Appendix A
Fine points of CDR picking

Methods of picking CDR parameters are based on empirical observations more than upon
theory. I have developed one such method; it has been tested on a single set of seismic
data. This data set consisted of marine seismic observations provided courtesy of British
Petroleum. Indispensable pre-processing of the data was performed by Paul Fowler at

Stanford, and I thank him for allowing me to use the results of his work.

A.1 Slant stacks and picking

In the CDR method, adjacent traces are slant stacked and then picked. Soviet researchers
have done extensive work on the problem of automatic picking of slant stacks (Rapoport,
1977). I have used some of their results, but for the most part I have developed my own
approaches. The Soviet methods were developed to work optimally in an environment

where the computers have less internal memory and less disk storage.

A.1.1 Slant stack interpolation

A set of traces u;(t), consisting of 2nyy, +1 traces, is slant stacked according to the equation

Thh

ri(t) = D w(t+ijApAz), (A.1)

1=—npy

where ¢ and 7 are the subscripts representing trace location and ray parameter, respectively,
and Az and Ap are the respective intervals of trace location and ray parameter. See

Chapter 2 for more details.
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Figure A.1: Biases caused by linear interpolation. Histograms of ray-parameter picks (py),
made after slant stacking the British Petroleum marine data set, are shown. Diagram (a)
shows the result of using a linear interpolator in the slant stacking. Diagram (b) shows
the result of using a six-point truncated-sinc interpolator. The presence in Diagram (a)
of regularly spaced peaks (labeled by arrows) suggests that linear interpolation biases the
picks towards certain values. The binning interval is .002 sec/km.

Equation (A.1) is based on the assumption that the traces are continuous functions
of time. Real seismic data, however, is discretely sampled at intervals of At. A discrete
serles u;;, where ¢ is the trace number and [ is the time sample, can be converted to a

continuous function u;(t) according to the formula
u;(t) = Z u”f(t - lAt), (A2)
!

where f(t) is an interpolation function and At is the discretization in time. A typical

interpolation function is the linear interpolator:

1—|t|/At if —At <t < At,

f(t)y = A3
Q 0 otherwise. (4-5)
To include interpolation, equation (A.1) is rewritten as
LN
rie= D > fkAt+ijApAz—1At), (A.4)
I.:—nbh l

where k represents the time sample, and f(t) is the interpolation function.



(098) Bury,

75

p (sec/km) p (sec/km)
-3 0 3 -.3 0 3
=] =)
359 = 3

o = 5 ot -
8 iz
‘g g Histin

N o N S

i
(a) g (b)

Figure A.2: Slant-stack sections. Diagrams (a) and (b) show the result of slant stacking
over reciprocal gathers of field data. Diagram (a) represents a slant stack over different
values of offset; Diagram (b) represents a slant stack over different values of midpoint.

Tests have shown that if linear interpolation is used, biases arise when the ray param-
eter p is picked. This effect is seen in Figure A.la, which shows a histogram of picked ray
parameters (the picking algorithm is described below). Note the peaks at regular inter-
vals. Field data would not be expected to have such peaks; they are therefore artifacts.
Decreasing the ray-parameter interval Ap does not remove these artifacts. A six-point
truncated-sinc interpolation function effectively removes them, as is seen in Figure A.1b.

A four-point interpolation function would probably be adequate.

A.1.2 Automatic picking

Once the slant-stack sections have been generated, they must be picked. To illustrate the
picking process, I shall use a field-data example. Figure A.2 shows two slant-stack sections
from a subset of the British Petroleum marine data. Figure A.2a shows the result of slant
stacking over different values of offset, and Figure A.2b shows the result of slant stacking

over different values of midpoint.
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Figure A.3: Maximum traces. The maximum trace values at each time, from the panels
in Figures A.2a and A.2b respectively, are shown.

Maximum traces

The picking process begins with finding the maximum amplitude at each time in each slant-
stack section. This is equivalent to finding the maximum value along every horizontal line
in Figures A.2a and A.2b. The two “maximum traces”, from Figures A.2a and A.2b

respectively, are shown in Figures A.3a and A.3b; they are designated ss(t) and sg(t).

