlines the fact that, by ignoring amplitudes, ray-theoretic
tomography discards half of the information in the seismic experiment. It also
emphasizes that ray-theoretic tomography must be compared to wave-equation to-
mography under the Rytov approximation, and not under the Born approximation.
Amplitude and phase separate in the Rytov formulation of diffraction tomography.
The differential traveltimes of ray-theoretic tomography correspond directly with
the differential phases measured by the imaginary Rytov wavepaths. The fact that
ray theory corresponds more closely to wave-equation tomography under the Rytov
assumption than under the Born assumption is not surprising, upon recollection of
the types of velocity fields to which each applies.

Frequency dispersion

Ray-theoretic tomography is usually described as applying under the high fre-
quency assumption—where the spatial wavelengths of the seismic source are much
smaller than the characteristic dimensions of the velocity field (Bleistein, 1984).
With a bandlimited source, an alternative expression of the high frequency assump-
tion might be that the velocity field is nondispersive: i.e., that all the frequencies in
the seismic wavelet undergo phase shifts corresponding to a single time shift—that
phase velocity and group velocity are equivalent.

Wave-equation tomography backpropagates scattered wavefields using the scalar
wave equation. Consequently, perturbations to the wavefield are allowed to affect
separate frequencies differently. Phase velocity and group velocity need not be
equivalent; the medium can be dispersive.

This contrast between wave-equation tomography and ray-theoeretic tomog-
raphy explains the second difference between the wavepaths and raypath of Fig-
ure 1: ray-theoretic tomography projects information back over one raypath for
each shot-geophone pair; wave-equation tomography projects information back over
one wavepath for each frequency considered. Ray-theoretic tomography lumps the
single frequency experiments of wave-equation tomography into one equation.

This contrast also suggests a redefinition of ray-theoretic tomography as a sub-
set of wave-equation tomography. The method may be viewed as wave-equation
tomography under the Rytov approximation—with the addition of a nondisper-
sive constraint. A nondispersive medium implies the phase shifts experienced by
each frequency (normalized by frequency) are equivalent. This assumption means
that the imaginary parts of the Rytov wavepaths (normalized by frequency) may
be summed over all frequencies without loss of information. Clearly, summing the
imaginary wavepaths of Figure 1 over frequency yields narrow wavepaths resembling
fat, elliptical raypaths: the rapidly oscillating, outer regions cancel; the smooth, in-
nermost regions corresponding to the first Fresnel zones add. Figure 2a shows one
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Im(L) Re(L) |£]

FIG. 2. Bandlimited (fat) raypath formed by integrating monochromatic wavepaths
from 5 to 30 Hz. Artifacts resulting from the summation sampling interval have
been removed.

of these fat raypaths, formed by integrating Rytov imaginary patterns from 5 to 30
Hz, with spatial dimensions analogous to those in Figure 1.

If nondispersive (frequency invariant) amplitude information is added into this
definition of the ray, the real part of the fat raypath appears as in Figure 2b. Fig-
ure 2c shows the complex absolute value of the bandlimited raypath. The accom-
panying paper (Rocca and Woodward, 1988) proves the width of the bandlimited
raypath depends on the width of the frequency band summed over, not on the
central frequency of the band. The bandlimited raypath collapses to the familiar
picture of Figure 1e for infinite bandwidth.

Substitution of a fat raypath for a traditional raypath adds a priori informa-
tion to a ray-theoretic inversion, effectively reducing the null space of the problem
(Woodward, 1986; Woodward, 1987). Of course, as with ray-theoretic tomography,
it may accurately be used only where no dispersion is observed.

Event discrimination

The preceding subsection explained the third difference between wavepaths and
raypaths as a side-effect of the second, ascribing their dissimilar spatial extents to
ray-theoretic tomography’s dual assumption of infinite bandwidth and nondisper-
sion. This section reexamines the problem from another viewpoint: the difference
is attributed to the contrasting ways in which ray-theoretic and wave-theoretic to-
mography discriminate events in the time domain.

In real data, events usually overlap. If the events result from perturbations
to the same background velocity field, the overlap poses no difficulty—the events
are essentially one event. If the events require linearization of the problem around
different velocity fields, they must be distinguished—and separated by windowing.

SEP-57



Woodward 10 Tomography

Im(£) Re(L) |£]

FIG. 3. Bandlimited raypath formed by integrating monochromatic wavepaths from

5 to 30 Hz, after modulation by ¢*“Af, At = .41 seconds. Artifacts resulting from
the summation sampling interval have been removed.

