CHAPTER 8
Seafloor-consistent multiple suppression

3.1 OVERVIEW

In the last example of the previous chapter, I applied surface-consistent gapped
deconvolution to a marine line from the Barents Sea. This comprised an unsuccessful
attempt to remove the multiple reverberation trains generated by the large seafloor
impedance contrast. In this chapter, I move into deeper waters and investigate decon-
volution with spatial constraints imposed directly at the bottom of the sea. To get to
and from the ocean bottom I use wave extrapolation rather than vertical time shifts.
At the seafloor, I design reverberation reflection operators using linearized methods
described in previous chapter. Key features of the method are: truly seafloor-
consistent filters; incorporation of the pure seabottom multiple; fitting error minimized
at the surface; and simultaneous design using all the recorded data. This process
proves quite successful at suppressing strong pegleg trains for that same Barents Sea
line.

3.2 INTRODUCTION

Multiple reflections are often a problem in marine seismic exploration. Each shot,
of unknown signature, sets up reverberations within the water layer that produce the
seafloor multiple and a downgoing, reverberatory waveform below the seafloor. The
downgoing wave then reflects from the subsurface, travels up through the seafloor, and
again reverberates in the water layer to produce primaries and their seafloor pegleg
trains. These multiple trains pose a serious problem in areas where the water bottom
has a high impedance contrast — the reverberations are slow to decay and correspond-
ingly less source energy is transmitted through to illuminate the subsurface.

Such water reverberations commonly have two features that help us differentiate
them from primary reflections. These are their moveout velocity and their periodicity.
CDP stack and moveout filters are two standard tools for multiple attenuation which
rely on velocity differences between primary and multiple reflections. Gapped deconvo-
lution is the standard tool which exploits the periodicity of multiples.

The standard tools are often ineffective for attenuating pegleg multiples, i.e., mul-
tiples with one primary subsurface reflection and one or more seafloor reflections. Fig-
ure 3.1 shows a sample pegleg raypath. Because their arrival times are delayed and a
good portion of their travel paths lie in the subsurface, pegleg stacking velocities are
often close to primary stacking velocities. Moveout discrimination is poor, making ve-
locity filtering and CDP stack ineffective. Gapped deconvolution is also unreliable
because it assumes a flat water bottom and faithful amplitude preservation. Both are

rare to find in practice. Furthermore, even when these conditions do hold, the strong,
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pure water-bottom multiple decays at a different rate than pegleg multiples; pegleg
attenuation filters estimated from the data will be degraded.

shot receiver
sea surface

~ sea floor

"\ reflector

FIG. 3.1. A sample pegleg raypath. Here, the travel path bounces once off the seafloor
before illuminating the subsurface reflector. After the subsurface reflection is bounces
once again off the seafloor. This WPW pegleg arrives at the receiver at nearly the
same time as its cousins WWP and PWW, thereby tripling the recorded reflection
amplitude.

Three ways exist to improve discrimination against pegleg multiples: First, we can
change field acquisition parameters to better resolve small velocity differences. This
can be done by increasing the source bandwidth, shortening the recording sampling
interval, lengthening the cable, and/or decreasing the group interval. Second, we can
use more precise models of primary and pegleg moveout and more sophisticated
moveout filters. Examples of this approach are found in Schneider, Prince, and Giles
(1965), Ozdemir (1981) or Hampson (1986). Third, we can use better models of multi-
ple generation, namely those based on wave extrapolation, to improve timing and
amplitude estimates of these multiples. Examples of this approach (the approach I use
here) appear in Riley and Claerbout (1976), Estevez (1977) and others.
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3.3 WAVE-EQUATION PREDICTION-ERROR FILTERING

Improving the predictive suppression of marine multiples requires modeling their
timing and amplitude more accurately. This is the rationale for using wave extrapola-
tion instead of simple time delays to predict multiples on the recorded data. The
papers of Riley and Clerbout (1976) and Estevez (1977) seem to be the first published
applications of wave-equation multiple suppression to seismic field datasets. These
researchers work only with plane-wave stacks to make computations manageable.
Morley (1982) makes two significant advances: First, he clarifies which multiples are
predicted by an additional bounce through the water layer. Second, he demonstrates
the importance of working with unstacked data and developed a “seafloor-consistent”
theoretical model for wave-equation pegleg prediction. His model is more precisely
described as a surface-consistent model applied to seismic data that has been first reda-
tumed to the seafloor by numerical wave extrapolation. Using this model, he then

develops gather-by-gather multiple suppression algorithms for several limiting cases.