Correlation

The two maximum traces, ss(t) and sg(t), can be combined to give a correlated-maximum
trace. Such a trace should have large amplitudes wherever s,(t) and sg(t) are correlated,
and low amplitudes wherever they are not.

One measure of the correlation is the quantity s,(t) — s¢(t). When this quantity is near
zero, the traces are correlated; otherwise they are not (this quantity is not a good measure

if the traces differ only by a multiplicative constant). I use the following equation for q(t),
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the correlated-maximum trace:

2
11 se(t) — sg(t)
q(t) = amax(ss(t), sg(t))exp | —— [ , (A.5)
) of L3(ss(t) + sg(t))
where the value of o, is selected by the user (usually on a trial-and-error basis); amax(z, y)

is a function that returns z if |z| > |y|, and returns y otherwise.

Picking and interpolation

The correlated-maximum trace, ¢(t), is the trace that is first picked. The maximum value
gmax, and corresponding traveltime t,., are found on q(t). Then, the slant-stack sections
are examined to find the respective points of maximum amplitude at time tmax- The
positions of these maxima give the picked values of p on the two sections.

Recall that the slant-stack sections are discretized in p and t. Once the discrete
maximum-amplitude p and ¢ values are found, quadratic interpolations in p and t are

performed to find the true position of the points of maximum amplitude.

Near-time windowing

It is undesirable to pick peaks that are too close together. After a peak has been picked

at ¢max, I therefore window the surrounding region on the correlated-maximum trace:

q’(t) |tmax - t|/wh if —wWh Clpax —t < Wy,

q(t) =
® q'(t) otherwise;

(A.6)

where ¢'(t) is the unwindowed correlated-maximum trace, and wy, a user-selected value,

is the half-width of the triangular window.

Bad picks

The picking process described here does a good job of finding peaks (maxima) on the
slant-stack sections. These sections, however, may contain non-valid maxima. The main
cause of non-valid maxima, other than a high noise level, is spatial aliasing; spatial aliasing
arises when the distance between adjacent shots or receivers is greater than some fraction
of the wavelength of the recorded wave. Semblance weighting helps reduce the magnitude
of spatially aliased peaks, but inevitably, some of these peaks are picked anyway. These

bad picks (or rather, good picks on bad peaks) can often be eliminated on the basis of CDR
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velocity, amplitude, and dip. This topic is covered more fully in section 2.4.2 (page 33)

and in section A.2.2.

A.2 A marine data set

The picking procedure was tested on a marine data set provided by British Petroleum,
with vital pre-processing work performed by Paul Fowler. A near-offset section of this
data is shown in Figure 2.10 (page 32). There were 300 shot points, stationed 16.6 meters
apart. Each shot was recorded on a 36-receiver cable, with geophone arrays at 33.3 meter
intervals. Each trace contained 750 samples, with a sampling interval of .004 seconds. A
time-dependent gain was applied to each trace (the gain function equaled t1°); a normal-
moveout correction was applied corresponding to a constant velocity of 1.6 km/sec (on

page 14 of section 2.2.1 is a discussion of the reasons for applying such a correction).

A.2.1 CDR and picking parameters

There are a number of parameters that need to be specified in order to pick successfully
a particular set of seismic data. These parameters might be divided into three categories:
trace-selection parameters, slant-stack parameters, and picking parameters. Their values

in this thesis were chosen by trial-and-error methods.

Trace selection

A useful concept is that of the “summation base”, defined as the set of traces used in
any particular slant stack. In the CDR method, slant stacking is performed over a pair
of summation bases, and the reciprocal parameters are picked. For marine data, the most
logical approach is to pick py and py, (these two quantities were defined in section 2.2.1,

page 12). As shown in Figure 2.2 (page 13), the pair of summation bases used to pick py
and py form an X-shaped figure.