Windowing an event in the time domain smooths the event in the frequency
domain. This smoothing corresponds to averaging wavepaths in the space-domain
over frequency. Ray-theoretic tomography assumes a window length of one time
sample. For a single-sample window, a single, complex data point is obtained in
the frequency domain—the average data point. As shown in the preceding section,
averaging wavepaths from zero to Nyquist produces a fat raypath. For ray-theoretic
tomography, the averaging only discards what is assumed to be redundant infor-
mation, given the nondispersive constraint. For dispersive media, the averaging
discards nonredundant information.

Wavenumber-domain diffraction tomography, as usually implemented, requires
a time window of infinite length and wavepaths of infinite extent. Space-domain,
wave-equation tomography is more flexible: time windows may be acknowledged by
averaging monochromatic wavepaths over frequency as necessary. The narrower the
window: the more global the average; the less information available; the narrower
the wavepath. The broader the window: the more local the average; the more
information available; the broader the wavepath.

These shrinking and expanding wavepaths have an intuitive, physical explana-
tion in the space domain. Energy scattered by a point in an anomalous velocity
field that is far from the shot-geophone axis reaches the geophone long after en-
ergy scattered by points along the axis. Wavepaths of infinite extent are applicable
when distant scatterers are detectable—when time-domain data is of infinite length.
Wavepaths of finite extent are applicable when distant scatterers are ignored—when
time-domain data is windowed around an average (group) arrival time.

This analysis also suggests a third example: windowing time-domain data around
a low energy portion of an event, trailing the group arrival by At. Figure 3 shows
the result of summing wavepaths from 5 to 30 Hz, after multiplication by e“2¢,
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FIG. 4. Two-dimensional spatial-amplitude spectra: (a) 5 Hz wavepath; (b) 10
Hz wavepath; (c) raypath; (d) bandlimited raypath of Figure 2; (e) bandlimited,
modulated raypath of Figure 3. Plots (a), (b) and (c) are shown at the same scale
(kmaz = 2ko, ko = 27 - 10/vy), origins in the center. Plots (d) and (e) are shown at
one-third the scale of (a), (b) and (¢) (kmqsz = 2ko, ko = 27 - 30/vy), origins in the
center.

While the width of a time window determines the magnitude of space examined by
a seismic experiment, the positioning of the time window determines the region of

space examined.

WAVEPATHS VS. RAYPATHS: WAVENUMBER DOMAIN

Figures 4a, 4b, and 4c show the two-dimensional spatial-amplitude spectra of the
5 and 10 Hz wavepaths (they are the same for both the Born and Rytov patterns)
and of the raypath. Both ray-theoretic and wave-theoretic tomography are most
sensitive to spatial frequencies representing velocity variations paralleling the shot-
geophone axis and least sensitive to those perpendicular to the axis. The wavepaths
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FIG. 5. Upper plot: monochromatic 5 Hz wavepath and spatial-amplitude spec-
trum resulting from replacement of the source Green’s function in Equation 15 by

H((,z). Lower plot: monochromatic 5 Hz wavepath and spatial-amplitude spectrum
resulting from replacement of the geophone Green’s function in Equation 15 by

H?.

have a maximum spatial frequency twice that of the source wavefield, approached as
a limit by the spacing of the most distant concentric ellipses. The broad coverage
of the spatial-frequency domain by the transformed wavepaths results from the
assumption of infinite window length in the time domain. Averaging the wavepaths
in the space domain reduces their extent in the spatial frequency domain. Figures
4d and 4e show the spatial-frequency amplitude spectra of Figures 2 and 3—the
finite wavepaths formed by averaging infinite wavepaths from 5 to 30 Hz.

The characteristic holes in the spatial-amplitude spectra of the monochromatic
wavepaths arise from a causality (source/sink) condition placed on the source and
geophone Green’s functions in Equation 15. The elliptical wavepaths are formed
when the Green’s functions are set equal to zero-order Hankel functions of the first
kind. Replacing either the source or the geophone Green’s function with a zero-
order Hankel function of the second kind (the complex conjugate of Hél) ), yields the
wavepaths and spatial-amplitude spectra shown in Figure 5. The familiar ellipses
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Velocity field
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FIG. 6. Velocity field for the finite-difference modelled synthetic data set.