Morley’s model for pegleg multiple suppression is encapsulated in his equation
(3.3.9)

AW.E. = (1+Tscslsus)(1+Tg Cy lyyy) ’ (3'3'9)

where the boundary operators v, , v, are 1 for a free surface, c,, ¢, are reflection

g
operators associated with the seafloor, and 1 and | are operators that extrapolate

waves from the seafloor to the surface or from the surface to the seafloor.

In recent years, several other geophysicists have applied wave extrapolation to
field data. Bernth and Sonneland (1983) use a two-stage adaptive process to tackle
both peglegs and pure water bottom multiples. Wiggins (1985) applies Morley’s model
to field data from the eastern Grand Banks, with careful attention to geometric and
statistical detail. Berryhill and Kim (1986) apply Kirchhoff wave-equation datuming to
propagate to and from the seafloor in a hybrid approach.

Clerbout (1986), in a related setting, uses wave extrapolation for his simultaneous
t -7 deconvolution. Clarbout’s model, leaving out complications of spherical diver-
gence and other weightings, is given by

Awe = (I1+c 1, 1l,)(1+¢,) . (3.1)

He uses this model to tackle both seafloor multiples and shot signature.

3.4 IMPROVING THE MODEL

In this chapter, I extend Morley’s model in two significant ways. First, I incor-
porate the pure seabottom multiples as well as pegleg multiples. Second, I make the
seafloor reflection filters truly seafloor-consistent instead of projecting surface-
consistent filters to the seafloor.
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Incorporating the pure seabottom multiple

The difference in amplitude behavior between the pure seabottom multiples and
pegleg multiples is described by Backus (1959). He shows that the amplitude of the
pure seabottom multiple is proportional to R", where R is the seafloor reflection
coeflicient, and n is the number of bounces off the seafloor. At the same time, the
amplitude of the pegleg multiples arising from a primary subsurface reflection with
reflection coefficient R, is proportional to (1-R%)(n +1)RR"™ - a decay proportional
(n+1)R"™.

To appreciate the relative strengths of the two types of multiples, I measured
from the marine data in Figure 2.19 a seafloor reflection coefficient of R ~~0.25 and a
reflection coefficient R ;/~20.05 for the strong subsurface reflector at about 1.5 seconds.
With divergence correction proportional to ¢, the seafloor reflection emerges over five
times stronger than the primary reflection. The first seafloor multiple is one third
larger than the primary reflection. And the first pegleg multiple is about half of the
strength of the primary reflection.

Morley’s model does not include the pure seabottom multiples explicitly, and so
tries to fit their amplitudes with a sequence decaying proportional to (n +1)R". The
estimate of B obtained by treating the seabottom multiple train as a pegleg sequence
is only half the proper value. If we perform a least-squares fit over a window spanning
the first two seconds of these data, this incorrect reflection estimate will have 25 times
the weight of the strong primary and its pegleg. This will significantly bias the overall
estimate of R towards zero.

Two ways exist to deal with this problem: One can suppress or downweight the
seabottom multiples in the data during pegleg processing, or one can anticipate them
by extending the underlying model for multiples. I will do the latter. Berryhill and
Kim attempt the former by adjusting the start times of their processing windows to
just after the arrival of a seafloor multiple. Bernth and Sonneland do the latter in
their formulation, but do not follow through in their application. Instead, they do two
passes over the data. The first pass tries to suppress pure seabottom multiples, trust-
ing that pegleg amplitudes do not bias their reflection coefficient estimates strongly.
(Morley also assumed this in his applications.) Next, Bernth and Sonneland mute the
seafloor reflection, and do a second pass to predict the peglegs remaining on the data.
Wiggins also does a two-step procedure, relying on L! norm minimization to further
reduce the influence of peglegs during the first pass.