I used a summation base consisting of 13 adjacent traces. Figure 2.4a shows the
centers of the summation bases in a subset of the marine data (86 shot profiles out of 300).
Figure A.4b shows some of the summation bases themselves, as well as the centers shown
in the previous figure. Figure A.4c shows all the summation bases. These diagrams give

an idea of the sampling density used.
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Figure A.4: Summation bases. Diagram ga) is a stacking chart of a subsection of the marine
field-data example, with the locations of the centers of the summation bases denoted by
large dots. The small dots represent traces. Diagram (b) is the same as diagram (a), but
with some of the summation bases represented by heavy lines. Diagram (c) shows all of
the summation bases.
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Slant-stack parameters

Once a gather of traces has been selected, it is slant stacked over a range of p values. I
chose the range by looking at slant stacks, and deciding which p values contained most
of the geologically significant reflectors without including too many aliased events from
the strong water-bottom reflections. I allowed p to vary from —0.8 to 0.8 sec/km. I also
selected a value for Ap, the distance between adjacent values of p. One can use theoretical
approaches in order to choose Ap. For instance, one could make use of formulas that relate
the average wavelength of the signal and the width of the summation base to the optimum
value of Ap. T used a value, .01 sec/km, much smaller than the optimum. As a result,
the slant stack was, in a theoretical sense, oversampled in p. I felt this oversampling was
necessary, since in subsequent processing I effectively used nearest-neighbor interpolation
between adjacent p traces. As mentioned in section 2.2.1 (page 12), I weighted the slant
stack by a smoothed semblance-based weighting function. The smoothing is carried out in
the time domain; a boxcar smoothing function is used. The length of this boxcar function

is another user-selected parameter. I used a boxcar function that was 21 points long.

Picking parameters

Several user-selected parameters play a role during the picking of events on the slant stack.
Two of these parameters are discussed in section A.1.2. In picking the marine data I set
oq (equation (A.5)) to .8, and wy, (equation (A.6)) to .05 seconds. Another user-selected
parameter is the percentile value; this value determines which peaks on each q(t) trace are
considered interesting. For the marine data, only peaks larger than the 95th-percentile

amplitude of ¢(t) were picked.

A.2.2 TFiltering parameters

After the reciprocal parameters were picked, they were filtered to remove multiple reflec-
tlons and spurious events. Figure 2.7 (page 29) shows the picked data before filtering
(some low-amplitude events have not been plotted); there were 6,507 sets of reciprocal
parameters. A filtering program was used that performs vopp-based time migration (sec-
tion 2.3.3, page 28) and eliminates picks on the basis of their migrated position and other
criteria. First, all picks were filtered out that had less than a certain amplitude (about

25% of the picks). All picks were eliminated that had shots or geophones outside the
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region of the velocity analysis, as were all picks whose migrated dip bars lay deeper than
2.5 seconds. I drew a line just above the first water-bottom multiple; all picks below that
line were eliminated that had a value of vopg less than 1.65 km/sec. I drew a line just
above the second water-bottom multiple; all picks below that line were eliminated that
had a value of vopg less than 1.9 km/sec. Finally, some spurious picks in a certain region
were eliminated that had dips greater than .5 sec/km on the migrated time section. These
filtering operations would be difficult to perform on conventional seismic data, but were
easily carried out on the picked data. After the filtering 3,244 sets of reciprocal parameters

remained. Figure 2.12 (page 33) shows the data after filtering.

A.2.3 Computation time

Considering the size of the data set (10,800 traces, with 750 samples per trace), the slant-
stacking and picking operations did not require an inordinate amount of computer time:
only 30 minutes of CPU time on a Convex C-1 computer. Idid not determine how much of
this time was spent performing the slant stacks, and how much was spent doing the picking.
The filtering was less expensive. Four different filtering programs were used, and each took
about 2 minutes of CPU time. Most of the time in each program was spent performing
vepr time migration. If the four programs had been consolidated, this migration would
have been performed only once. I did not see any need for such a consolidation, however,

given the small amount of CPU time that would be saved.



Appendix B

The line search

An important element of the Gauss-Newton optimization method is the line search. At
each Gauss-Newton iteration step, a descent distance and direction are found by solving
a linearized least-squares problem. Since the objective function is non-linear, the descent
distance is only an estimate. It is necessary to try several descent distances along the
descent direction, in order to find the one that best minimizes the objective function. The
line search (Luenberger, 1984) is the term for the procedure used to find this distance.