(the locus of points the sum of whose distances from source and geophone is con-
stant) have been replaced by hyperbolae (the locus of points the difference of whose
distances from source and geophone is constant). Physically, this transformation
results from the replacement of an exploding, causal source by an imploding, anti-
causal source. Just as energy from an exploding source that is scattered by points
along a single ellipse reaches a geophone in phase, energy from an imploding source
scattered by points along a single hyperbola reaches a geophone in phase. This
point is addressed more fully in the accompanying paper (Rocca and Woodward,
1988).

NUMERICAL EXAMPLE—FORWARD MODELLING

This section provides a qualitative analysis of a finite-difference generated seis-
mic experiment, consisting of one shot and multiple geophones in a cross-hole geom-
etry. The purpose of the section is both to familiarize the reader with the complex
data used in wave-equation tomography, and to emphasize the conceptual simplic-
ity with which wavepaths forward model the data. The section is divided into two
subsections. The first describes the experiment; the second examines the data.

The experiment

Figure 6 shows the velocity field used for the experiment: it consists of an
anomalous circular region 500 m in diameter, with a velocity 5% below that of the
2000 m/s background. The shot was positioned on the surface, directly above the
anomaly; the geophones were positioned at a depth of 2000 m, up to an offset of
2000 m on either side. The source wavelet was the second derivative of a Gaussian
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FIG. 7. (a), (b) Shot profiles generated by finite-difference modelling through the
constant background and full velocity fields of Figure 6, respectively. The data was
clipped to emphasize the scattered energy.
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FIG. 8. The data used by Rytov wave-equation tomography. The graph on the left
shows the phase delay between the perturbed and unperturbed shot profiles, plotted
as a function of frequency. The phase delay has been normalized by frequency and

expressed in seconds. The graph on the right shows In |¢(w)| — In|¢(w)]|, plotted
as a function of frequency. The solid, dashed and dotted lines indicate offsets of O,
360 and 1060 m, respectively.

curve, bandlimited from approximately 5 to 30 Hz. Figures 7a and 7b show shot
profiles generated by finite-difference modelling through the constant background
field and the full field, respectively. The recording time was long enough that infinite
time windows could be assumed. The circular anomaly was designed to satisfy the
assumptions of the Rytov approximation.

The data

Figure 8 shows the data used by Rytov, wave-equation tomography for three
traces of Figure 7 (offsets 0, 360 and 1060 m). The leftmost graph plots differential
phase as a function of frequency; the rightmost graph plots log-amplitude ratio as a
function of frequency. The differential phases are presented as time delays, having
been normalized by frequency. In the interest of brevity, this discussion is confined
to analysis of the phase plots—and consequently of the imaginary part of the Rytov
wavepaths. Parallel arguments could be presented for the log-amplitude plots—and
the real part of the Rytov wavepaths. Since the real and imaginary parts of the
wavepaths are 90 degrees out of phase, it is not surprising that the log-amplitude
plots resemble the derivatives of the phase plots.

Figures 9 and 10 are meant to illustrate the physical meaning of wavepaths as
forward-modelling tools. Figure 9 overlays outlines of 5, 10, 15, 20, 25 and 30 Hz
first-Fresnel zones and a contoured outline of the circular anomaly—for the three
different offsets. (The reader should recall that the boundary of the first Fresnel
zone is equivalent to the first zero-crossing of the imaginary Rytov wavepaths.) The
absolute maxima in Figure 8 can be predicted by inspection of Figure 9: for each
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FIG. 9. First-Fresnel zones for 5, 10, 15, 20 and 25 Hz are shown superimposed on
a contoured outline of the circular velocity anomaly, for offsets 0, 360 and 1060 m.
The 5 Hz first-Fresnel zone is the widest.
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FIG. 10. The boundaries of the first five Fresnel zones for several frequencies and
offsets are shown superimposed on the circular velocity anomaly.
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FIG. 11. Forward-modelled (dotted) and measured (solid) data for 5 and 10 Hz.

offset, they occur at that frequency for which the first Fresnel zone just encom-
passes the anomaly. When the anomaly protrudes into the second Fresnel zone, it
underlies a negative portion of the wavepath, and contributes to a differential phase
measurement of opposite sign. The 1060 m offset is particularly interesting in that
it predicts a phase advance. For this offset, the anomaly is sensed more strongly by
the second Fresnel zone (and negative part of the wavepath) than by the first.