Seafloor-consistency

I improve on Morley’s model in a second way by more carefully defining and
honoring the idea of seafloor-consistency. His equation (3.3.9) above contains two
descriptions of the seafloor: ¢, when the source is above it, and ¢, when the receiver

is above it. These reflection operators are supposed to describe how waves are reflected
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from the seafloor; this is a physical response that is independent of the location or even
existence of any equipment for seismic exploration. For this reason, I constrain ¢, and
¢, to be identical functions of seafloor position in my model. This notion of seafloor-
consistent filtering is the analogue of the midpoint-consistent, or structure, term in the
surface-consistent statics model.

Dereverberation model

To suppress water reverberations, 1 first predict them by extrapolating the
recorded data one additional bounce off the seafloor. I then subtract them from the
original data. I model seafloor reflectivity with a spatially variable reflection filter with
unknown coefficients and adjust these coefficients to minimize the prediction error, i.e.

the root-mean-square amplitude after subtraction of the multiple estimates.

In more detail, I first scale the field records by t1/2 to convert (approximately)
from 3D to 2D amplitude divergence. Then, I extrapolate the shots forward down to
the seafloor and up again, so as to predict the multiples due to shot reverberations.
This is Morley’s (1 + 1, ¢, |, v, ) dereverberation operator. When I’ve chosen the right
set of seaftoor reflection coefficients, the seafloor multiple and its (direct) illumination of
subsurface reflectors should vanish. Finally, I predict and remove peglegs from pri-
maries that emerge after subsurface reflection and then reverberate in the water layer
before arriving at the geophone. These are predicted by propagating each partially
deconvolved common shot gather, with the seafloor primary reflection deleted by mut-
ing, one more bounce off the seafloor reflection coefficients, and removing this from the
unpropagated gather. By muting, I include the seafloor multiple in the process instead
of trying to attenuate it separately by velocity filtering.

Assuming a free surface, i.e. v=1, this sequence leads to the prediction error
model

0~ (1+1,cl,Mute)(1+1,cl,)Vt Data . (3.2)

The job is to estimate the ¢ ’s.

3.5 ESTIMATION PROCEDURE

To simplify the task of estimating seafloor-consistent multiple suppression opera-
tors for the Barents Sea field data I am using, I make the following assumptions:

1. The seafloor is relatively flat and the recording geometry is regular. This
simplification lets me conveniently precompute the wave-propagation operators.

2. The water is sufficiently deep that the shot waveform and the seafloor multiples
are separated in time. This permits me to debubble (or deghost) at my conveni-
ence, either before or after multiple suppression, without having to incorporate
the shot waveform into the wave-equation processing.
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3. Seafloor reflection operators are not significantly angle-dependent on the gathers
being processed. In deep water, and with judicious muting, this is a reasonable
assumption which lets me replace seafloor reflection operators with convolutional
seafloor reflection filters.

4. The sea surface is the standard -1 free surface reflector. With this assumption,
ghosting becomes a constant filter applied to all the traces; it will not interfere
with the multiple estimation.

Under these assumptions, I insert ¢, + Ac into (3.2) to linearize around a refer-
ence model ¢, . This yields

—(L+1,¢c,l,Mute) (1 +1,¢,1,) Vt Data ==
(1+1,¢, 1, Mute) (1, Ac |,) Vi Data + (3.3)
(1 Ac i, Mute) (1 +1,¢,1,) Vi Data

which must be solved for Ac.

Equation (3.3) has the form

y =~ (A + B)Ac (3.4)
with
AAc = (1+1,¢,l,Mute)?, [|,Vt Data ] *Ac ,
BAc = 1,[l,Mute (1+1,c,1,)Vt Data JxAc , (3:5)

and * representing trace-by-trace convolution. I use the conjugate gradient program
LSQR (Paige and Saunders, 1982) for the solution. For the conjugate gradient solu-
tion, the transpose operations are required as well. These are

ATz = [|,Vt Data |el;(1 + Mute treol;)z and

BT z = [1, Mute (1 +1,¢,],)Vt Data Jel,z (3.6)

b

where 17 is backward (in time) propagation from the seafloor to the surface and e
represents trace-by-trace correlation.