The line search can be expressed in mathematical terms. Given a velocity model v, a
descent direction Av is found by following the procedures outlined in equations (3.8), (3.9),
and (3.11). The task, then, is to find the value of o, a scalar, that minimizes d(vH) taAv),
where @ is the objective function. Luenberger (1984) gives several techniques for deter-
mining «; I have chosen to develop my own variant, suitable for the idiosyncrasies of the
CDR tomographic inversion method. Recall from equation (3.5) that ® depends on X,
which is in turn non-linearly dependent on the velocity model and the picked parameters.
The only way to determine ® for a given velocity model is by ray tracing. Every time ®
is evaluated, therefore, rays must be traced for each set of reciprocal parameter. Such ray
tracing is expensive, and should be done as seldom as possible.

I minimize the number of ray-tracing steps by evaluating ® for three values of . A
fourth value, at a = 0., is already known. I fit a cubic curve of ® as a function of o
through these four points, and find the point on this curve where the minimum value of ®
should lie. This point gives me a new trial value of . I evaluate ® at this new point, fit
a cubic curve through the new point and its nearest neighbors, and find a new minimum.

This process continues until the new minimum value of ® is greater than .99 times the
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previous minimum.

The curve-fitting procedure can be described mathematically. If ® were exactly a
quadratic function of the velocity model, then a would equal 1.0. I therefore look for
values of « in this neighborhood. Four initial trial values of « are used: 0.0, 0.4, 0.8, and
1.2. The corresponding values of ® are found through ray tracing. These values are used

to find the coefficients a, b, ¢, and d in the equation
® = aa® + bo? + ca + d. (B.1)

It can be shown that the minimum value of ® in equation (B.1) lies at

—c
E S — B.2
“ b+ b2 — 3ac (B.2)

This new value of « is used to refine the position of the minimum. The line search continues

until two successive values of ® differ by less than 1%.



Appendix C

Ray tracing in a gridded velocity
field

In my tomographic inversion process the velocity field is represented by a grid. The grid
can be either laterally homogeneous (for layered media), or laterally heterogeneous. I have

developed ray-tracing methods for both of these cases.

C.1 Ray tracing in a laterally homogeneous medium

Ray tracing in a laterally homogeneous medium is relatively easy. If p is the ray parameter

and z is depth, then

sinf(z) = pv(z2), (C.1)
where 0(z) is the angle, measured from the vertical, of the ray at depth z, and v(z) is
the velocity of the medium. The ray parameter p is constant in a horizontally layered

medium. If a particular layer has a thickness Az, then the ray will travel within that layer

a horizontal distance (defined as Az) of
Az = Aztanf(z). (C.2)

Similarly, travel time (At) through that layer is

A
At = ad

~ v(z)cosf(z)’ (C:3)

It is assumed that velocity v (and thus  as well) remains constant over the distance

Az. These three equations, plus some well-known trig identities (cosf® = V1 —sin?9,
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Figure C.1: Ray-tracing notation. This figure shows the notation used in the text. The
figure is drawn so that the values of all parameters except Af are positive.

for instance) are enough to find zey, given a particular layered velocity model and the

parameters s, g4, ps, Pg, and t.

C.2 Ray tracing in a laterally heterogeneous medium

When velocity varies only vertically, so that v = v(z), it is possible to discretize the
velocity model in terms of layers. When velocity varies horizontally as well, however, it is
necessary to discretize the model into boxes. I allow a horizontal velocity gradient to exist
within each box. If v; is the velocity associated with a particular box, a; is the value of
the associated velocity gradient, and =; is the horizontal position of the center of the box,
then

v(z,2) = v; + a;(z — ;) (C.4)

within the box. The values of a; are chosen to make v(z, 2) a continuous (but not contin-
uously differentiable) function in z, even at the boundaries between horizontally adjacent
boxes. Note, however, that v(z, 2) will not be a continuous function in z, just as it was
not a continuous function in z in the horizontally layered case.