Several relative maxima and minima in Figure 8 can be predicted by inspec-
tion of Figure 10. Here the boundaries of the first five Fresnel zones for several
frequencies are shown superimposed on the circular velocity anomaly. The sign of
each wavepath alternates from positive to negative, starting with a positive sign in
the central zone. When the edge of the anomaly just grazes the inside boundary
of a negative oscillation, it produces a relative minimum; when the edge grazes the
inside boundary of a positive oscillation, it produces a relative maximum. The plots
illustrate relative minima and maxima at 11 and 17 Hz for the 360 m offset trace,
and at 8 and 11 Hz for the 1060 m offset trace.

Figure 11 compares forward-modelled data and measured data for 5 and 10 Hz.
The solid lines show the real data, the dotted lines the modelled data. For this
data set, full wave-equation modelling was well approximated by linearization of
the wave-equation under the Rytov assumption.
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FIG. 12. The top two panels show the abbreviated imaginary and real parts of
the 10 Hz monochromatic wavepath, for offsets of 1480, 760 and 0 m. The bottom
panel shows the spatial-amplitude spectrum of each wavepath.

NUMERICAL EXAMPLE—INVERSION

This section inverts the data set described in the last section, solving the systems
of equations LAv/v = A¢ and LAw = At for wave-equation and ray-theoretic
tomography, respectively. The section is divided into two subsections. The first
uses the method of singular-value decomposition to evaluate the number of degrees
of freedom available in wave-equation tomography and ray-theoretic tomography. In
addition to a comparison between the two methods, three questions are addressed:
are differential phase and log-amplitude ratios independent; how finely should the
data be sampled in space; how finely should the data be sampled in frequency. The
second subsection compares ray-theoretic and wave-equation tomographic inversion
results, as computed using the linear system solver LSQR (Paige and Saunders,

1982).
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FIG. 13. (a) Singular values for ray-theoretic tomography (solid line) and monochro-
matic 5 (dashed), 7.5 (dotted) and 10 (dot-dashed) Hz wave-equation tomography.
(b) Singular values of (a) overlain by singular values for multifrequency inversions:
5 and 10 Hz (dashed); 5, 7.5 and 10 Hz (dotted); 5, 6, 7, 8, 9, 10 Hz (dot-dashed).

Degrees of freedom analysis

For reasons of computational efficiency the experiment described above was
subsampled. The geophone spacing was increased from 10 m to 40 m and the
maximum offset was reduced from 2000 m to 1480 m. This subsampling translates
to 3700 model parameters and 75 offsets. It also means that the wavepaths were
truncated in space by the dimensions of the model space. The top part of Figure 12
shows the abbreviated 10 Hz wavepaths for three different offsets; the lower part of
Figure 12 shows the spectra of the limited patterns, as they sweep over the (k., k)
plane. Spectral coverage falls off at approximately 2v/2ko (Rocca and Woodward,

1988).

Figure 13 shows plots of singular values computed by an SVD program for
different subsets of the data. Figure 13a compares ray-theoretic tomography to
monochromatic, wave-equation tomography for three different frequencies (5, 7.5
and 10 Hz). Ray-theoretic tomography has 75 significant singular values, one for
each offset (or equivalently, one for each equation). While each of the wave-equation
tomographic inversions had 150 equations (2 equations for each offset), their number
of significant singular values varies by frequency. 5, 7.5 and 10 Hz have from 30 to
60, 45 to 90 and 60 to 120 significant singular values, respectively. This translates
to 4 to 8 degrees of freedom per wavelength, instead of the usual 2. In this case the
extra degrees of freedom come both from the independence of the amplitude and
phase measurements, and from the fact that the monochromatic wavepaths yield
some coverage in the spatial-frequency domain up to twice the source wavenumber.
While not shown here, subsampling in space and omitting either the phase or log-
amplitude equations produced results supporting these conclusions.
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Figure 13b addresses the question of how finely the data should be sampled in
frequency. It reproduces the singular-value curves from Figure 13a as faint lines,
overlain by singular-value curves for multifrequency inversions as darker lines. The
multifrequency experiments were run for: 5 and 10 Hz (300 equations); 5, 7.5 and 10
Hz (450 equations); and 5, 6, 7, 8, 9, and 10 Hz (900 equations). There appears to be
substantial independent information even when the data is sampled at 1 Hz. Since
the wavepaths were sampled over 2000 m, the sampling rate in the wavenumber
domain was .0005 cycles/m. Contemplation of the spatial-amplitude spectra in
Figure 12 suggests that their boundaries change by more than .0005 cycles/m for a
1 Hz change in source frequency. As long as the sampling in frequency shifts these
boundaries by more than the spatial-frequency resolution of the experiment, adding
more frequencies will add more information.