In this chapter I'm now working directly with the overdetermined system (3.3), in
contrast to Chapter 2 where I formed normal equations. In Chapter 2, I found that
numerical conditioning was not a problem, and there was a distinct computational
advantage to using the normal equations. For wave-equation multiple suppression,
there is no computational advantage in forming the normal equations. Computational
savings come from pretabulating the bracketed terms in (3.5) and (3.6), which depend
only upon the input data and the initial filter estimates.
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This estimation procedure improves on past applications in one of two ways:

1. Fitting error is measured at the surface. This gives me an advantage over Riley,
Estevez, Morley, or Wiggins because they measure fitting error at a seafloor,
where data is neither recorded nor processed.

2. Reflection operators are placed at the seafloor. This gives us an advantage over
Bernth and Sonneland or Berryhill and Kim who posit a fixed seafloor location,
and design adaptive filters at the surface to try to compensate for errors in loca-

tion, strength, and duration of their seafloor reflection model.

3.6 APPLICATION: BARENTS SEA

In Section 2.6, I applied surface-consistent deconvolution to a marine line from the
Barents Sea in an unsuccessful attempt to suppress water-path multiples. Figure 3.2
shows a stack of that line. It features a hard, flat seafloor at 0.4 s, a gently dipping
primary at about 1.5 s, and multiple trains following both. The stacking process has
attenuated the pure seabottom multiples, but the pegleg stacks in strongly because its
moveout is near the primary stacking velocity.

Conventional multiple suppression

From the center of this line, I take a window of 56 CDP gathers, each 48-fold and
4.1 seconds (1 024 sa,rhples) long. Figure 3.3 shows a stack and some representative
gathers. The pure seabottom multiple beginning at 0.8 s is attenuated by the stacking,
but the pegleg multiple at 2 s remains quite strong. As Figures 3.4 through 3.6 show,
conventional processing does not successfully remove these multiples. Figure 3.4 is the
best result of several runs of F-K multiple attenuation. This process applies a moveout
correction intermediate between multiple and primary velocity and applies half-plane
filtering to attenuate undercorrected, presumably multiple, events. The moveout
correction is then removed. Figure 3.5 is the result of gapped deconvolution before
normal moveout. Figure 3.6 is the result of gapped deconvolution after normal
moveout. The gap is 380 ms, just above the seafloor arrival; the filter extends 128 ms
below that. Even with the intermediate moveout velocity positioned at water velocity,
F-K processing attenuates the primary at 1.5 s. The gapped deconvolutions did at
least some good in attenuating the pegleg multiple.

Wave-equation multiple suppression

At this point, I turn to wave-equation multiple suppression. Projecting the shot
and receiver locations for the data window downward to the seafloor, I specify 156
seafloor stations at which to estimate 128 ms reflection filters. The resulting least-
squares problem has 5 184 unknown reflection filter coefficients to be estimated from
2752 512 equations. The wave operator is precomputed using dip-limited phase shifts

(Levin, 1983) to extrapolate between the surface and a datum time of 380 ms, just
above the seafloor.
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FIG. 3.2. Stack section for marine line from the Barents Sea. Trace spacing is 12.5 m;
time sampling interval is 4 ms. The dipping primary at about 1.5 s is followed by a
strong pegleg near 2 s.
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FIG. 3.7. Seafloor reflection operators designed by least-squares. The result of five
conjugate-gradient iterations, these filters are convolved with the extrapolated gathers
at the seafloor to suppress water-borne multiples.
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FIG. 3.9. Seafloor reflection operators designed using the filt
starting point.
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Figure 3.7 shows the seafloor reflection filters resulting from 5 conjugate-gradient
iterations to solve equation (3.3). The starting point for the design is ¢, = 0. Figure
3.8 shows the corresponding stack and some CDP gathers after this processing. We see
a marked improvement in pegleg multiple suppression.