Tracing rays is, of course, more complicated in the presence of a horizontal gradient.
Suppose a ray, with ray parameter pg, crosses into a new box at z = 0, z = 0 (see

Figure C.1). Let the velocity at that point be vo, let the velocity within the box be
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described by the formula vy + az, and define k = —a/vg. Then

sin @ = vgpy, (C.5)

where 6 is the angle of the ray from the vertical immediately after it has entered the box.
Suppose the ray emerges from the box at the point z = Az, 2 = Az, and that just before
it emerges, it has an angle from the vertical of 8 + A8. The following two formulas adapted
from Bishop et al. (1985) then hold:

cos(f + Af) = (1 — k Az) cos¥, (C.6)

and

sin(f + Af) =sinf + k Azcos¥. (C.7)

Once sin# has been determined from equation (C.5), cos@ may be obtained from a
well-known trig identity, and Az is known (it is the thickness of the layer, if the ray travels
all the way from the top of the layer to the bottom). Then, sin(§ + Af) may be obtained

from equation (C.7), cos( + Af) obtained by a trig identity, and equation (C.8) solved to

yield

1 cos(f + A0)>
Ar=—-|1— ———= ),
v k ( cos
Note that when k is close to zero, equation (C.2) should be used in place of this equation.

(C.8)

If Az is known, and Az is the unknown quantity—this could happen if the ray intersects
the vertical boundary between two horizontally adjacent boxes—equations (C.6) and (C.7)
can be solved to yield a similar formula for Az as a function of Az. I will not give that
formula here.

Another important parameter that must be determined is py, the ray parameter at the
point of emergence. It is easily shown that sin(f+ Af) = (vo + a Az)p1, and this equation,
with equation (C.6) and the definition of k, can be solved to yield

cos 0

p1= tan(0 + A9). (C.9)

o

Since velocity discontinuities occur only with changes in z (recall that the gradients a; are

chosen so as to make this statement true), p; remains unchanged as the ray crosses the

interface into the next box. It can therefore be used as the input ray parameter, pg, when
the ray is traced through this next box.

It is worth noting that nowhere, so far, has it been necessary to evaluate a transcenden-

tal function. That is, the ray tracing can be carried out without the computer ever needing
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to evaluate a sine, cosine, arcsine, or arccosine function. The only function (besides the
four basic arithmetic functions) that needs to be called by the ray-tracing program is the
square root function (to solve such identities as sin?  + cos? § = 1). The calculation of the
traveltime, however, will prove to be an exception.
The traveltime, At, is the amount of time it take the ray to travel through a particular
box. This quantity is determined from the integral
ds
At = / o (C.10)
v(s)
where s represents the path that the ray follows within the box. This integral can be

transformed algebraically into the explicit formula

At =

1 o (cosH(l+sin(¢9+A9)))‘

- C.11
kv cos(6 + Af) (1 + sin §) ( )

The ray-tracing program must therefore evaluate a logarithm. When k is close to zero, it

is preferable to use equation (C.3) in place of equation (C.11).



Appendix D

Determining the Fréchet matrix

The Fréchet matrix is relatively easy to determine when velocity is a function of depth

only. It is more difficult to determine when velocity varies laterally as well as vertically.

D.1 The Fréchet matrix when v = v(2)

Recall from equation (3.8) that ék, the Fréchet matrix at the kth iteration, is defined

according to the formula
OZerr(;
k err ()
A = ( 250D ) D.1
Y ( avi )v:vk ( )

Further definitions are necessary: Az is the vertical distance that the Jth ray travels
in the ¢th layer (here, as in later definitions, the j subscript has been omitted for the sake
of clarity); Az; is the horizontal distance that this ray travels in the 7th layer; and At; is

the travel time of this ray within the layer. Then, according to the chain rule,

8xerr(j) N axerr(j) ) dAzx; n 8Qferx'(j) ) dAt,

dv; dAz; dv; JAtL; dv;

(D.2)

The problem is now reduced to one of finding the value of each term.

Before continuing, there is a point that should be clarified. Recall that Az; was defined
to be the horizontal distance traveled by the jth ray in the ith layer. This definition does
not take into account the fact that two rays are traced simultaneously to find Terr(;), and

that Terr(;) 1s thus dependent on both of these rays. That is,

Terr = Tge — ZTge, (D'B)

89
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where zg. is the horizontal position of the endpoint of the jth down-going (shot) ray and
Tge 1s the horizontal position of the endpoint of the jth up-going (geophone) ray. (The
endpoint of a ray is defined to be the point where the ray intersects the line z = Ze, With
2z defined as the depth where the combined computed travel times of the two rays equals
the measured travel time.) A velocity change in a given layer will thus produce changes in
both rays. It is most convenient, however, to consider the effect of the change on only one
ray at a time, and later sum the results into A;;. This is the approach that will be used
here.