Inversion

Figure 14 shows the result of applying LSQR to the data described in the pre-
vious section. The top two panels show the model and the ray-theoretic inversion.
Since Figure 8 demonstrated that the assumptions of ray theory are not met by this
data set, the ray-theoretic inversion was run with perfect, raytraced data. (The issue
of dispersion and event picking has been discussed elsewhere by Wielandt, 1987.)
The poor result arises from the large null space in the ray-theoretic problem: the
ray interrogates a very limited region of the model. Many more shots would be
required to fully illuminate the anomaly.

The second two panels show monochromatic, 5 Hz and 10 Hz wave-equation in-
versions, respectively. Clearly, wave-equation tomography makes much fuller use of
the information in the seismic experiment than does ray-theoretic tomography. For
unwindowed data, each shot-geophone experiment interrogates the full model space.
Even though the monochromatic inversions showed fewer significant singular values
than the ray-theoretic inversion in Figure 13, they have succeeded in distinguishing
the anomaly from the source position. The lower frequency (5 Hz) inversion does
the best job of positioning the anomaly; the higher frequency inversion is more
similar to the ray-theoretic result.

The bottom panels show multifrequency, wave-equation tomographic inversions:
5 and 10 Hz on the left; 5, 10, 15, 20 and 25 Hz on the right. The last was run
with a finer (20 m) sampling rate, and included offsets up to 1580 m. (There were
15800 model parameters. The problem was not run to convergence, but stopped
after 350 iterations.) The multifrequency inversions provide fairly clear represen-
tations of the anomaly. The five-frequency inversion even shows some promise of
removing the false anomaly at the source. The elongation of the inverted anomaly
in the z-direction arises from the familiar finite-aperture, limited-cable-length prob-
lem of tomography. Without horizontally-placed shots and geophones, the spectral
patterns of Figure 12 never sweep across the k, axis.
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FIG. 14. Inversion results. From left to right, top to bottom: the model;
a ray-theoretic inversion; a monochromatic 5 Hz wave-equation inversion; a
monochromatic 10 Hz inversion; a multifrequency 5 and 10 Hz inversion; a mul-
tifrequency 5, 10, 15, 20 and 25 Hz inversion.
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CONCLUSION

Ray and diffraction tomography make different assumptions about the availabil-
ity of information in the seismic experiment. Working in the time domain, the first
method assumes a nondispersive medium and a source of infinite bandwidth; for a
single source-geophone experiment, it measures a single traveltime delay. Working
in the temporal-frequency domain, the second method accommodates dispersive
media but assumes event windows of infinite length; for a single source-geophone
experiment, it measures phase delays and amplitude changes as a function of fre-
quency.

As monochromatic raypaths, the wavepaths of space-domain, wave-equation to-
mography provide a link between ray and diffraction tomography. They furnish a
conceptual tool for modifying the two methods when their respective assumptions
are violated. When ray-theoretic tomography is applied to a bandlimited source
in a nondispersive medium, wavepath analysis tells us to project traveltimes back
over broad, bandlimited raypaths—formed by averaging wavepaths over the source
bandwidth. When wave-theoretic tomography is applied to time-windowed data,
similar analysis tells us to project differential phases and amplitudes back over
smoothed wavepaths—formed by convolving monochromatic wavepaths with the
Fourier transform of the time-domain window.

The wavepaths discussed in this paper were confined to constant background
fields and cross-hole geometries. Their theory must be developed before they can
describe more complicated media and the virtual sources of reflection tomography.
For any application, their formulation in the space domain increases the flexibility of
the wave-theoretic, tomographic method in dealing with irregularly sampled surveys
of finite length.
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ampus Report

March 2, 1988

Claerbout, Macovski elected
engineering academy members

Prof. Jon Claerbout of the Stanford School of Earth Scien-
ces and Prof. Albert Macovski of the School of Engineering
are among 85 scientists recently elected to membership in the
National Academy of Engineering.

Claerbout, the Cecil and Ida Green professor of geophy-
sics, was honored for “‘original and pioneering studies that
revolutionized seismic wave analysis and greatly aided the
international search for petroleum.”

Macovski, professor of electrical engineering and radiolo-
gy, was elected for “contributions to color television and to
medical imaging, using computer processing and alternative
illuminating sources.”

Membership honors those who have made “important
contributions to engineering theory and practice, including
significant contributions to the literature of engineering,”
and those who have demonstrated “unusual accomplishment
in new and developing fields of technology.”