Of course, one may argue, starting with ¢, = 0 is an abysmally poor first guess.
¢, = 0 means we think the seafloor is transparent. If this were so, we wouldn’t be
worrying about seafloor multiples. It does have a practical advantage. Half the terms
in the matrix-vector products in equations (3.5) and (3.6) go away, thereby saving
about the same fraction of computer time. Also no data preprocessing is needed to

specify a zero starting model.

Is this shortcut justified? How much better can we do starting with a reasonable
first guess? To answer this, I use the filters from Figure 3.7, i.e. the output of the first
run, as the starting model for a new filter design. The results, shown in Figures 3.9
and 3.10, are nearly the same as starting from ¢, = 0, but cost nearly twice as much
to compute. Overall, it would be more cost effective to instead let the ¢, = 0 design

proceed for twice the number of iterations.

3.7 THE MULTIPLES THAT GOT AWAY

Wayve-equation multiple suppression has done a superior, but not a perfect, job of
removing water reverberations. On the stack of Fig. 3.10, we still see some residual
pegleg at 2 s, and only a little attenuation of the pure water bottom multiple at 0.8 s.
If we look at the individual CDP gathers before and after multiple attenuation, we
find: a) the pure seabottom multiple is suppressed at all but the near offsets; b) the
deeper pegleg is attenuated at all offsets; c) the aliased, steeply-dipping refractions,
wide-angle reflections, and multiply-reflected refractions are producing hyperbolic
artifacts on the gathers that do not appear on the stack; and d) the multiples of the
seafloor diffractions are not attenuated on the stack.

Inner offsets

The shallow seabottom multiple remains on the inner offsets because of the finite
recording aperture of the cable - specifically the nonzero inner offset. The direct
seafloor reflection needed to predict the first multiple at the inner offsets arrives at the
surface at half the inner offset. It is therefore not in the recorded data. Berryhill and
Kim (1986) recommend some amount of interpolation into the missing inner offset
range to alleviate the problem. This is much less of a problem for deeper events when
the raypaths are closer to vertical. This is why we observe good attenuation of the
deeper pegleg arrivals at 2 s and 2.4 s, which are more gently sloping at the inner
offsets than the water bottom multiple at 0.8 s. Berryhill and Kim also recommend
using reciprocity to extend the gathers. This is most useful for processing arrivals from
dipping beds and diffractions.
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Post-critical arrivals

Because of aliasing, the wide-angle reflections and refractions generate hyperbolic
artifacts on the processed gathers. Their influence on the stack is small for two rea-
sons. First, and foremost, they do not line up along primary stacking hyperbolas.
They’re more nearly perpendicular than parallel. Stacking therefore discriminates
against them. Second, the artifacts are spreading the energy on the wide-angle arrivals
over a much greater area, giving them correspondingly lower amplitudes. This makes
the original linear events (at least those remaining after processing mute) stack in
weaker as well.

Even though they stack in weakly, the hyperbolic artifacts do bias the regression
for the seafloor derverberation filters. My least-squares design measures the prediction
error on the individual traces in the field records, not the output power on the stack.
We should endeavor to reduce the level of these artifacts and the weight assigned to
them in the least-squares procedure.

Trace interpolation to reduce aliasing is an inappropriate way to remove the
hyperbolic artifacts because it will increase the influence of wide-angle arrivals on the
seafloor reflection filter estimates. The multiple trains following wide-angle reflections
and refractions fit neither the R" amplitude decay of pure seabottom multiples, nor
the (n +1)R"™ behavior of near-offset peglegs. These post-critical arrivals are built up
from trapped modes and are dispersive, but do not lose energy into the subsurface. In
the far-field, they decay with normal spherical divergence 1/r (Pekeris, 1948; Officer,
1953.) In the vicinity of critical incidence, the usual case in seismic exploration, the
decay is even slower (Hatherly, 1982.) On a far offset trace in Fig. 3.3, I compared the
amplitudes of two multiples from the first arrival, a refraction, and found the decay
proportional to 1/Vr .