The first term in equation (D.2) is easily determined. Since v is a function only
of 2, zs (or z4e) varies exactly the same amount as Az; varies, independently of the
velocity structure of the model. As a consequence of this result and of equation (D.3), and
depending on which ray is under consideration,

OTerr (5)
OAz;
The second term in equation (D.2) can be determined by differentiating equation (C.2).

The result is:

0 err(y .
= —1 (down-going); otherwise, Terr(d) _ 1 (up-going). (D.4)
8A1:,'

dAz;  pAz
dv;  cos36;’
where 6; is the angle of the ray in layer ; as measured from the vertical.

(D.5)

The third term in equation (D.2) is somewhat more complicated to derive. To begin
with,
axerr(j) _ dxerr . d2e
6At,' o dze dAti,
where z is the depth of the endpoints of the jth pair of rays. From equation (D.3),

(D.6)

dTery  dge  drge

= - D.
dze dz. dze’ (D7)
which through simple trigonometry becomes
dz
7::: = tanfy, — tan,,, (D.8)

where 6. and §,, are the angles at depth z. of the up-going and down-going rays respec-
tively. These angles can be derived from p, and pg through the rule that vp = sin§.

The second part of equation (D.6) must be approached indirectly. First, note that
even though travel time At; within a layer may vary, the overall travel time ¢ must remain

constant. Thus, as At; increases, t — At; decreases. As a result,

dz, __dze D.o
dAt;  dt (D-9)
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Next, it is useful to note that

dz, 1
_— = D.1
dt  dt/dz (D-10)
Then p p p
t  dt, dt,
o s D.1
dze dz. dzo’ (D.11)

where t, and ¢, are the total travel times of the down-going (shot) ray and the up-going

(geophone) ray, respectively. An application of the chain rule yields

& _did, dyd,
dze dl, dz. dly dz,’

(D.12)

where [, and [, are the total path lengths of the down-going (shot) ray and the up-going

(geophone) ray, respectively. Through the application of some trigonometry, and thanks
to the relationship v = dl/dt,

dt 1 1 1 1
= — .1
i + (D.13)

Vge COS 85 vy, cOS By’

where v, = v(mse,ze),hand Vge = v(Zge, 2e).

Now it is possible to combine equations (D.8), (D.8), (D.9), (D.10), and (D.13) and
write:

3$err(j) sin ;¢ cos 0, — sin @, cos f,,
== —’Ue
JAL; cos B, + cos b, ’

(D.14)
where v, = v(z.).

The fourth term in equation (D.2) can be found by differentiating equation (C.3), with
the result:

dAt; At;  pAzsinb;
==t PREERA
dv; v; v; cos3 4;
The final result, found by substituting equations (D.4), (D.5), (D.14) and (D.15) into
equations (D.1) and (D.2), is:

(D.15)

Ak pAz; e sin . cos §,, — sin §,, cos By, <__Ai pAz; sin 0;) (D.16)
K cos3 §; € cos O, + cos b, v; vicos38; /° '

The =+ sign is positive when the ray under consideration is the up-going (geophone) ray;

otherwise it is negative.
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D.2 The Fréchet matrix when v = v(=, 2)

When the medium is both laterally and vertically heterogeneous, calculation of the Fréchet
matrix is more complicated, but not unduly so.

Several different approaches to this calculation can be taken. The simplest approach
1s to perturb each grid point in the velocity model in turn, and see how all the Terr values
vary. This simple approach is much too expensive, since the number of rays that would
have to be traced equals the number of grid points in the model times the number of sets
of picked parameters. In the approach shown here, fewer perturbations are made, and the
results of these perturbations are propagated by means of a transfer matrix.

To begin, an equation analogous to equation (D.2) is written:

OTerr  Oerr 0o  OZeyy Ot

ov; dz. Odu; at 8—'0,
This equation refers to the jth ray, but the subscript 7 has been dropped for the sake of

(D.17)

clarity. Here v; is defined to be the velocity in the ith box of the model, z, is the horizontal
position of the endpoint of the jth ray, and t is the travel time of the Jth ray from the
surface to the depth z.. Strictly speaking, v; is the velocity at the sth grid point, but it is
more convenient to speak in terms of boxes. As in the previous section, the endpoint of
the ray is defined to be the point where the ray intersects the line z = z, (recall that z,
is the depth where the computed travel time equals the measured travel time). Likewise,
attention is focused on only one of the two rays associated with the Jth set of picked
parameters.
Equation (D.17) gives the overall formula for determining the Fréchet matrix; now it
is necessary to find the values of the individual terms of this formula.
The first term in equation (D.17) is determined by a formula similar to equation (D.4):
Ore . o |
2. (down-going); otherwise, 9z, 1 (up-going). (D.18)
The third term in equation (D.17) is analogous to equation (D.14), but without the

assumption that ve, = vg,:

OTerr sin 04, cos 05, — sin 8, cos Oge

a

= T UgeVge

, (D.19)

Vse €08 B3, + vy, cOs B,
with the variables on the right-hand side defined as in the previous section.
The second and fourth terms of equation (D.17) are not found so easily. First, some

new notation is defined, as illustrated in Figure D.1. Up until now, a specific velocity box
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v

ﬁ(/)
’f\ Ray j

Box (1)

Figure D.1: Definition of terms. Ray j travels through box (I), which is the {th box along
its path. It enters the box at spatial coordinate T(i-1) (measured parallel to the boundary

where the ray enters), where it has ray parameter P(-1)- It leaves the box at r() (measured
parallel to the boundary where the ray exits), with ray parameter p(1)- The velocity within
the box is v(), and the ray takes an amount of time At(;) to travel through the box.

has been denoted by the subscript ¢, meaning that it is the ¢th box in the velocity model.
It is useful at this point to introduce a different subscript, ({), which denotes the Ith box
through which ray j passes (the parentheses are meant to distinguish this new type of
subscript from the previous type). For example, ray j starts at the surface, so the first
box it passes through has velocity v(1), the second box it goes through has velocity v(2),
and so on.

A ray entering the /th box has ray parameter P(1-1), and as it leaves the box it has ray
parameter p(). The position of the ray as it enters the box is denoted by T(i-1), Which is
a spatial coordinate measured along a certain axis. This axis is set to be parallel to the
boundary that the ray crosses as it enters the box. The origin of this coordinate system
1s unspecified, since I will be concerned only with changes in T(1-1), not with its absolute
value. Similarly, the position of the ray as it exits the box is denoted by rqy, which is
measured along an axis parallel to the boundary that the ray crosses as it exits. This
may seem like an odd way to measure the spatial coordinates of the ray, but it will make
subsequent work easier.

The Ith box has, as noted previously, a velocity v(1), and the ray takes an amount of

time At to travel through this box.
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The box containing the endpoint of the ray may be denoted by L; by definition (L) 18
measured along an axis parallel to the line z = z,.

Now that these terms have been defined, it is possible to specify a transfer matrix T

(1)
ar(l) Br(l)
dru-1y Opu-1

9pp)  9pq)
@) dru-1) Opu-1)

M
Il

o |. (D.20)

8At(l) aAt(,)
dru-1) 9pg-1)

The values of the terms in T, = may be determined analytically, but I prefer a finite-

@
difference method: perturb ra-1) and p(_1), and see how ra), Puy, and Aty vary in

response.

The next formula is essential, and I give it without proof:

m Br(l)
81)([) a’U(l)
LU 9p)
81}(1) o ’:E(L) ' I(L_l) ces E(H-?) ) I(l-H) ) av(l) . (D.21)
av(l) av(l)

Be sure to distinguish between L and [ in this formula. The quantities in the far right-hand
vector (9r(;)/dv(y), etc.) can be determined analytically, but again I prefer to find them
through a finite-differencing method, perturbing v() and seeing the response.

Equation (D.21) gives the second and fourth terms of equation (D.17) directly, if the
subscripts 7 and (I) refer to the same box (that is, if the ¢th box in the velocity model is
also the /th box that ray j passes through). It is only necessary to make the identifications

9z, _ (1) ot at
and ER (D.22)

dv; Av(y)
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