Because they do not fit the multiple model I've used, the wide-angle arrivals
degrade the multiple-attenuation process. For Figure 3.11, I muted the near- and
post-critical arrivals before wave-equation multiple-attenuation. Comparing this result
to Figures 3.8 or 3.10, we see this improves the pegleg attenuation both on the indivi-
dual gathers and on the stack. The mute has done double duty: it has removed aliased
energy and suppressed wide-angle multiples that do not fit the model for multiple
amplitudes I’ve used.

Seafloor diffractions

I cannot say with certainty why diffractions remain attached to the seafloor multi-
ple after processing. Certainly some of this an aperture problem as diffracted energy
arrives at the surface at all possible angles. For this, Berryhill and Kim’s trick of
enlarging the aperture by reciprocity should help. Also, the spherical divergence of
diffractions is asymptotically proportional to 1/t whereas 2D wave extrapolation
expects them to decay as 1/t. Thus the vt correction in equation (3.2) is
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inappropriate for the diffractions. Adding a seafloor bounce with wave extrapolation
should therefore not produce the right amplitude. For this reason it is probably for-
tunate that the diffractions are weak on the gathers and thus have little influence on
the early least-squares filter design iterations. Wiggins (1986), however, shows an
example where there was a significant attenuation of these diffraction multiples. Since
he uses an L! minimization instead of L 2 minimization, this suggests that the filter
design method plays a role. However, it could also arise from dip-filtering in his Kir-
chhoff wave extrapolation operator, as his processed gathers are obtained by extrapola-

tion back to the surface after minimizing the fitting error at the seafloor.

In an attempt to better predict amplitude and phase of the diffracted multiples on
the data, I tried 3D wave extrapolation instead of vt scaling and 2D extrapolation in
order to more closely model the physical experiment which I am modeling. For this
purpose, I used a 2.5D code (3D wave propagation, 2D earth model), courtesy of Nor-
man Bleistein and Paul Docherty at the Center for Wave Phenomena, Colorado School
of Mines, to model an impulse response for a point diffractor on the seafloor. I substi-
tuted this impulse response (and its transpose) for the operators used to extrapolate to
and from the seafloor in equations (3.3), (3.5), and (3.6). The results were poor and got
worse as the number of design iterations increased. The problem is a combination of
wraparound artifacts and aliasing. The modeling program is simply too good. The
high frequency and di‘p content of the synthetics make them unsuitable as wave ex-
trapolation operators until frequency and dip filtering comparable to those I used in my
2D phase-shift operators is applied. This I leave to future studies.

Further directions

One other possible direction for improved multiple suppression is to incorporate
some angle dependence in my model of seafloor reflection. This can be done in several
ways. Conceptually, the simplest way is to work in the slant p -7 domain. There, like
Estevez (1977), we can directly specify a model of reflection coefficient, and source
directivity, as a function of angle. A similar model can also be incorporated into the
phase-shift operators I currently use. One must remember that since these are plane-
wave reflection coeflicients, they will only be correct for a flat seafloor and will not
account for local inhomogeneities at the seafloor. We’ve seen in Chapter 2 that such
inhomogeneities distort the multiple waveform, making it hard to predict. An alterna-
tive to plane wave decomposition is to design a 2D convolutional reflection filter at
each seafloor station in order to accommodate angular dependence. This approach was
suggested by the work of van der Schoot, Wapenaar and Berkhout (1985). Since the
number of equations is several hundred times the number of parameters in the 1D filter
design, the 2D convolutional filters can safely be allowed to be quite wide.
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3.8 SUMMARY

I have developed a new seafloor-consistent method for suppression of marine mul-
tiples. I applied it to field data and found it worked well where conventional methods
and surface-consistent deconvolution did not. This confirms that wave-equation model-
ing can do a superior job of predicting the timing and amplitude of water-path multi-
ples. My choice of modeling and filter estimation procedure differs from previous appli-
cations in some or all of the following aspects: truly seafloor-consistent filters; incor-
poration of the pure seabottom multiple; fitting error minimized at the surface; and
simultaneous design using all the recorded data.
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